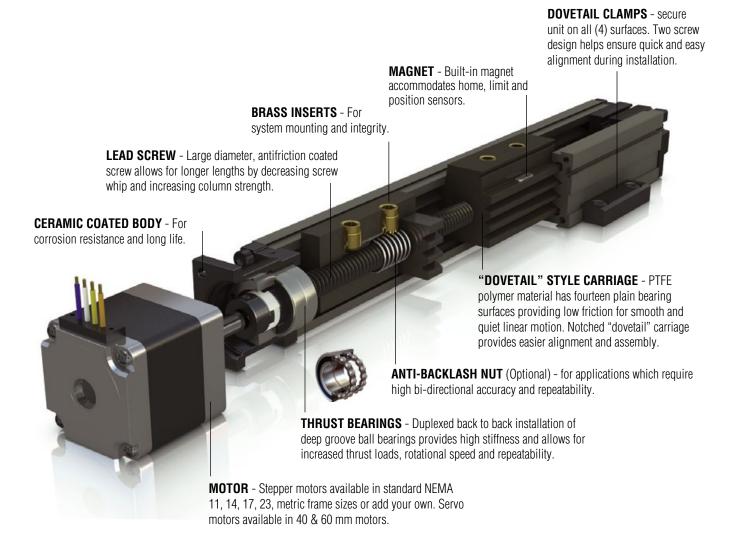


ML Series Miniature Linear Actuator




Product Overview	2-3
Applications	9
Technical Data	10
Dimensional Data	11
Performance Data	12-13
MLB Series	14
Motor Options	15

MLC Series	24
MLD Series	26
Building Your ML Actuator	28
Ordering Options	29
Accessories	32
Technical Selection Guide	42
Application Data Sheet	47

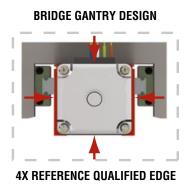

ML Series Overview

ML ADVANTAGE - Small, Compact Profile - 28 x 32mm - Patent Pending SIMO™ Process ensures precision mounting, accurate installation and lightweight composition. - Lead Screw Driven - High accuracy and precise repeatability - Multi-Axis Configurations - Long Travel Lengths - Up to 650mm

4 LINEAR MOTION SOLUTIONS I www.pbclinear.com

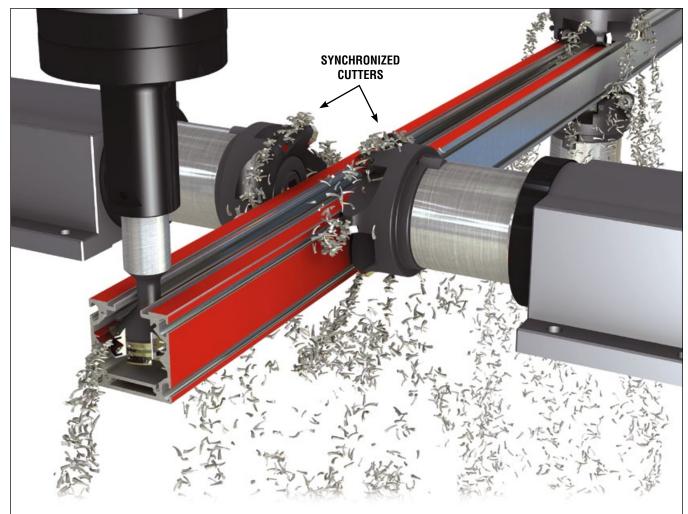
- Patent Pending Machining Process
- High Precision Mounting Surfaces
- Tight Tolerances ± 0.025mm (0.001 in)

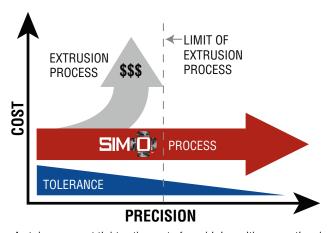
PBC Linear has revolutionized traditional machining with the patent pending SIMO™ (Simultaneous Integral Milling Operation).


The typical aluminum extrusion process produces a natural bow, twist and variance. Costly straightening and aligning is traditionally used to combat this variance, resulting in a semi-straight aluminum extrusion that drives the cost up.

PBC's SIMO process uses synchronized cutters, eliminating built-in extrusion variances by machining all critical edges concurrently in one pass. This ensures tight tolerances, limited variance and a remarkably straight and repeatable surface at negligible additional cost!

ML Advantage


Using the machine tooled precision and rigid surfaces sustained by the SIMOTM process, the ML's bridge gantry design can support 1 or 2 linear guides on the sides of the ML. These supports work together to increase load capacities and sustain stability while utilizing recirculating caged-ball technology to provide smooth and quiet linear motion guidance.



Machine tools are built on precision machined castings or weldments... Why shouldn't your actuator be built the same?

As tolerances get tighter, the cost of machining with conventional processes increases dramatically over the SIMO process.


©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

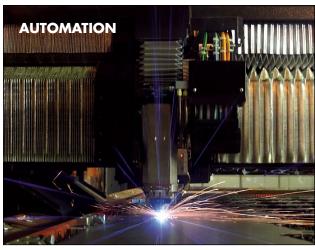
Multi-Axis Mounting

ML actuators are designed to perform well in XY and other Cartesian arrangements. The actuator body forms a strong beam with higher moment loading capacity. Special dovetail slots on all sides allow the actuators to be mounted on their bottom surface or on either side.

Carriage brackets and special wedge mounting clamps allow for precise and rigid mounting arrangements. Linear guides can be installed on one or both sides of the actuator with one or two runner blocks on each rail for greater rigidity in gantry applications.

Multi-axis gantries can also be created by combining the ML with other PBC's actuators such as the PL or MT Series.

- Medical
- Biotech
- Instrument Automation
- Packaging
- Pick and Place
- Semi-conductor
- Scanning



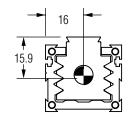
ML Applications

The ML miniature actuator has surpassed expectations and left the competition in the dust. Its combination of compactness and (60 lbf) 265 N pound thrust power gives this actuator an edge for automation applications where space is critical. Plus, the SIMO™ machined rail surface and zero backlash lead screw assembly ensures accuracy and precision for syringe pump and optical control applications.

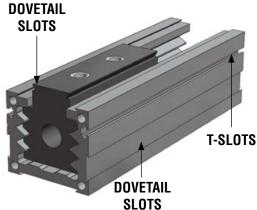
©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Technical Data

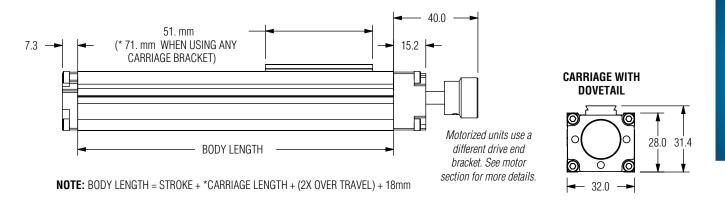
ML SER	RIES - (Carriag	ge only		
Size		mm	28 x 32	in	1.10 x 1.26
Max. Load - Lite Preload - <i>anti-backlash</i> - Normal Preload - <i>anti-backlash</i> - Standard	Fx	N	44 89 267	lbf	10 20 60
	Fy		107		24
	Fz		178		40
	Mx		1.4		12.4
Max. Moments	Му	Nm	1.4	lbf-in	12.4
	Mz		1.4		12.4
Bending Moment of Inertia	ly	cm ⁴	2.4	in ⁴	0.058
(second moment of area)	lz	0111	4.4		0.106
See page 24 for tech	nical da	ta on line	ar guide su	pports	T
Base Weight without Motor			0.06		0.13
Add for 100 mm of stroke	- Kg -	0.15	lbf	0.34	
Total Carriage Mass		Ny	0.020		0.044
Total Carriage Mass & Top Plate		0.059		0.130	
Coefficient of Friction			0	.19	
Max. Speed		m/s	1.9	in/s	75
Max. Stroke Length			650	in	25.6
Min. Stroke Length		mm	5		0.2
Nominal Screw Diameter			10.0		0.375
Max RPM			30	000	•
No Load Torque Nut - Lite Preload - anti-back - Normal Preload - anti-b - Standard		Nm	0.0565 0.106 0.007	lbf-in	0.50 0.94 0.062
Linear Guide Supports - Single Linear Guide - Dual Linear Guides		Nm	.017 .034	lbf-in	0.15 0.30
Seal Strip - with Seal Strip - without Seal Strip		Nm	.028 0	lbf-in	0.25 0
Screw Lead Accuracy*		mm/mm	.0006	in/in	.0006
Normal Operating Temperature (Wider ranges available)	min max	°C	98 18	°F	32 176

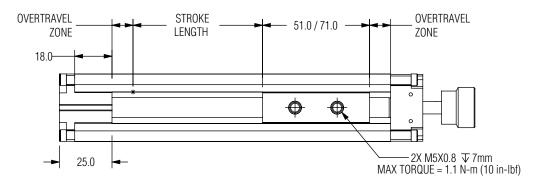

^{*}Higher accuracies are available to .0001 mm/mm (in/in). Contact manufacturer for details. Specifications are subject to change without notice.


