Booster Lube Series ALB900

- Centralized control of multi-point lubrication
- Stable oil feeding with a micromist
- Through the use of a booster, a pressure that is higher than that of the main air passage can be supplied. This difference is used as the mist generating pressure differential. Thus, the pressure drop in the main air passage is minimized.
- Micromist can be constantly supplied by merely adjusting the mist generating pressure differential.
- Oil can be replenished by merely opening and closing the oil filler plug without stopping the air line.
- The condition of the generation of micromist can be checked from the oil filler port.

ALB900-00-11

Standard Specifications

Model	ALB900-10 ALB900-20		ALB900-30					
Port (Bypass lubrication adapter)	Rc 1 Rc 2		3 inch flange					
Port size (Body)	IN: R 1/4 OUT: Rc 1/2							
Fluid	Air							
Proof pressure	1.5 MPa							
Operating pressure range	0.4 to 1.0 MPa							
Operating pressure differential range	0.05 to 0.2 MPa							
Bowl capacity between levels (cm ³)	5000							
Recommended lubricant	Turbine oil Class 1 (With no additives), ISO VG32							
Ambient and fluid temperature	5 to 50°C							
Bowl material	Epoxy resin with glass fiber, Polycarbonate							
Mass (kg)	28							

Accessory (Option) Part No.

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com

GSMC

AL800

AL900

ALF

ALT ALD

ALB

LMU

ALIP

Series ALB900

Piping Example

Operation Control Method

As shown in the diagram below, reverse the position of the function plate of the switching valve for operation control, and place it in the NO position or in the unmarked position. When the control signal is input, select the state of the operation or the stopping of the Booster Lube.

NO position Operation at control signal input Nil position Stop at control signal input The 100 VAC, 200 VAC, 220 VAC, 24 VDC, or air pilot type specification can be applied to the control signal.

Air Consumption

This unit uses a booster to generate a mist generating pressure differential. Therefore, the booster consumes and discharges the air. Data(A) indicates the relationship between this air consumption rate, the set pressure differential, and the pressure of the main air passage (inlet pressure).

Data (A) Air Consumption

a 776

SMC

Setting of Mist Generation Pressure Differential

Procedure

 Obtain the air consumption flow rate in the downstream of the Booster Lube.
 Obtain the necessary mist generation pressure differential from data(B).

Data(B) Flow — Mist Generation Pressure Differential

EX: How to obtain the mist generating pressure differential if the flow rate obtaine

in 1. above is 35 m³/min (ANR) and the line pressure (inlet pressure P₁) is 0.7 MPa:

 —> Extend horizontally from the point at which the flow rate is 35 m³/min to obtain the point that intersects with P₁ = 0.7 MPa.
 Furthermore, extend vertically downward from that point to the point that intersects with P₁ = 0.7 MPa.

intersects with the graduation line of the mist generating pressure differential. The value of that intersecting point, which is 0.15 MPa, is the mist generating pressure differential that is sought.

3. The mist generating pressure differential setting is performed by adjusting the adjustment screw. The pressure differential (the difference between the boost pressure and the line pressure) is increased by turning the adjustment screw clockwise, and decreased by turning counterclockwise. To check the pressure differential, switch and operate the manual switching valve to read the difference between the boost pressure (HIGH position) and the line pressure (NORMAL position) as shown below (the pressure gauge that is connected to the manual switching valve). After completing the setting, set the manual switching pressure differential to exceed 0.2 MPa.

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Precautions and pages 287 to 291 for Precautions on every series.

Caution on Design

∆Warning

1. Epoxy resin containing glass fiber and polycarbonate is used in some parts of the Booster Lube. The Booster Lube cannot be used in an environment or in a location that is exposed to synthetic oil, thinner, acetone, alcohol, organic solvets such as ethylene chloride, chemicals such as sulfuric acid or nitric acid, cutting oil, kerosene, gasoline, or a threadlock agent, etc., because they will be damaged.

Piping

∆Warning

If installing an air tank, install it upstream of the bypass oil feed adapter. If it is installed downstream, the micromist could be arrested by the air tank, which could lead to insufficient feeding of oil.

Mounting/Adjustment

- 1. When setting the pressure differential, if there is a fluctuation in the operating flow rate, set the pressure differential at the higher flow rate range. If it is set in the lower flow rate range, the mist density could become thinner, leading to poor lubrication.
- 2. To prevent mist from being generated unnecessarily, if there is no air consumption in the main air passage, operate the switching valve for operation control to stop the operation of the booster.

Maintenance

∆Warning

 Before removing the oil filler plug, loosen it two and half turns to completely release the pressure in the bowl. This will prevent the oil filler plug from flying out.

AL900
ALF Alt
ALD
ALB
LMU
ALIP

777

AL800

SMC

Series ALB900

Construction

Component Parts

No.	Description	Material			
1	Top cover	Aluminum casted			
2	Bottom cover	Aluminum casted			

Replacement Parts

110									
No.	Description	Material	Q'ty						
3	3 port switching valve (for operation control)		VOA301-M V0307E-*D-X56	1					
4	Relay valve		VR4152-00-0	1					
5	Pressure gauge		GA46-10-01	1					
6	Diaphragm assembly		12702A	1					
7	Valve assembly	12705A	1						
8	NLP seal	NBR	NLP-100A	2					
9	PNY seal	NBR	PNY-25	2					
10	Wear ring	Cloth-inserted phenol aldehyde resin	SW-100 x 6 x 2	2					
11	O-ring	Ig NBR							
12	Bowl assembly	Glass fiber-inserted epoxy resin	126059-4A	1					
13	Seal	NBR	126060	2					
14	Lubrication plug assembly	Zinc die-casted 126115AF		1					
15	Bowl assembly		AF11-3	1					
16	O-ring	NBR	11307	1					

* 1: 100 VAC, 2: 200 VAC, 4: 220 VAC, 5: 24 VDC, 9: Others

Dimensions

Bypass Lubrication Adapter

Part no.	Port size Rc	Α	в	с	D	Е	F
ALBA90-10	1	150	42.7	45	40	35	80
ALBA90-20	2	165	76.3	65	60	40	80

ALBA90-30

779

Series ALB900

Related Product: Strainer

At the terminal of an air pressure line in which a Booster Lube is used, install a strainer (filtration rate of 5 µm) upstream from a metal seal solenoid valve, which is susceptible to dust.

Model	A	С	D	Е	F	G	н	J	к
AF30-02 to 03-X2230	Rc 1/4, 3/8	53	118	14	53	57	35	44	M4 x 0.7 x 0.5
AF40-02 to 04-X2230	Rc 1/4, 3/8, 1/2	70	165	18	70	73	47	60	M5 x 0.8
AF40-06-X2230	Rc 3/4	75	169	20	70	73	47	60	M5 x 0.8
AF50-06 to 10-X2230	Rc 3/4, 1	90	245	24	90	—	59	73	M6 x 1
AF60-10-X2230	Rc 1	95	258	24	95	—	63	78	M6 x 1