Silicon Phototransistor ### **FEATURES** - T-1 plastic package - 20° (nominal) acceptance angle - · Consistent optical properties - · Wide sensitivity ranges - Mechanically and spectrally matched to SEP8505 and SEP8705 infrared emitting diodes #### INFRA-22.TIF #### DESCRIPTION The SDP8405 is an NPN silicon phototransistor transfer molded in a T-1 clear plastic package. Transfer molding of this device assures superior optical centerline performance compared to other molding processes. Lead lengths are staggered to provide a simple method of polarity identification. ## OUTLINE DIMENSIONS in inches (mm) Tolerance 3 plc decimals ±0.005(0.12) 2 plc decimals ±0.020(0.51) DIM_100.ds4 Honeywell ## Silicon Phototransistor ### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |--------------------------------------|---------------------------------|------|-----|------|-------|-------------------------------| | Light Current | IL | | | | mA | V _{CE} =5 V | | SDP8405-001 | | 1.00 | | | | H=5 mW/cm ^{2 (1)} | | SDP8405-002 | | 7.00 | | 14.0 | | | | SDP8405-003 | | 12.0 | | 24.0 | | | | Light Current | l∟ | | | | mA | V _{CE} =5 V | | SDP8405-011 | | 0.16 | | | | H=0.25 mW/cm ^{2 (2)} | | SDP8405-012 | | 0.16 | | 0.46 | | | | SDP8405-013 | | 0.32 | | 0.92 | | | | SDP8405-014 | | 0.64 | | 1.85 | | | | SDP8405-015 | | 1.25 | | | | | | Collector Dark Current | ICEO | | | 100 | nA | V _{CE} =15 V, H=0 | | Collector-Emitter Breakdown Voltage | V _(BR) ceo | 30 | | | V | Ic=100 μA | | Emitter-Collector Breakdown Voltage | V _{(BR)ECO} | 5.0 | | | V | I _E =100 μA | | Collector-Emitter Saturation Voltage | Vce(sat) | | | 0.4 | V | lc=l∟/8 | | SDP8405-001 to -003 | | | | | | H=5 mW/cm ² | | SDP8405-011 to -015 | | | | | | H=0.25 mW/cm ² | | Angular Response (3) | Ø | | 20 | | degr. | I _F =Constant | | Rise And Fall Time | t _r , t _f | | 15 | | μs | Vcc=5 V, I _L =1 mA | | | | | | | | $R_L=1000 \Omega$ | - The radiation source is a tungsten lamp operating at a color temperature of 2870°K. The radiation source is an IRED with a peak wavelength of 935 nm. Angular response is defined as the total included angle between the half sensitivity points. ### **ABSOLUTE MAXIMUM RATINGS** (25°C Free-Air Temperature unless otherwise noted) Collector-Emitter Voltage 30 V Emitter-Collector Voltage 5 V Power Dissipation 70 mW (1) Operating Temperature Range -40°C to 85°C Storage Temperature Range -40°C to 85°C Soldering Temperature (5 sec) 240°C ### Notes 1. Derate linearly from 25°C free-air temperature at the rate of 0.18 mW/°C. Honeywell reserves the right to make changes in order to improve design and supply the best products possible. ## Silicon Phototransistor ### SWITCHING TIME TEST CIRCUIT 1.0 V 90% SWITCHING WAVEFORM **√** 0 ∨ Honeywell ## **Silicon Phototransistor** All Performance Curves Show Typical Values Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell 119 ## Silicon Phototransistor ### **FEATURES** - Side-looking plastic package - 50° (nominal) acceptance angle - Wide sensitivity ranges - Mechanically and spectrally matched to SEP8506 and SEP8706 infrared emitting diodes #### DESCRIPTION The SDP8406 is an NPN silicon phototransistor molded in a side-looking clear plastic package. The chip is positioned to accept radiation through a plastic lens from the side of the package. ### **OUTLINE DIMENSIONS** in inches (mm) Tolerance 3 plc decimals $\pm 0.005(0.12)$ 2 plc decimals $\pm 0.020(0.51)$ DIM_017.ds4 Honeywell ## Silicon Phototransistor ### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |--------------------------------------|---------------------------------|------|-----|------|-------|-------------------------------| | Light Current | IL | | | | mA | V _{CE} =5 V | | SDP8406-001 | | 0.15 | | 1.90 | | H=1 mW/cm ^{2 (1)} | | SDP8406-002 | | 1.80 | | 3.60 | | | | SDP8406-003 | | 3.40 | | 6.50 | | | | SDP8406-004 | | 6.40 | | 12.0 | | | | Collector Dark Current | I _{CEO} | | | 100 | nA | V _{CE} =15 V, H=0 | | Collector-Emitter Breakdown Voltage | V _(BR) ceo | 30 | | | V | Ic=100 μA | | Emitter-Collector Breakdown Voltage | V _{(BR)ECO} | 5.0 | | | V | I _E =100 μA | | Collector-Emitter Saturation Voltage | VCE(SAT) | | | 0.4 | V | lc=l∟/8 | | | | | | | | H=1 mW/cm ² | | Angular Response (2) | Ø | | 50 | | degr. | I _F =Constant | | Rise And Fall Time | t _r , t _f | | 15 | | μs | Vcc=5 V, I _L =1 mA | | | | | | | | R _L =1000 Ω | #### Notes - 1. The radiation source is an IRED with a peak wavelength of 935 nm. 2. Angular response is defined as the total included angle between the half sensitivity points. ### **ABSOLUTE MAXIMUM RATINGS** (25°C Free-Air Temperature unless otherwise noted) Collector-Emitter Voltage 30 V Emitter-Collector Voltage 5 V Power Dissipation 100 mW (1) -40°C to 85°C Operating Temperature Range Storage Temperature Range -40°C to 85°C Soldering Temperature (5 sec) Notes 0.78 mW/°C. 240°C 1. Derate linearly from 25°C free-air temperature at the rate of Emitter Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell **SCHEMATIC** Collector ## Silicon Phototransistor ### SWITCHING TIME TEST CIRCUIT SWITCHING WAVEFORM Fig. 2 Collector Current vs Fig. 3 Dark Current vs Non-Saturated Switching Time vs Honeywell ## **Silicon Phototransistor** All Performance Curves Show Typical Values Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell 123 ## Silicon Phototransistor ### **FEATURES** - End-looking plastic package - 135° (nominal) acceptance angle - Low profile for design flexibility - · Mechanically and spectrally matched to SEP8507 infrared emitting diode #### DESCRIPTION The SDP8407 is an NPN silicon phototransistor molded in an end-looking black plastic package. The chip is positioned to accept radiation from the top of the package. Lead lengths are staggered to provide a simple method of polarity identification. ### **OUTLINE DIMENSIONS** in inches (mm) Tolerance 3 plc decimals ±0.008(0.20) 2 plc decimals ±0.020(0.51) DIM_018.ds4 Honeywell ## Silicon Phototransistor ### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |--------------------------------------|---------------------------------|------|-----|-----|-------|-------------------------------| | Light Current | IL. | | | | mA | V _{CE} =5 V | | SDP8407-001 | | 0.10 | | | | H=1 mW/cm ^{2 (1)} | | Collector Dark Current | Iceo | | | 100 | nA | V _{CE} =10 V, H=0 | | Collector-Emitter Breakdown Voltage | V _(BR) ceo | 30 | | | V | Ic=100 μA | | Emitter-Collector Breakdown Voltage | V _{(BR)ECO} | 5.0 | | | V | I _E =100 μA | | Collector-Emitter Saturation Voltage | VCE(SAT) | | | 0.4 | V | lc=10 μA | | | | | | | | H=1 mW/cm ² | | Angular Response (2) | Ø | | 135 | | degr. | I _F =Constant | | Rise And Fall Time | t _r , t _f | | 15 | | μs | Vcc=5 V, I _L =1 mA | | | | | | | | R _L =1000 Ω | - Notes 1. The radiation source is an IRED with a peak wavelength of 935 nm. 2. Angular response is defined as the total included angle between the half sensitivity points. ## **ABSOLUTE MAXIMUM RATINGS** (25°C Free-Air Temperature unless otherwise noted) Collector-Emitter Voltage 30 V Emitter-Collector Voltage 5 V Power Dissipation 100 mW (1) Operating Temperature Range -40°C to 85C Storage Temperature Range -40°C to 85°C Soldering Temperature (5 sec) 240°C ### Notes 1. Derate linearly from 25°C free-air temperature at the rate of 0.66 mW/°C. Honeywell reserves the right to make changes in order to improve design and supply the best products possible. ## Silicon Phototransistor ### SWITCHING TIME TEST CIRCUIT GaAs Emitter Vcc +5 V Collector Figure 60 Figure 60 Cir_015.cdr SWITCHING WAVEFORM Fig. 1 Responsivity vs Fig. 2 Collector Current vs Fig. 3 Dark Current vs Fig. 4 Spectral Responsivity All Performance Curves Show Typical Values 126 Honeywell **Silicon Phototransistor** Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell 127 ## Silicon Phototransistor #### **FEATURES** - Side-looking plastic package - 18° (nominal) acceptance angle - Enhanced coupling distance - · Internal visible light rejection filter - · Low