For combined loads, loading cannot exceed the following formula.


$$\frac{Fy_A}{Fy} + \frac{Fz_A}{Fz} + \frac{Mx_A}{Mx} + \frac{My_A}{My} + \frac{Mz_A}{Mz} <= 1$$

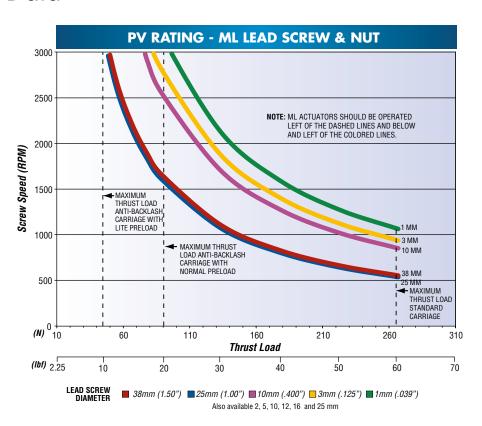
CENTER OF GRAVITY FOR MOMENT CALCULATIONS

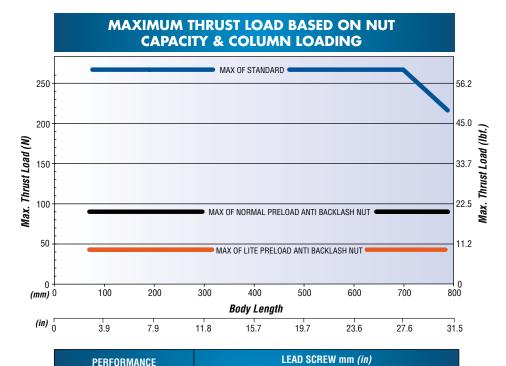



EXTERNAL DOVETAIL EASY SKETCH

Dimensional Data

RECOMMENDED **OVERTRAVEL PER SIDE**


Knob or Hand Crank = 5mm Stepper Motor = 10mm Servo Motor = 20mm


١١	Entor 1	Omm								
1) Enter 19mm					BODY	LEN	IGTH CALC	ULATION '	TABLE	Example
2) Select (5, 10 or 20mm) for overtravel on idle end (See recommended overtravel above.)					IDLE END C	AP =	19mm		19	19
3)	Specif	y stroke length in mm			OVERTRAV	EL ID	LE END (5,	10 or 20mm	1)	10
4)	Select	(51 or 71mm) for carr	riage lengtl	1	STROKE LE	NGTH	I			155
5)	5) Select (5, 10 or 20mm) for overtravel on idle end			CARRIAGE LENGTH (51 or 71mm)					71	
	•	ecommended overtrav	•		OVERTRAVEL DRIVE END (5, 10 or 20mm) (Add Amounts 1-5) + ENTER SUBTOTAL (mm) = 265 TOTAL BODY LENGTH (Round Subtotal to nearest 10mm)					10
6)	Add ar	nounts together and e	nter SUBT	OTAL						
7)	Enter 1	OTAL BODY LENGTH	(Round to	nearest 10mm)						265
,		ORDERING enter TOTA LENGTH column.	AL BODY I	ENGTH in						270
ORD	ERING	GUIDE						8—		
ML	028D -	· x	жж	х	х		ж	- 0270 -	ж	х
S	eries	Linear Guide Supports	Leads	Nut Type	Seal S	trip	# of Carriages	Body Length	Motor Location	Configuration
mo	eries with tor lead w driven 32 mm	O No external Rail I Rail + 1 Runner Block* I Rail + 2 Runner Block* Rail + 1 Runner Block/rail Rail + 2 Runner Block/rail	AH 1 MM AG 2 MM AX 5 MM AJ 10 MM BD 12 MM	Standard Nut Anti-backlash (light preloa Anti-backlash (normal pre		al strip	 1 Carriage 2 Carriages 3 Carriages 4 Carriages 	mm	S Straight (in-line) L Left R Right B Bottom T Top	0 Standard

Performance Data

The load rating and system speed must both be accounted for when sizing a lead screw system. The nut threads and screw threads form a plane bearing system.

The PV limit of a polymer material is the point at which friction-generated heat can no longer be expelled at a rate to prevent the material from overheating. Such overheating while under stress can cause permanent deformation of the material. Ignoring how the system's speed and loading relate to the nut material's PV rating can lead to dramatically shorter thread life. The primary modes of failure for lead screw systems are wear and PV. By staying within the PV envelope of the screw and nut, one can ensure long life of the nut without premature wear.

38 (1.50)

1905 (75)

10 (0.375)

25 (1.00)

1270 (50)

10 (0.375)

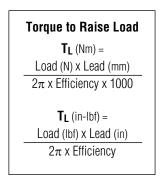
10 (.400)

508 (20)

10 (0.375)

3 (.125)

159 (6.25)


10 (0.375)

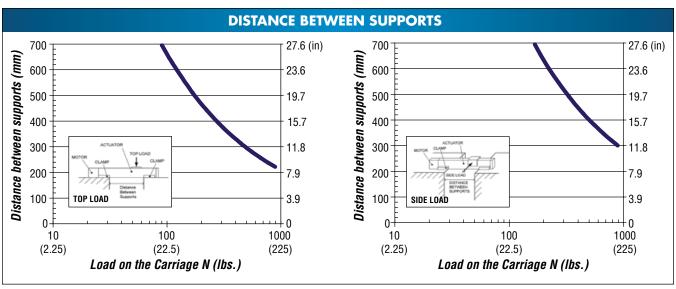
1 (.039)

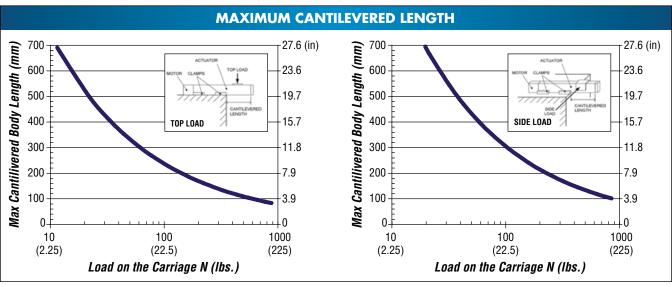
50 (1.95)

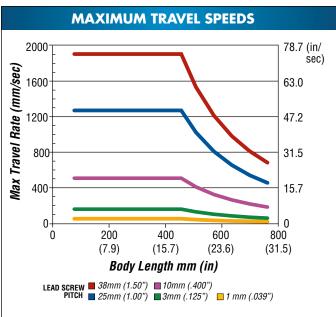
10 (0.375)

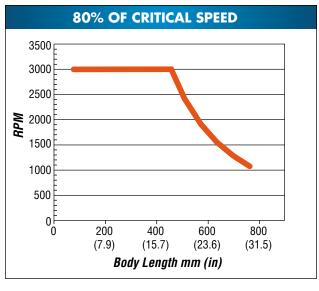
26%

mm/s (in/s)

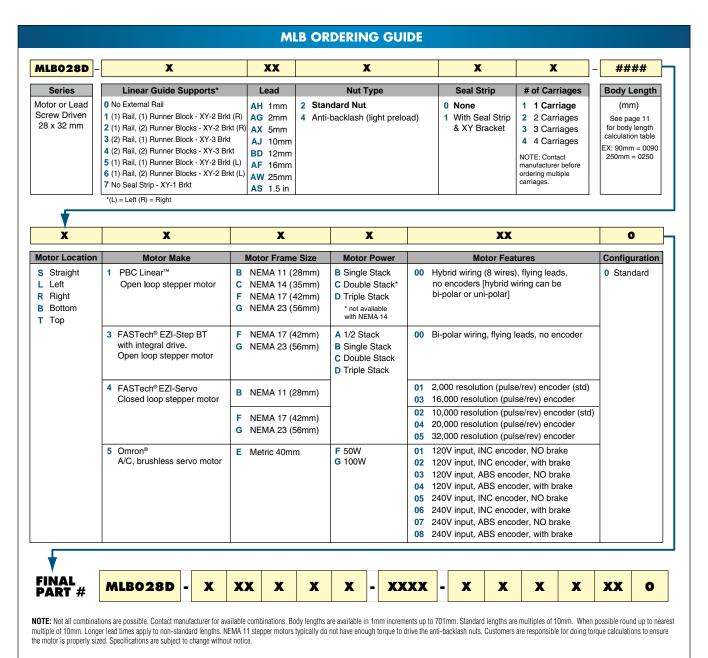

mm (in)


CHARACTERISTICS

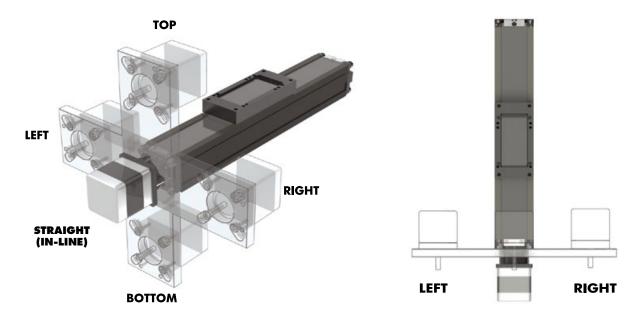

Screw Efficiency (See formula to left)


Max, Travel Speed

Screw Diameter



MLB Series (Integrated Motor)



- Includes motor, coupling and motor assembly
- Full stock of open and closed loop stepper motors and servo motors
- Available in NEMA 11,14,17,23
- Precision machined body
- Small, compact design
- High acceleration, speed and rigidity
- Pre-engineered and assembled for easy installation

Motor Locations

Using universal motor mounts, PBC Linear's ML series mini-actuators give our customers the freedom for limitless mounting options. Straight (in-line), top, bottom or side motor mounting allows the ML series to fit seamlessly into any specified application.

Motor Options

STEPPER MOTORS

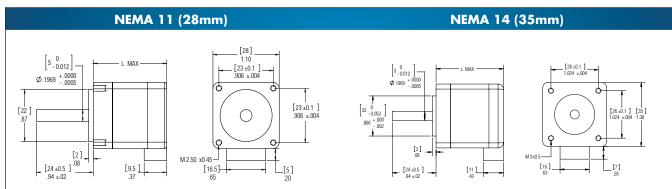
PBC Linear™ brand stepper motors are designed to reduce length in the ML actuator. Other stepper motor brands have a longer shaft and require a spacer to ensure all motors will be compatible. Single, double and triple stack motors are available in each size. See page 16 for dimensional data.

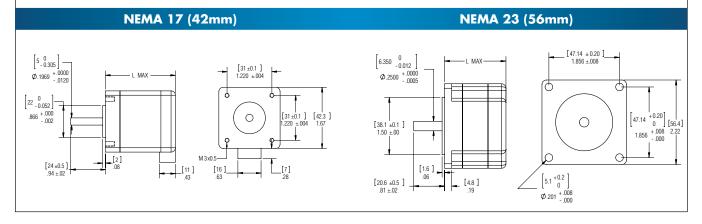
FASTech® applies state-of-the-art monitoring and drive advancements into their EZi-Step™ motor for precision, speed and power. Built with an internal unique algorithm and sensorless stall detection, these stepper motors assure faultless control. The EZi-Step also employs digital signal processors to guarantee high precision and high speed drive. Available in open or closed loop designs. Contact PBC Linear's for FASTech motor options and availability.

SERVO MOTORS

OMRON servo motors provide a large variety of functions featuring highprecision positioning with improved response and vibration control, making it suitable for a wide range of application. Contact PBC Linear's Application Engineers for Omron motor options and availability.

Stepper Motor





NEMA Boting	Motor	Current per Phase	Holding	Torque	Detent	Torque	Rotor I	ntertia	Length	Weights	Model
Rating	Power	А	mN • m	oz-in	mN • m	oz-in	g-cm ²	oz-in²	mm (in)	kg (lb)	P/N #
NEMA 11	Single	1	50	7.08	5	0.71	9	0.05	31 (1.21)	0.10 (0.22)	6200297
NEMA 11	Double	0.67	90	12.75	6	0.85	12	0.07	40 (1.56)	0.15 (0.33)	6200298
NEMA 11	Triple	1	100	14.16	8	1.13	18	0.1	51 (2.01)	0.20 (0.44)	6200299
NEMA 14	Single	0.4	60	8.5	10	1.42	12	0.07	26 (1.01)	0.15 (0.33)	6200300
NEMA 14	Triple	0.85	100	14.16	15	2.12	20	0.11	37 (1.44)	0.21 (0.46)	6200302
NEMA 17	Single	1.5	360	50.99	15	2.12	57	0.31	39.8 (1.57)	0.28 (0.62)	6200303
NEMA 17	Double	1.5	490	69.41	25	3.54	82	0.45	48.3 (1.90)	0.36 (0.79)	6200304
NEMA 17	Triple	1.5	630	89.24	30	4.25	123	0.68	62.8 (2.47)	0.60 (1.32)	6200305
NEMA 23	Single	1.5	500	70.82	22	3.12	135	0.74	41 (1.61)	0.42 (0.93)	6200306
NEMA 23	Double	1.5	1000	141.64	40	5.66	260	1.43	54 (2.13)	0.60 (1.32)	6200307
NEMA 23	Triple	1.4	1650	233.71	70	9.91	460	2.53	76 (2.99)	1.00 (2.20)	6200308

Stepper Motor

FASTech applies state-of-the-art monitoring and drive advancements into their Ezi-SERVO® motor for precision, speed and power. Built with an internal unique algorithm, no hunting and sensorless stall detection, these stepper motors assure faultless control. The Ezi-SERVO® also employs digital signal processors to guarantee high precision and high speed drive. Available in closed or open loop designs (Ezi-STEP®).

Ezi-SERVO - Closed Loop Stepping System

- High Resolution Optical Encode
- No Gain Tuning or Hunting
- High Speed Operation using Internal DC-DC Converter (24VDC - 40VDC)
- Short Settling Time (Fast in-position) signal
- Software Dampening (Smooth Operation)

Ezi-SERVO Plus-R - Closed Loop Stepping System with Network based Motion Controller

- Integrated Motion Controller
- Powerful and Various motion control functions
- No Gain Tuning or Hunting
- High Resolution
- Short Settling Time (Fast in-position) signal
- Software Dampening (Smooth Operation)

Ezi-STEP BT

- Integrated Drive
- Sensorless Stall Detection (400 rpm)
- Software Dampening
- Run/Stop Signal Output

Ezi-STEP ST

- High Precision Microstep Operation
- Sensorless Stall Detection (400 rpm)
- Software Dampening
- Run/Stop Signal Output
- Drive sold separately

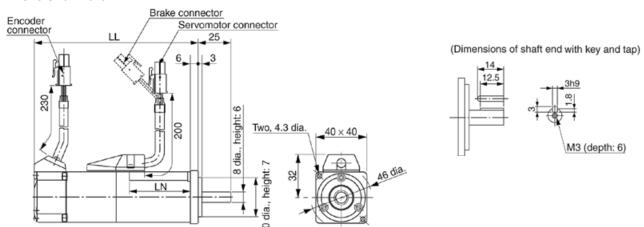
Ezi-STEP Plus-R with Network **based Motion Controller**

- Integrated Micro-stepping (50,000 step/rev.)
- Sensorless Stall Detection (400 rpm)
- Software Dampening
- Run/Stop Signal Output
- Motor sold separately (MLB excluded.)

CHOOSING THE RIGHT STEPPER MOTOR DO YOU NEED AN ENCODER? YES- CLOSED LOOP **NO - OPEN LOOP** PBC LINEAR + Ezi-SERVO Plus-R YES **MOTORS** Closed Loop Stepping System with Network based Motion Controller **DO YOU NEED PBC LINEAR**MOTORS A NETWORK **Ezi-SERVO** Ezi-STEP ST **CONTROLLER?** NO Ezi-STEP 📴

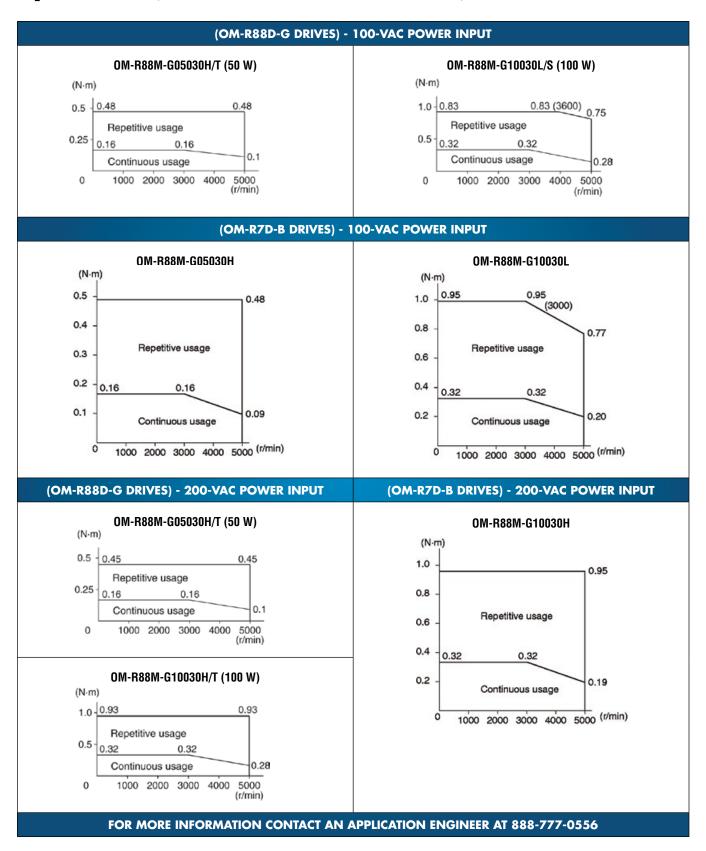
Servo Motors - OM-R88M-G

Omron Servo Motors deliver smooth performance for accurate positioning combined with Servo Drivers OM-R7D-B and OM-R88D-G. They meet international standards for use in machinery worldwide. All models have a shaft key and top.


OMRON

OM-R88M-G Servo Motors

			SERVO MO	TOR DA	TA		
Voltage	Rated Power	RPM	Encoder	Brake	LL	LN	Drive Compatibility
100V/200V	50W	3000	Incremental	Yes	102	26.5	OM-R7D-B, OM-R88D-G
100V/200V	50W	3000	Incremental	No	72	26.5	OM-R7D-B, OM-R88D-G
100V/200V	50W	3000	Absolute	Yes	102	26.5	OM-R88D-G
100V/200V	50W	3000	Absolute	No	72	26.5	OM-R88D-G
100V	100W	3000	Incremental	Yes	122	46.5	OM-R7D-B, OM-R88D-G
100V	100W	3000	Incremental	No	92	46.5	OM-R7D-B, OM-R88D-G
100V	100W	3000	Absolute	Yes	122	46.5	OM-R88D-G
100V	100W	3000	Absolute	No	92	46.5	OM-R88D-G
200V	100W	3000	Incremental	Yes	122	46.5	OM-R7D-B, OM-R88D-G
200V	100W	3000	Incremental	No	92	46.5	OM-R7D-B, OM-R88D-G
100V	100W	3000	Absolute	Yes	122	46.5	OM-R88D-G
100V	100W	3000	Absolute	No	92	46.5	OM-R88D-G



Dimensional Data

KEY SPECIFICATIONS			
Part #	OM-R88M-G		
Structure	Totally enclosed, self-cooling; rated IP 65		
Operating Position	All Directions		
Insulation G	Туре В		
Ambient operating temperature and humidity	0 to 40°C, 85% RH max.		
Vibration Resistance	10 to 2,500 Hz and acceleration of 49 m/s 2 max. in the X, Y, and Z directions		
Impact Resistance	Acceleration of 98 m/s 2 max. 3 times each in the X, Y, and Z directions		
International Standards	EMC Directive: EN 55011 class A group 1, EN 61000-6-2, IEC 61000-4-2/-3/-4/-5/-6/-11 Low voltage Directive: IEC 60034-1/-5 UL standards: UL 508C cUL standards: CSA 22.2 No.100		

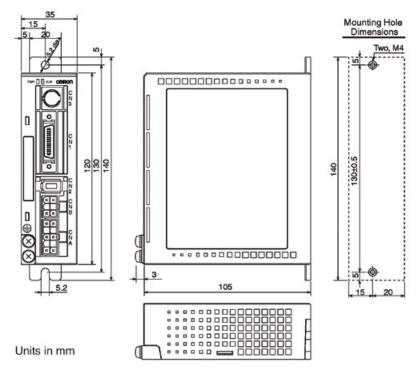
Speed - Torque Performance - 3,000-r/min Cylindrical Servomotors

Servo Drives - OM-R7D

Omron's OM-R7D-B provides high-speed pulse train output to OM-R88M-G servomotors for straightforward control applications. Simple real-time autotuning continuously sets optimum gain and eliminates the need for complicated adjustments. Vibration caused by resonance is suppressed to improve positioning accuracy even in systems with low mechanical rigidity.

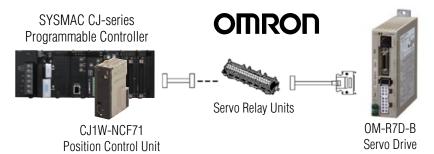
In addition to conventional CW/CCW inputs (2 pulses) and SIGN/PULS inputs (1 pulse), the OM-R7D-B servo drive supports 90° phase difference input. This makes it possible to input encoder output signals directly into the Servo Drive for simplified synchronization control.