profile for design flexibility - Wide sensitivity ranges - Mechanically matched to SEP8736 infrared emitting diode #### DESCRIPTION The SDP8436 is an NPN silicon phototransistor molded in a black plastic package which combines the mounting advantages of a side-looking package with the narrow acceptance angle and high optical gain of a T-1 package. The SDP8436 is designed for those applications which require longer coupling distances than standard side-looking devices can provide, such as touch screens. The device is also well suited to applications in which adjacent channel crosstalk could be a problem. The package is highly transmissive to the IR source energy while it provides effective shielding against visible ambient light. ### OUTLINE DIMENSIONS in inches (mm) Tolerance 3 plc decimals ±0.005(0.12) 2 plc decimals ±0.020(0.51) DIM_019.ds4 Honeywell ## Silicon Phototransistor ### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |--------------------------------------|---------------------------------|------|-----|------|-------|-------------------------------| | Light Current | IL | | | | mA | V _{CE} =5 V | | SDP8436-001 | | 0.50 | | | | H=1 mW/cm ^{2 (1)} | | SDP8436-002 | | 4.00 | | 10.0 | | | | SDP8436-003 | | 7.00 | | 17.5 | | | | SDP8436-004 | | 12.5 | | | | | | Collector Dark Current | I _{CEO} | | | 100 | nA | V _{CE} =15 V, H=0 | | Collector-Emitter Breakdown Voltage | V _(BR) ceo | 30 | | | V | Ic=100 μA | | Emitter-Collector Breakdown Voltage | V _{(BR)ECO} | 5.0 | | | V | I _E =100 μA | | Collector-Emitter Saturation Voltage | VCE(SAT) | | | 0.4 | V | Ic=0.1 mA | | | | | | | | H=1 mW/cm ² | | Angular Response (2) | Ø | | 18 | | degr. | I _F =Constant | | Rise And Fall Time | t _r , t _f | | 15 | | μs | Vcc=5 V, I _L =1 mA | | | | | | | | R _L =1000 Ω | #### Notes - 1. The radiation source is an IRED with a peak wavelength of 880 nm. 2. Angular response is defined as the total included angle between the half sensitivity points. ### **ABSOLUTE MAXIMUM RATINGS** (25°C Free-Air Temperature unless otherwise noted) Collector-Emitter Voltage 30 V Emitter-Collector Voltage 5 V Power Dissipation 100 mW (1) -40°C to 85°C Operating Temperature Range Storage Temperature Range -40°C to 85°C Soldering Temperature (5 sec) 240°C ### Notes 1. Derate linearly from 25°C free-air temperature at the rate of 0.78 mW/°C. Honeywell reserves the right to make changes in order to improve design and supply the best products possible. ### Silicon Phototransistor ### SWITCHING TIME TEST CIRCUIT SWITCHING WAVEFORM Fig. 1 Responsivity vs Fig. 2 Collector Current vs Fig. 3 Dark Current vs Non-Saturated Switching Time vs Honeywell ## **Silicon Phototransistor** All Performance Curves Show Typical Values Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell 131 ### Low Light Rejection Phototransistor #### **FEATURES** - T-1 plastic package - · Low light level immunity - 20° (nominal) acceptance angle - Mechanically and spectrally matched to SEP8505 and SEP8705 infrared emitting diodes #### DESCRIPTION The SDP8475 is an NPN silicon phototransistor which internal base- emitter shunt resistance. Transfer molding of this device in a clear T-1 plastic package assures superior optical centerline performance compared to other molding processes. Lead lengths are staggered to provide a simple method of polarity identification. ### Distinguising Feature: This device incorporates all of the desired features of a standard phototransistor with the advantage of low light immunity. The phototransistor switching occurs when the incident light increases above the threshold (knee point). When the light level exceeds the knee point of the device, it will function as a standard phototransistor. Chart A illustrates the light current output of the low light rejection phototransistor as compared to a standard phototransistor with similar sensitivity. ### **Typical Application Uses:** Ideally suited for use in applications which require ambient light rejection, or in transmissive