OM-R7D Servo Drive


	SERVO DRIVE					
Part #	Voltage	Servomotor Capacity	Motor Compatibility			
OM-R7D-BPA5L	100V, single-phase	50W	OM-R88M-G05030H			
OM-R7D-BP01L	100V, single-phase	100W	OM-R88M-G10030L			
OM-R7D-BP01H	200V, single-phase /three-phase	100W	OM-R88M-G10030H			

POWER SUPPLY CABLES				
Part #	Voltage	Length		
OM-R7A-CLB002S2	Single-phase	2m		
OM-R7A-CLB002S3	Three-phase	2m		

MOTOR	TO DRIVE CABLES	
Part #	Motor Brake	Length
OM-R7A-CAB003S	Power cable	3m
OM-R7A-CAB005S	Power cable	5m
OM-R7A-CAB010S	Power cable	10m
OM-R7A-CAB015S	Power cable	15m
OM-R7A-CAB020S	Power cable	20m
OM-R88A-CAGA003B	Power and Brake cable	3m
OM-R88A-CAGA005B	Power and Brake cable	5m
OM-R88A-CAGA010B	Power and Brake cable	10m
OM-R88A-CAGA015B	Power and Brake cable	15m
OM-R88A-CAGA020B	Power and Brake cable	20m
OM-R88A-CRGB003C	Encoder cable	3m
OM-R88A-CRGB005C	Encoder cable	5m
OM-R88A-CRGB010C	Encoder cable	10m
OM-R88A-CRGB015C	Encoder cable	15m
OM-R88A-CRGB020C	Encoder cable	20m


Dimensional Data

SERVO DRIVE SPECIFICATIONS					
Part #	OM-R7D-BPA5L	OM-R7D-BP01L	OM-R7D-BP01H		
Input power supply voltage	Single-phase 100 to 115 V	AC(85 to 127 V), 50/60 Hz	Both single-phase and three-phase 200 to 240 VAC (170 to 264 V), 50/60 Hz		
Maximum response frequency	Command	Command pulses: Line drive: 500 kpps, Open collector: 200 kpps			
Operating ambient		0 to 55°C, 90% RH max.			
Vibration resistance	10	to 60 Hz; acceleration: 5.9 m/s2 (0.6 G) max.		
Impact resistance	Acceleration	of 19.6 m/s2 max. 3 times each in X, Y,	and Z directions.		
International standards	EMC D Low Voltage Directive	oirective: EN 55011 class A group 1, EN e: EN 50178 UL/cUL standards: UL	61000-6-2 508C, cUL C22.2 No.14		

Terminal Blocks & Cables - OM-R7D

Select the Servo Terminal Block (Relay Unit) and cable according to the part number of the Position Control Unit being used.

Use With OM-R7D Servo Drives

	TERMINAL BLOCK (R	ELAY UNITS) & CABLES	
Position Control Unit	Position Control Unit Cable	Servo Terminal Block (Relay Unit)	Servo Drive Cable*
OM-CJ1W-NC133	OM-XW2Z-050J-A18 OM-XW2Z-100J-A18	OM-XW2B-20J6-1B	
OM-CJ1W-NC233	OM-XW2Z-050J-A19	OM VIMOR 40 IC OR	
OM-CJ1W-NC433	OM-XW2Z-100J-A19	OM-XW2B-40J6-2B	
OM-CS1W-NC133	OM-XW2Z-050J-A10 OM-XW2Z-100J-A10	OM-XW2B-20J6-1B	
OM-CS1W-NC233	OM-XW2Z-050J-A11	0M-XW2B-40J6-2B	
OM-CS1W-NC433	OM-XW2Z-100J-A11	UIVI-XWZB-4UJ0-ZB	
OM-CJ1W-NC113	OM-XW2Z-050J-A14 OM-XW2Z-100J-A14	OM-XW2B-20J6-1B	OM-XW2Z-100J-B29
OM-CJ1W-NC213	OM-XW2Z-050J-A15	OM VIMOR 40 IC OR	OM-XW2Z-200J-B29
OM-CJ1W-NC413	OM-XW2Z-100J-A15	OM-XW2B-40J6-2B	
OM-CS1W-NC113	OM-XW2Z-050J-A6	OM VIMOD OO IC 1D	
OM-C200HW-NC113	OM-XW2Z-100J-A6	OM-XW2B-20J6-1B	
OM-CS1W-NC213			
OM-CS1W-NC413	OM-XW2Z-050J-A7	OM VIMOR 40 IC OR	
OM-C200HW-NC213	OM-XW2Z-100J-A7	OM-XW2B-40J6-2B	
OM-C200HW-NC413			
OM-CJ1M-CPU21			
OM-CJ1M-CPU22	OM-XW2Z-050J-A33 OM-XW2Z-100J-A33	OM-XW2B-20J6-8A OM-XW2B-40J6-9A (for 2 axes)*	OM-XW2Z-100J-B32 OM-XW2Z-200J-B32
OM-CJ1M-CPU23	JWI 74422 1000 700	ON MAZO 4000 3/1 (101 2 axcs)	GIVI AVVEL 2000-DJE
OM-CQM1H-PLB21	OM-XW2Z-050J-A3 OM-XW2Z-100J-A3	OM-XW2B-20J6-3B	OM-XW2Z-100J-B29 OM-XW2Z-200J-B29

^{*}NOTE: Two (2) servo drive cables are required if 2-axis control is performed. Cable Length (050 = 0.5 m 100 = 1 m 200 = 2 m)

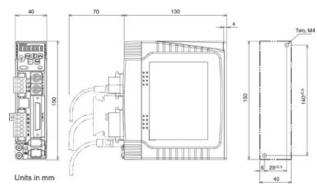
FOR CP1H/CP1L OR GENERAL PURPOSE CONTROLLERS										
Specifica	ations	Part #								
Connector Terminal Block Cables	1 m	OM-XW2Z-100J-B28								
	2 m	OM-XW2Z-200J-B28								
Canaval Durnaga Cantral Cables	1 m	OM-R7A-CPB001S								
General-Purpose Control Cables	2 m	OM-R7A-CPB002S								
Connector Terminal Block	M3 screw type	OM-XW2B-34G4								
Connector Terminal Block	M3.5 screw type	OM-XW2B-34G5								

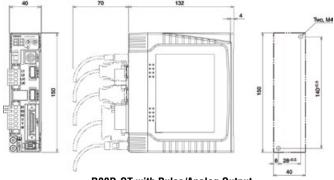
Servo Drives - G-Series

Omron's OM-R88D-GT drives offer pulse/analog output for reliable position control. Integrate multiple axes easily with OM-R88D-GN drives with high-speed Mechatrolink-II motion network.

OMRON

Eight internal speed settings allow you to change the speed easily by using external signals. Command Control Mode lets you switch operations between two of the following control modes for multi-phase processes: Position control, speed control (including internal speed) and torque control. Simple real-time auto-tuning continuously sets optimum gain and eliminates the need for complicated adjustments.

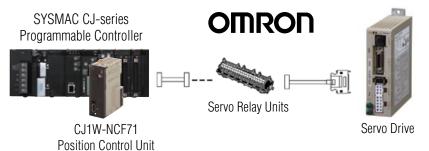

Vibration caused by resonance is suppressed to improve positioning accuracy.


G-Series Servo Drive

SERVO DRIVES												
Part #	Voltage	Servomotor Capacity	Output	Motor Compatibility								
OM-R88D-GTA5L	120V, single-phase	50W	Pulse/Analog	OM-R88M-G05030H, OM-R88M-G05030T								
OM-R88D-GT01L	BD-GT01L 120V, single-phase		Pulse/Analog	OM-R88M-G10030L, OM-R88M-G10030S								
OM-R88D-GT01H	240V, single-phase	100W	Pulse/Analog	OM-R88M-G10030H, OM-R88M-G10030T								
OM-R88D-GNA5L-ML2	120V, single-phase	50W	Mechatrolink-II	OM-R88M-G05030H, OM-R88M-G05030T								
OM-R88D-GN01L-ML2	120V, single-phase	100W	Mechatrolink-II	OM-R88M-G10030L, OM-R88M-G10030S								
OM-R88D-GN01H-ML2	240V, single-phase	100W	Mechatrolink-II	OM-R88M-G10030H, OM-R88M-G10030T								

Dimensional Data

R88D-GT with Pulse/Analog Output


R88D-GT with Pulse/Analog Output

MOTOR TO DRIVE CABLES										
Part #	Motor Brake	Length								
OM-R88A-CAGA003S	Power cable	3m								
OM-R88A-CAGA005S	Power cable	5m								
OM-R88A-CAGA010S	Power cable	10m								
OM-R88A-CAGA015S	Power cable	15m								
OM-R88A-CAGA020S	Power cable	20m								
OM-R88A-CAGA003B	Power and Brake cable	3m								
OM-R88A-CAGA005B	Power and Brake cable	5m								
OM-R88A-CAGA010B	Power and Brake cable	10m								
OM-R88A-CAGA015B	Power and Brake cable	15m								
OM-R88A-CAGA020B	Power and Brake cable	20m								

ENCO	ENCODER CABLES											
Part #	Cable Type	Length										
OM-R88A-CRGB003C	Incremental Encoder cable	3m										
OM-R88A-CRGB005C	Incremental Encoder cable	5m										
OM-R88A-CRGB010C	Incremental Encoder cable	10m										
OM-R88A-CRGB015C	Incremental Encoder cable	15m										
OM-R88A-CRGB020C	Incremental Encoder cable	20m										
OM-R88A-CRGA003C	Absolute Encoder cable	3m										
OM-R88A-CRGA005C	Absolute Encoder cable	5m										
OM-R88A-CRGA010C	Absolute Encoder cable	10m										
OM-R88A-CRGA015C	Absolute Encoder cable	15m										
OM-R88A-CRGA020C	Absolute Encoder cable	20m										

Terminal Blocks & Cables - G-Series

Select the Servo Terminal Block (Relay Unit) and cable according to the part number of the Position Control Unit being used.

Use With OM-R88D-GT Servo Drives

	TERMINAL BLOCK (RELAY UNITS) & CABLES										
Position Control Unit	Position Control Unit Cable	Servo Terminal Block (Relay Unit)	Servo Drive Cable								
OM-CQM1H-PLB21	0.5m = 0M-XW2Z-050J-A3 1m = 0M-XW2Z-100J-A3	OM-XW2B-20J6-3B									
OM-CS1W-NC113	0.5m = OM-XW2Z-050J-A6	OM VIMOR OO IC 4R									
OM-C200HW-NC113	1m = 0M-XW2Z-100J-A6	OM-XW2B-20J6-1B									
OM-CS1W-NC213											
OM-CS1W-NC413	0.5m = 0M-XW2Z-050J-A7	OM VIMOR 40 IC OR									
OM-C200HW-NC213	1m = 0M-XW2Z-100J-A7	OM-XW2B-40J6-2B									
OM-C200HW-NC413											
OM-CS1W-NC133	0.5m = 0M-XW2Z-050J-A10 1m = 0M-XW2Z-100J-A10	OM-XW2B-20J6-1B	1m = 0M-XW27-100J-B25								
OM-CS1W-NC233	0.5m = 0M-XW2Z-050J-A11	OM-XW2B-40J6-2B	2m = 0M-XW2Z-200J-B25								
OM-CS1W-NC433	1m = 0M-XW2Z-100J-A11	UIVI-AVVZD-4UJ0-ZD									
OM-CJ1W-NC113	0.5m = 0M-XW2Z-050J-A14 1m = 0M-XW2Z-100J-A14	OM-XW2B-20J6-1B									
OMOCJ1W-NC213	0.5m = 0M-XW2Z-050J-A15	OM MAIOD 40 10 OD									
OM-CJ1W-NC413	1m = 0M-XW2Z-100J-A15	OM-XW2B-40J6-2B									
OM-CJ1W-NC133	0.5m = 0M-XW2Z-050J-A18 1m = 0M-XW2Z-100J-A18	OM-XW2B-20J6-1B									
OM-CJ1W-NC233	0.5m = 0M-XW2Z-050J-A19	OM VIMOR 40 IC OR									
OM-CJ1W-NC433	1m = 0M-XW2Z-100J-A19	OM-XW2B-40J6-2B									
OM-CJ1M-CPU21											
OM-CJ1M-CPU22	0.5m = 0M-XW2Z-050J-A33 1m = 0M-XW2Z-100J-A33	OM-XW2B-20J6-8A (for 1 axes) OM-XW2B-20J6-8A (for 1 axes)	1m = 0M-XW2Z-100J-B31 2m = 0M-XW2Z-200J-B31								
OM-CJ1M-CPU23	1111 - SIVI AWEE 1000 ASS	OW AVED 2000 OA (IOI 1 dAGS)	ZIII - OW AWEE 2000 DO								

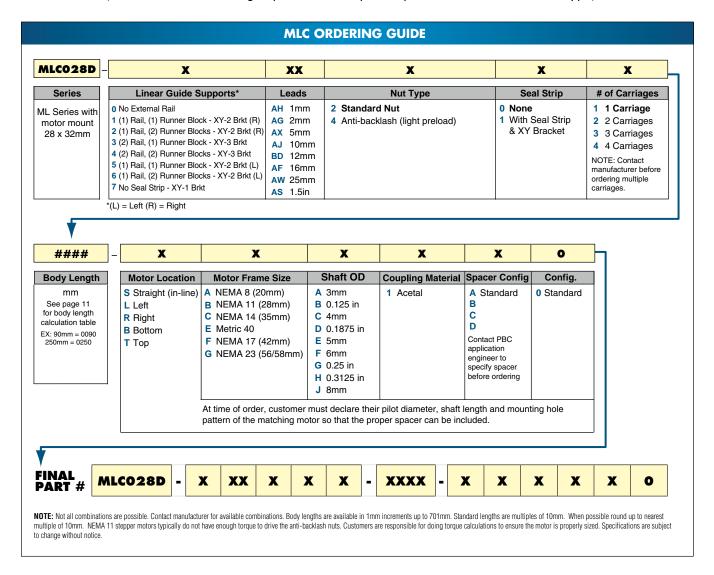
Use With OM-R88D-GT/GN Servo Drives

CP1H1/CP1L	CP1H1/CP1L OR GENERAL PURPOSE CONTROLLERS											
Specificat	tion	Part #										
Connector Terminal	1 m	R88A-CPG001S	OM-XW2Z-100J-B33									
Block Cables	2 m	R88A-CPG002S	OM-XW2Z-200J-B33									
Control Cables with	1 m	XW2Z-100J-B24	-									
Connector on One End	2 m	XW2Z-200J-B24	-									
	M3 screw type	XW2B-50G4	OM-XW2B-20G4									
Connector Terminal Block	M3.5 screw type	XW2B-50G5	OM-XW2B-20G5									
	M3 screw type	XW2D-50G6	OM-XW2D-20G6									

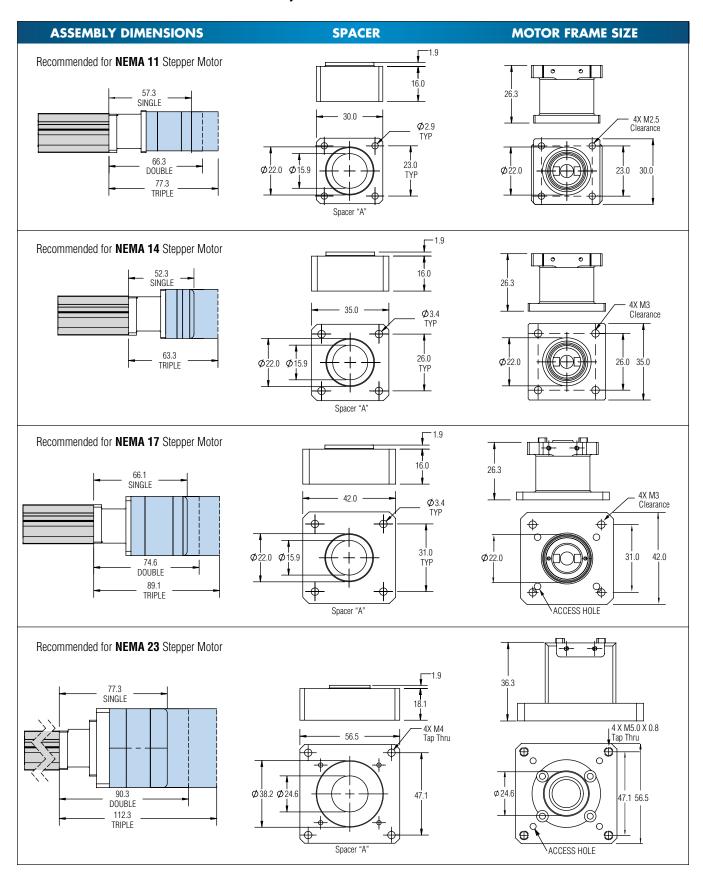
Molion Col	TIROL OITH CABLE
There are special cables for	1-axis and 2-axis Motion Cor
	· · II f il I

Unit operation. Select the appropriate cable for the number of axes to be connected.

Motion Control Unit	Cable Part #					
OM CC4W MC224 V4 /424 V4	For 1 axis	OM-R88A-CPG□□□ M1				
OM-CS1W-MC221-V1/421-V1	For 2 axes	OM-R88A-CPG□□□ M2				

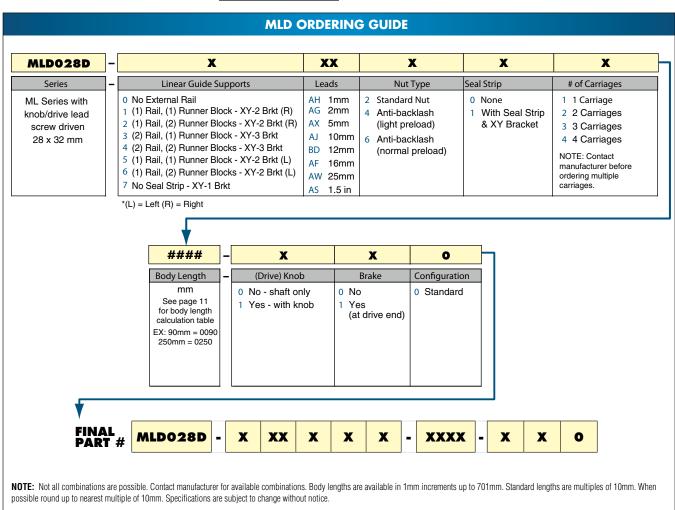

The $\square \square \square$ digits in the model number indicate the cable length. Motion Control Unit Cables come in four lengths: 1 m, 2 m. 3 m, and 5 m EXAMPLE Part#: for 2-m 1-axis cable: OM-R88A-CPG002M1.

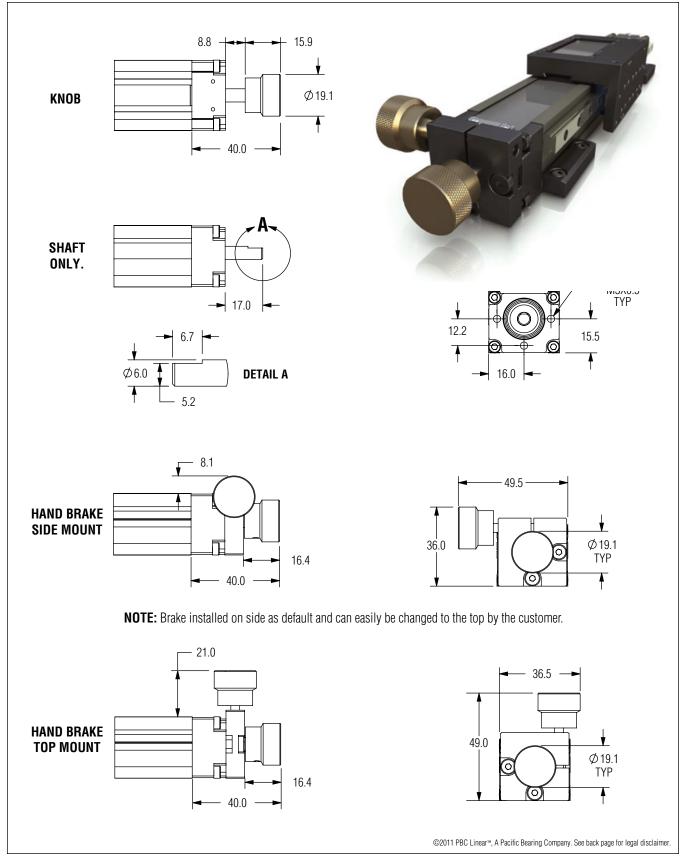
MLC Series (Motor Mount Only)



- Includes motor mount with coupling
- Includes motor spacer (if required)
- Precision machined body
- Small, compact design
- Smooth and quiet operation
- High acceleration, speed and rigidity

PBC Linear's stepper motors do not require a spacer due to the shorter shaft length. A spacer is required for any other manufacturer's motor. The spacer compensates for several dimensions which commonly vary amongst motor manufacturers (shaft diameter, shaft length, pilot diameter, pilot depth, bolt hole diameter, bolt type).