applications where the interrupter media is semi-transparent to infrared energy. This device also provides high contrast ratio in reflective applications where unwanted background reflection is a possibility. #### **OUTLINE DIMENSIONS** in inches (mm) Tolerance 3 plc decimals $\pm 0.005(0.12)$ 2 plc decimals $\pm 0.020(0.51)$ DIM_100.ds4 Honeywell ## Low Light Rejection Phototransistor ### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |--------------------------------------|---------------------------------|-----|-------|------|-----------------------|------------------------------------------------| | Light Current Slope (1) (2) | I∟ Slope | | | | mA/mW/cm ² | V _{CE} =5 V | | SDP8475-201 | | 4.0 | | 14.0 | | H ₁ = 0.5 mW/cm ² | | | | | | | | H ₂ = 0.25 mW/cm ² | | Knee Point (3) | | | 0.125 | | mW/cm ² | V _{CE} =5 V | | Collector Dark Current | Iceo | | | 100 | nA | H=0 mW/cm ² , V _{CE} =15 V | | Collector-Emitter Breakdown Voltage | V _(BR) ceo | 30 | | | V | Ic=100 μA | | Collector-Emitter Saturation Voltage | VCE(SAT) | | | 0.4 | V | Ic=I∟/8 H=0.25mW/cm² | | Reverse Current | I _R | | | 40 | mA | V _{CE} =-5.0 V | | Angular Response (4) | Ø | | 20 | | degr. | I _F =Constant | | Rise And Fall Time | t _r , t _f | | 15 | | μs | Vcc=5 V, I _L =1 mA | | | | | | | | $R_L=1000 \Omega$ | - Notes 1. The Slope is calculated with the following equation: (I_{L1} (@ H₁) I_{L2} (@ H₂)) / (H₁ H₂). 2. The radiation source is an IRED with a peak wavelength of 935 nm. 3. Knee Point is defined as being the source irradiance required to increase I_L to 50 μA. 4. Angular response is defined as the total included angle between the half sensitivity points. ### **ABSOLUTE MAXIMUM RATINGS** (25°C Free-Air Temperature unless otherwise noted) Collector-Emitter Voltage 70 mW (1) Power Dissipation Operating Temperature Range -40°C to 85°C -40°C to 85°C Storage Temperature Range Soldering Temperature (5 sec) ### Notes 1. Derate linearly from 25°C free-air temperature at the rate of 0.18 mW/°C. Honeywell reserves the right to make changes in order to improve design and supply the best products possible. ## Low Light Rejection Phototransistor ## SWITCHING TIME TEST CIRCUIT # cir_015.cdr GaAs Emitter Emitter 25**0** μS 1**000**Ω SWITCHING WAVEFORM Fig. 1 Responsivity vs Fig. 2 Spectral Responsivity Fig. 3 Dark Current vs Collector Current vs All Performance Curves Show Typical Values Honeywell ## Low Light Rejection Phototransistor ### Chart A. Low Light Rejection Phototransistor vs. Standard Phototransistor ## Designing with the Low Light Rejection Phototransistor: The Low Light Rejection detector is tested at different incident light levels to determine adherence to the specified knee point and light current slope. This method assures proper functionality vs. standard phototransistors, and guarantees required light current output. The light current slope is the change in light current output at two given source irradiances divided by the change in the two source irradiances. #### (Formula # 1) $$I_{L} \text{ Slope} = [I_{L_{1}} (@ H_{1}) - I_{L_{2}} (@ H_{2})] / [H_{1} - H_{2}]$$ #### Where - I₁ slope is the light current slope in mA/mW/cm² - I, is the light current output in mA - H is the source intensity in mW/cm² Chart A shows the specified limits of light current slope for the low light rejection phototransistor which begins its slope at the typical knee point, 0.125mW/cm². To make a clear distinction between this device and a standard phototransistor, light current slopes for high and low sensitivity standard phototransistors are also shown. Note that for phototransistors of the same gain, the slopes of the two products are parallel. The knee point, the source irradiance needed to increase I_L to 50μ , is a necessary parameter for circuit design. All variation in the knee point will be offset by the internally guardbanded light current slope limits. The appropriate formula for circuit design is the following: #### (Formula # 2) $$I_{L} = I_{L} \text{ slope}_{MIN.