Motor Mount Assembly


MLD Series (Hand Driven shaft or knob)

- Perfect for hand-operated precision control
- Manual brake optional
- Textured knob for both positioning and braking
- Precision machined body
- Small, compact design
- Great repeatability

Dimensional Data

Build Your ML Actuator

6 Easy Steps

Follow these easy-to-follow steps to build your ML Series Actuator

STEP 1

Configure Your System Axis

- a. Determine if you need an external linear guide for support (pg. 30, 31, 37)
- b. Calculate the body length (pg. 11)

STEP 2

Choose The Drive Method

- a. Motor pre-mounted and tested by PBC? → MLB (Page 14)
- b. Ready to mount your own motor? → MLC (Page 24)
- c. Driven by hand? → MLD (*Page 26*)

STEP 3

Choose How To Mount The Axis

a. Choose dovetail clamps or riser plates
(Use riser plates with NEMA 17 and 23 motors) (Page 23)

STEP 4

Choose end of travel and home limit switches/sensors

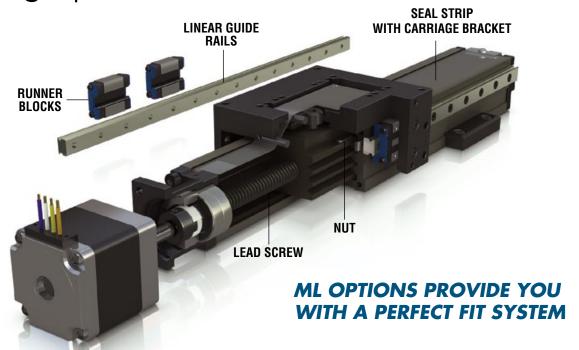
- a. Determine mounting type/location (bracket type)
- b. Choose from list of compatible sensors

STEP 5

Choose The Cable Carrier

- a. List all cables to run through carrier
- b. Complete selection calculation
- c. Choose mounting type/location (bracket type)

Repeat 1-5 for each axis


STEP 6

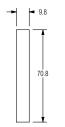
Order Your System 1-800-962-8979 or 1-815-389-5600

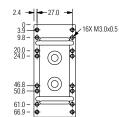
Questions? Call an Application Engineer 1-888-777-0556

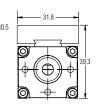
Ordering Options



- Large 10mm diameter lead screw reduces whip and increases column strength allowing longer stroke lengths
- Lead options*: 1, 2, 5, 10, 12, 16 and 25 mm. 3mm (0.125"), 10mm (0.400"), 25mm (1"), 38 (1.5") *Contact manufacturer for other available sizes
- **Nominal Lead Screw Diameter** = 10mm (0.375")
- **Screw Interia** = $4.169 \times 10^{-6} \text{ kg-m}^2/\text{m}$ 1.5 x 10-5 oz.-in.sec.2/in.)
- **Lead Screw Length** = Body Length + 32.27mm

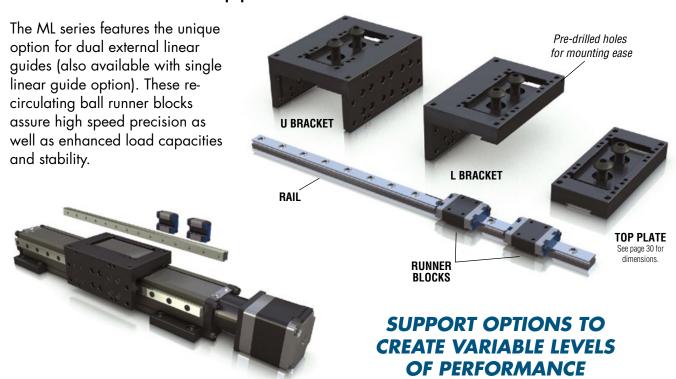

NUT TYPE


- Standard nut or anti-backlash nut
- Optional anti-backlash nut ideal in applications requiring high bi-directional accuracy and repeatability
- Magnet is built-in for use with home and position sensors

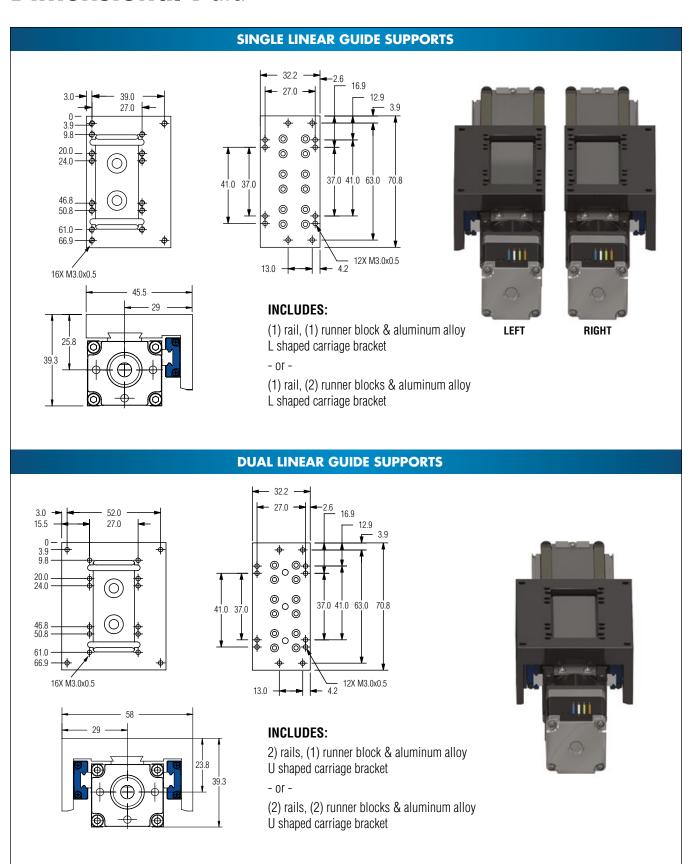


SEAL STRIP WITH CARRIAGE BRACKET

- Ultra wear-resistant molybdenum disulfide impregnated nylon
- Prevents debris from entering or exiting actuator
- Seal strip is 725mm in length (Can be cut shorter using sharp pair of scissors.)



Linear Guide Supports

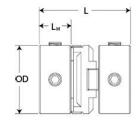


Technical Data			(1) S	ingle	(2) Dual			(1) S	ingle	(2) Dual	
Linear Guide Suppor		# of runner blocks on each guide					# of runner blocks on each guide				
			1	2	1	2		1	2	1	2
Max. Load			44	44	44	44		10	10	10	10
Anti-Backlash - Lite Preload - Normal Preload	Fx		89	89	89	89		20	20	20	20
Standard Nut		N	267	267	267	267	lbf	60	60	60	60
	Fy		180	250	445	890		40	56	100	200
	Fz		267	356	445	890		60	80	100	200
	Мх		1.8	3.6	8.6	18		16	32	76	160
Max. Moments	Му	Nm	1.8	5	3.6	10	lbf-in	16	44	32	88
	Mz		1.8	5	3.6	10		16	44	32	88
Bending Moment of Inertia	ly	cm ⁴	2.4	2.4	2.4	2.4	- in ⁴	0.058	0.058	0.058	0.058
(Second moment of area)	lz	CIII	4.4	4.4	4.4	4.4	1117	0.106	0.106	0.106	0.106
Base Weight without Motor		l/a	0.127	0.136	0.195	0.205	lhf	0.28	0.30	0.43	0.45
Add for 100mm of Stroke		Kg	0.18	0.18	0.21	0.21	lbf	0.40	0.40	0.46	0.46
Total Carriage Mass		Kg	.109	.117	.159	.175	lbm	.240	.257	.350	.385
Coefficent of Friction			0.	19	0.	01		0.	19	0.	01

NOTE:

- 1. Moment arms for calculating moments should be measured from the center of the extrusion.
- 2. Limit switches must be used in order to prevent the carriage from contacting the actuator end blocks, resulting in damage.
- 3. Servo drive system Recommended overtravel of 20mm
- 4. Stepper motors or manual hand cranks system add 5mm of over-travel.

Dimensional Data



Motor Couplings

MOTOR COUPLING (HUB & DISK)

- Compensates for motor and screw misalignment
- Electrically isolating
- Balanced design

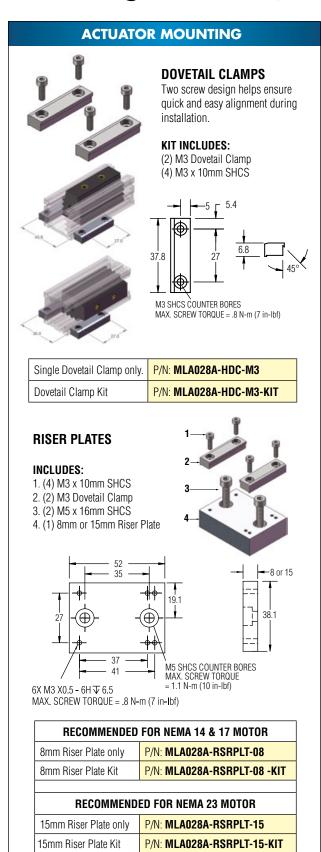
DISK

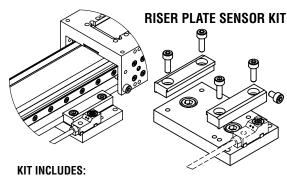
	FOR USE WITH NEMA 11, 14, 17 MOTORS														
HUBS P/N #	BORE*	OD	HUB LENGTH (LH)	COUPLING LENGTH (L)	SHAFT PENETRATION	SET SCREW	MOMENT OF INERTIA (lb-in^2)	MOMENT OF INERTIA (kg x m^2)							
6200129	3mm	12.7mm	5.6mm	15.9mm	5.6mm	M3	0.0056"	1.64E-06							
6200286	5mm	12.7mm	5.6mm	15.9mm	5.6mm	M3	0.0050"	1.47E-06							
6200350	6mm	12.7mm	5.6mm	15.9mm	5.6mm	M3	0.0047"	1.37E-06							
6200113 .125" 0.500" .222"		.222"	.625"	.222"	M3	0.0056"	1.64E-06								
6200349	250"	0.500"	222"	625"	222"	M3	0.0045"	1 32F-06							

	FOR USE WITH NEMA 23 MOTORS ONLY.													
HUBS P/N #	BORE*	OD	HUB LENGTH (LH)	COUPLING LENGTH (L)	SHAFT PENETRATION	SET SCREW	MOMENT OF INERTIA (lb-in^2)	MOMENT OF INERTIA (kg x m^2)						
6200130	4mm	19.1mm	7.6mm	22.2mm	22.2mm 7.6mm N		0.0069	2.02E-06						
6200131	5mm	19.1mm	7.6mm	22.2mm	7.6mm	M3	0.0068	1.99E-06						
6200132	6mm	19.1mm	7.6mm	22.2mm	7.6mm	M3	0.0066	1.94E-06						
6200133	8mm	19.1mm	7.6mm	22.2mm	7.6mm	M3	0.0061	1.79E-06						
6200114	.1875"	.750"	.300"	.875"	.300"	M3	0.0068	1.99E-06						
6200115	.250"	.750" .300"		.875"	.300"	M3	0.0065	1.91E-06						
6200116	.3125"	.750"	.300"	.875"	.300"	M3	0.0062	1.82E-06						

^{*}Contact PBC linear if required bore is not listed.

DISK P/N #	MATERIAL	0	D		IONAL NESS	RA [*] Tor	TED QUE		AKE Que	PARA MISALIO	LLEL SNMENT	AX MOT		MOMENT OF Inertia
		(mm)	(in)	(Deg/ Nm)	(Deg /lb-in)	(Nm)	(lb-in)	(Nm)	(lb-in)	(mm)	(in)	(mm)	(in)	(kg x m^2)
6200148	Acetal	12.7	0.5	0.636	0.072	0.69	6	3.9	34	0.1	0.004	0.05	0.002	2.93E-08
6200149	Acetal	19.1	0.75	0.38	0.043	2.25	20	10.5	93	0.2	0.008	0.1	0.004	5.87E-08

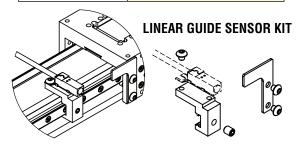

NOTE: Motor coupling assembly (hubs & disk) are included in MLB & MLC Series actuators. One hub of the coupling is integral to the lead screw drive system. Alternate coupling styles are not available



Ordering Accessories

When ordering ML accessories the part number (P/N) can be located in a yellow box next to the item. The item part number can be given separately when placing your ML actuator order. If you have technical question contact a PBC Application Engineer at at 1-800-962-8979.

Mounting Hardware (Clamps, Plates & Sensor Kits)



- (1) Riser plate (8 or 15mm)
- (4) M3 x 10mm screws
- (1) M3 x 6mm screw
- (2) Dovetail clamps
- (1) M3 x 12mm screw
- (2) M5 x 16mm screw (optional)

Compatible Sensors: OM-E2S-W2 style (See page 34-35) Typical Applications: ML Actuator gantry's with (2) linear guides

Riser Plate Sensor Kit	P/N: MLA028A-RSRPLT-08A-KIT
Riser Plate Sensor Kit	P/N: MLA028A-RSRPLT-15A-KIT


KIT INCLUDES:

- (1) Bracket
- (1) OM-Y92E-C1R6 Bracket
- (3) M3 X 4mm screws
- (1) M4 X 5mm set screw
- (1) Flag, 5mm sensing distance

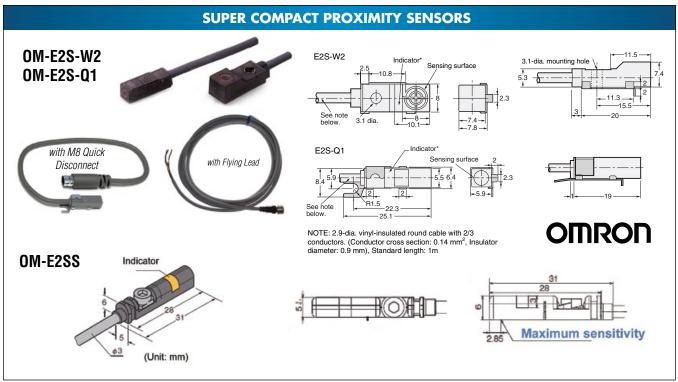
Compatible Sensors: OM-E2S-Q1 style (See page 34-35) **Typical Applications:** ML Actuators with one or two linear guide(s)

Linear Guide Sensor Kit

P/N: MLB028A-BRKTA-KIT

T-SLOT SENSOR KIT

KIT INCLUDES:


- (1) Bracket
- (1) M2 X 8mm screw
- (1) M2 nut

Compatible Sensors: OM-E2SS style (See page 34-35) **Typical Applications:** ML Actuator with zero or one linear guide(s)

T-Slot Sensor Kit P/N: MLB028A-SENADT-KIT

> * Note: Sensor mounting kits do not include a sensor. The appropriate sensor should be ordered separately.

Proximity Sensors

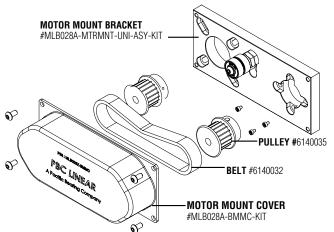
Sensing	Sensing	Sensing Sensor Output		Cable: 5m Flying Lead		Cable: 275mm M8 Quick Disconnect	
Surface			Normally Open (NO)	Normally Closed (NC)	Normally Open (NO)	Normally Closed (NC)	
End	1 Cmm	OM-E2S-Q	NPN	0M-E2S-Q13-□	OM-E2S-Q14-5M	OM-E2S-Q13-U2	OM-E2S-Q14-U2
EIIU	End 1.6mm OM-E2S-Q	PNP	0M-E2S-Q15-□	OM-E2S-Q16-5M	OM-E2S-Q15-U2	OM-E2S-Q16-U2	
Eront/Ton	Front/Top 2.5mm OM-E2S-W	0.5mm OM FOC W	NPN	0M-E2S-W23-□	OM-E2S-W24-5M	OM-E2S-W23-U2	OM-E2S-W24-U2
From top		PNP	OM-E2S-W25-□	OM-E2S-W26-5M	OM-E2S-W25-U2	OM-E2S-W26-U2	
Bottom	n/a	OM-E2SS	NPN	Contact manufacturer to order.			
DULLUIII			PNP	Contact manufacturer to order.			

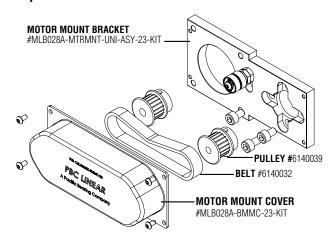
NOTE: Omron and FASTtech drives require NPN sensors. Omron drives require NC sensors. If in doubt, order one of the sensors highlighted above in **yellow.** \Box = length of cable 5M" = 5 meters with flying lead; U2 = 275mm with quick disconnect

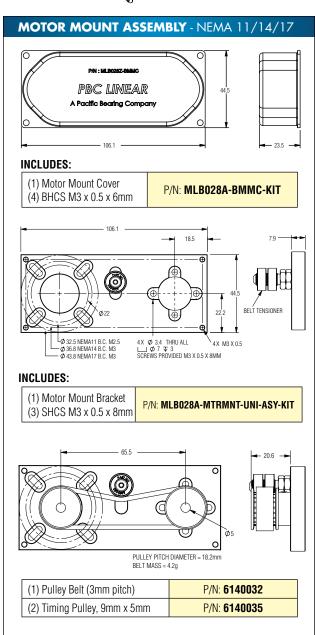
Operation Status	Output Configuration	P/N #	Timing Chart		Output Circuits
NO	NPN	OM-E2S-W23-□ OM-E2S-Q13-□	Sensing object Output transistor (load) Operation indicator (orange)	Present Not present ON OFF ON OFF	Proximity Sensor Black
NC	NPN	OM-E2S-W24-□ OM-E2S-Q14-□	Sensing object Output transistor (load) Operation indicator (orange)	Present Not present ON OFF ON OFF	Output Output Output
NO	PNP	OM-E2S-W25-□ OM-E2S-Q15-□	Sensing object Output transistor (load) Operation indicator (orange)	Present Not present ON OFF ON OFF	Proximity Black
NC	PNP	OM-E2S-W26-□ OM-E2S-Q16-□	Sensing object Output transistor (load) Operation indicator (orange)	Present Not present ON OFF ON OFF	Blue O V Load current: 50 mA max.

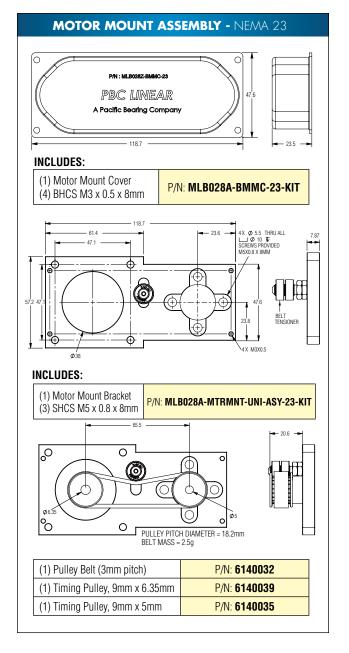
Model P/N:		OM-E2S-W13 OM-E2S-W14	OM-E2S-W23 OM-E2S-W24	OM-E2S-Q15 OM-E2S-Q16	OM-E2S-W25 OM-E2S-W26	OM-E2SS	
Sensing surface Front Top		Front	Тор	N/A			
Sensing distance	nsing distance 1.6mm ± 15% 2.5mm ± 15% 1.6i		1.6mm ± 15%	2.5 mm ± 15%	N/A		
Set distance		0 to 1.2mm	0 to 1.9mm	0 to 1.2mm	0 to 1.9mm	N/A	
Differential trave	el		10% max of se	ensing distance		N/A	
Detectable object	ct type		Ferrou	N/A			
Standard target	object	Iron, 12 x 12 x 1 mm	Iron, 15 x 15 x 1 mm	Iron, 12 x 12 x 1 mm	Iron, 15 x 15 x 1 mm	N/A	
Response frequ	ency (see note)		1 kH:	z min.	1	1 kHz max.	
Power supply volta		12	to 24V DC, ripple (p-p):	10 to 30V DC ripple 10% max			
Current Consum	nption		13 mA max. at 2	4 VDC (no-load)		15mA max	
Operation Mode object approach			OM-E2S OM-E2S	3 models: NO 4 models NC		N/A	
Control Output Residual voltage			output 50 mA max. OC max)		or output 50 mA max. DC max.)	150mA max.	
		1.0 V max. with a load current of 50 mA and a cable length of 1 m			2V max. (at 150mA load current 2m cable)		
Indicator		Operation indicator (orange)			(yellow)		
Protection Circu	iits	Reverse polarity connection and surge			r	Output short-circuit, Output reverse polarity, Power supply reverse polarity	
Ambient Operating temperature Storage		-25°C to 70°C (-13°F to 158°F) with no icing or condens					
		-40°C	to 85°C (-40°F to 185°	-25 to 70°C (No Freezing)			
Ambient Operating			35% to 90% (with	35 to 95%RH			
humidity Storage			35% to 95% (with	35 to 95%RH			
Temperature influence		± 15% max. of	sensing distance at 23°	N/A			
Voltage Influence ± 2.5% max. of sensing distance in rated voltage range ± 10%			e ± 10%	N/A			
Insulation resistance 50 M min. (500V VDC) between current carry			en current carry parts and	case			
Dielectric strength		1,000 VAC, 50/60 Hz for 1 min between current carry parts and case			500 VAC, 50/60 Hz		
Vibration resistance Destruction: 10 to 55 Hz, 1.0 mm double amplitude for 2 hours each in			X, Y and Z directions				
Shock resistance Destruction: 500 m/s² (1640 ft/s²) 3 times		times each in X, Y and	Z directions	Mechanical durability; 300m/s2			
Connection Method Pre-wired standard length 1 m		ength 1 m (39.37 in)		Normal: Pre-wire (standard 2m) -M`J:M12 Connector with Cable (Cable: 0.3m)			
Weight (packed state)			Approx. 10 g (0.35 oz)			N/A	
Material/Case			Polyary	ate resin		Case: PP, Code: PUR	
				Magneti	c sensitivity	2.8mT max.	
	SENSOR	IO CONNECT	OR	Hystere	eresis 1mm max.		
Rei					hility	+0.1mm max	