} * (H_{A} - H_{KP})$$ #### Where: - $\bullet \qquad I_{_L} \text{ is the light current output in mA} \\$ - Islope is the minimum limit on the light current slope (i.e. 4.0mA/mW/cm²) - H_A is the source light incident on the detector for the application - H_{xp} is the specified level of source light incident on the detector at the typical knee point (i.e. 0.125 mW/cm²) ### Example: To design a transmissive sensor with two of Honeywell's standard components, the SEP8505-002 and the SDP8475-201, it is first necessary to determine the irradiance level in mW/cm² that will be incident on the detector. The application conditions are the following: Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell 139 ## Low Light Rejection Phototransistor Supply voltage = 5V Distance between emitter and detector = 0.4 in. (10.16mm) IRED drive current = 20mA The SEP8505-002 gives 1.0mW/cm² min. to 4.0mW/cm² max. under the above conditions. To obtain minimum light current output, use the minimum irradiance limit. $\begin{array}{ll} \mbox{Light current output} = \mbox{ I}_{L} \mbox{ slope}_{\mbox{\tiny MIN}} \mbox{ }^{*} \mbox{ } (\mbox{ H}_{A} - \mbox{ H}_{\mbox{\tiny KP}}) \\ \mbox{Light current output} = 4.0 \mbox{ mA/mW/cm}^{2} \mbox{ min. }^{*} \mbox{ } (1.0 \mbox{ mW/cm}^{2} \mbox{ min. }^{*} \mbox{ } 0.125 \mbox{ mW/cm}^{2}) = 3.5 \mbox{mA} \mbox{ min. } \\ \end{array}$ 140 Honeywell ### Low Light Rejection Phototransistor ### **FEATURES** - Side-looking plastic package - · Low light level immunity - 50° (nominal) acceptance angle - Mechanically and spectrally matched to SEP8506 and SEP8706 infrared emitting diodes #### DESCRIPTION The SDP8476 is an NPN silicon phototransistor which internal base- emitter shunt resistance. Transfer molding of this device in a clear T-1 plastic package assures superior optical centerline performance compared to other molding processes. Lead lengths are staggered to provide a simple method of polarity identification. ### **Distinguising Feature:** This device incorporates all of the desired features of a standard phototransistor with the advantage of low light immunity. The phototransistor switching occurs when the incident light increases above the threshold (knee point). When the light level exceeds the knee point of the device, it will function as a standard phototransistor. Chart A illustrates the light current output of the low light rejection phototransistor as compared to a standard phototransistor with similar sensitivity. ### **Typical Application Uses:** Ideally suited for use in applications which require ambient light rejection, or in transmissive applications where the interrupter media is semi-transparent to infrared energy. This device also provides high contrast ratio in reflective applications where unwanted background reflection is a possibility. #### **OUTLINE DIMENSIONS** in inches (mm) Tolerance 3 plc decimals ±0.005(0.12) 2 plc decimals ±0.020(0.51) DIM 017 ds4 Honeywell ## Low Light Rejection Phototransistor ### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) | DADAMETED | 0)/440.01 | | T\/D | | LINUTO | TEST SOUDITIONS | |--------------------------------------|---------------------------------|-----|-------|-----|-----------------------|-----------------------------------------| | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | | Light Current Slope (1) (2) | I∟ Slope | | | | mA/mW/cm ² | VcE=5 V | | SDP8476-201 | | 1.0 | | 6.0 | | H ₁ = 1 mW/cm ² | | | | | | | | H ₂ = 0.5 mW/cm ² | | Knee Point (3) | | | 0.125 | | mW/cm ² | V _{CE} =5 V | | Collector Dark Current | ICEO | | | 100 | nA | H=0 mW/cm², VcE=15 V | | Collector-Emitter Breakdown Voltage | V _(BR) ceo | 30 | | | V | Ic=100 μA | | Collector-Emitter Saturation Voltage | VCE(SAT) | | | 0.4 | V | Ic=I∟/8 H=1mW/cm² | | Reverse Current | lR | | | 40 | mA | V _{CE} =-5.0 V | | Angular Response (4) | Ø | | 20 | | degr. | I _F =Constant | | Rise And Fall Time | t _r , t _f | | 15 | | μs | Vcc=5 V, I _L =1 mA | | | | | | | | $R_L=1000 \Omega$ | - Notes 1. The Slope is calculated with the following equation: (I_{L1} (@ H₁) I_{L2} (@ H₂)) / (H₁ H₂). 2. The radiation source is an IRED with a peak wavelength of 935 nm. 3. Knee Point is defined as being the source irradiance required to increase I_L to 50 μA. 4. Angular response is defined as the total included angle between the half sensitivity points. ### **ABSOLUTE MAXIMUM RATINGS** (25°C Free-Air Temperature unless otherwise noted) Collector-Emitter Voltage 100 mW (1) Power Dissipation Operating Temperature Range -40°C to 85°C -40°C to 85°C Storage Temperature Range Soldering Temperature (5 sec) ### Notes 1. Derate linearly from 25°C free-air temperature at the rate of 0.78 mW/°C. Honeywell reserves the right to make changes in order to improve design and supply the best products possible. ## Low Light Rejection Phototransistor ## SWITCHING TIME TEST CIRCUIT SWITCHING WAVEFORM Fig. 1 Responsivity vs Fig. 2 Spectral Responsivity Fig. 3 Dark Current vs All Performance Curves Show Typical Values 144 Honeywell ## Low Light Rejection Phototransistor #### Chart A. Low Light Rejection Phototransistor vs. Standard Phototransistor #### Designing with the Low Light Rejection Phototransistor: The Low Light Rejection detector is tested at different incident light levels to determine adherence to the specified knee point and light current slope. This method assures proper functionality vs. standard phototransistors, and guarantees required light current output. The light current slope is the change in light current output at two given source irradiances divided by the change in the two source irradiances. #### (Formula # 1) $$I_{L}$$ Slope = $[I_{L1} (@ H_{1}) - I_{L2} (@ H_{2})] / [H_{1} - H_{2}]$ #### Where - $\rm I_L$ slope is the light current slope in mA/mW/cm 2 I_L is the light current output in mA - H is the source intensity in mW/cm² Chart A shows the specified limits of light current slope for the low light rejection phototransistor which begins its slope at the typical knee point, 0.25mW/cm². To make a clear distinction between this device and a standard phototransistor, light current slopes for high and low sensitivity standard phototransistors are also shown. Note that for phototransistors of the same gain, the slopes of the two products are parallel. The knee point, the source irradiance needed to increase I, to 50uA, is a necessary parameter for circuit design. All variation in the knee point will be offset by the internally guardbanded light current slope limits. The appropriate formula for circuit design is the following: #### (Formula # 2) $$I_{L} = I_{L} \text{ slope}_{MIN.} * (H_{A} - H_{KP})$$ - ${\rm I}_{\scriptscriptstyle L}$ is the light current output in mA - I_L slope_{MN}, is the minimum limit on the light current slope (i.e. 1.0mA/mW/cm²) - H, is the source light incident on the detector for the - H_{KP} is the specified level of source light incident on the detector at the typical knee point (i.e. 0.125 mW/cm²) To design a transmissive sensor with two of Honeywell's standard components, the SEP8506-003 and the SDP8476-201, it is first necessary to determine the irradiance level in mW/cm2 that will be incident on the detector. The application conditions are the following: Honeywell reserves the right to make changes in order to improve design and supply the best products possible. ## Low Light Rejection Phototransistor Supply voltage = 5V Distance between emitter and detector = 0.535 in. (13.6mm) IRED drive current = 20mA The SEP8506-003 gives 0.45mW/cm² min. to 0.90mW/cm² max. under the above conditions. To obtain minimum light current output, use the minimum irradiance limit $\begin{array}{ll} \mbox{Light current output} = \ I_L \ slope_{\mbox{\tiny MIN.}} \ ^* \ (\mbox{H}_{\mbox{\tiny A}} \ ^- \ \mbox{H}_{\mbox{\tiny KP}}) \\ \mbox{Light current output} = 1.0 \ \mbox{mA/mW/cm}^2 \ \mbox{min.} \ ^* \\ \mbox{(0.45mW/cm}^2 \ \mbox{min.} \ ^- \ \mbox{0.25 mW/cm}^2) = 0.2mA \ \mbox{min.} \end{array}$ 146 Honeywell