- Extension cables for M8 quick disconnect sensor.
- Simplifies maintenance and reduces downtime.

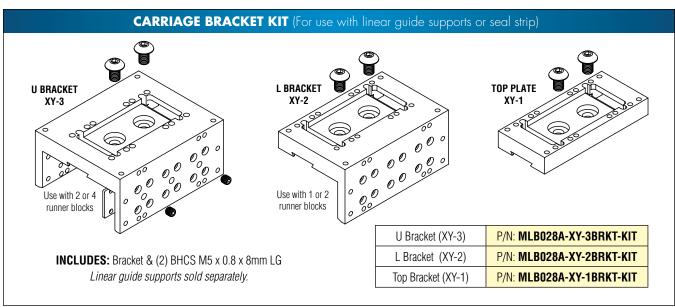


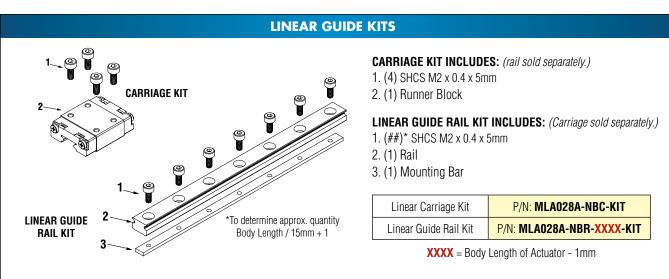

- Single-end I/O connector with female socket with attached cable.

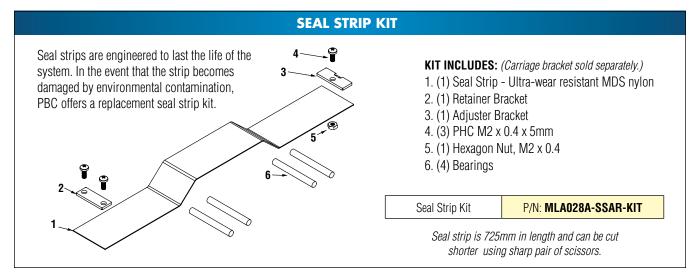

Length	Regular Flex P/N:	High/Robotic Flex P/N:
2m	OM-XS3F-M421-402-A	OM-XS3F-M421-402-R
5m	OM-XS3F-M421-405-A	OM-XS3F-M421-405-R
10m	OM-XS3F-M421-410-A	OM-XS3F-M421-410-R


Magnetic sensitivity	2.8mT max.
Hysteresis	1mm max.
Repeatability	±0.1mm max.
Pass speed	10 m/s

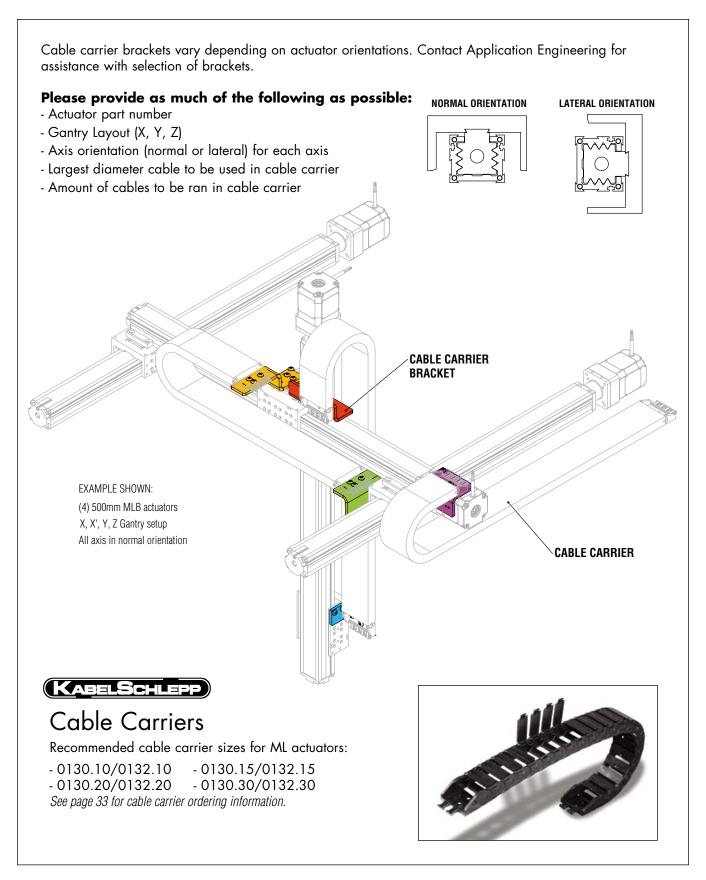
Motor Mount Assembly - Replacement Parts

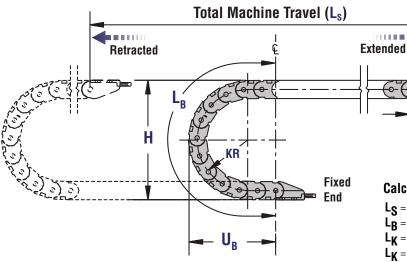






36 LINEAR MOTION SOLUTIONS I www.pbclinear.com


Upgrade System Parts


Cable Carrier Brackets

CHLEPP Cable Carriers

- Smallest cable carriers for smooth and quiet operation in tight spaces
- End brackets with integral strain relief
- Light-weight and rugged fiber-reinforced nylon material
- Simple snap-together links make assembly and modifications to chain length effortless
- Links available with hinged-opening cavity lids for quick and simple installation of cables and hoses

(() () () () () () () () () (Fixed	Calculati
		L_S = total L_B = 3.14
	⊸ U _B →	L _K = chain L _K = LS ÷
		# of Links

Calculation of Chain Length

machine travel

x KR + (2 x t safety factor) [t=13mm]

Moving End t = Link Pitch

 $-0130/0132 \longrightarrow (13) \ 0.51$

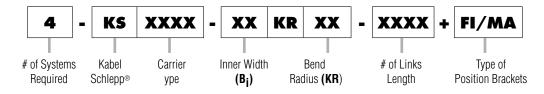
in length required

÷ 2 + length of the curve (LR)*

 $\mathbf{cs} = \mathsf{L}_{\mathsf{K}} \div \mathsf{t} \text{ (round up)}$

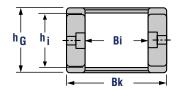
*	A 4 l-	:	D-1-41-	1 1 - 1 1 - 1	0	Tatal Marchine Towns	
	ASSUITIES III	e rixea	PUIIIL IS	iocaleu al liie	Center of the	Total Machine Travel.	

Self-Supporting Lengths

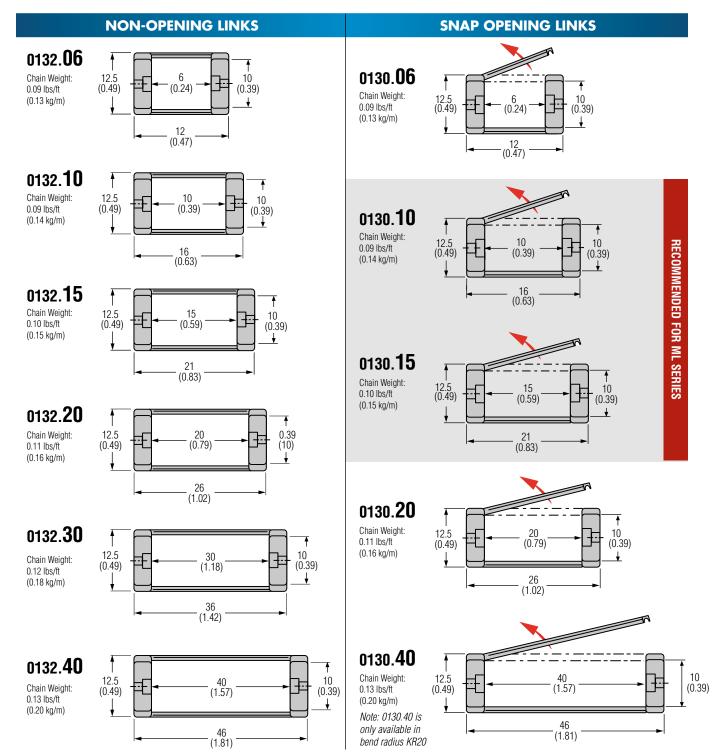

Series	Mounting	Bend		Loop
	Height	Radius Depot		Length
0130/0132	Н	KR	U _B	L _B
Option A*	52.5	20	40	89
	(2.07)	(0.79)	(1.57)	(3.50)
Option B	68.5	28	48	114
	(2.70)	(1.10)	(1.89)	(4.49)
Option C	86.5	37	57	142
(Std)	(3.41)	(1.46)	(2.24)	(5.59)
*0130.40 is only available in bend radius KR20. Dimensions in mm (in).				

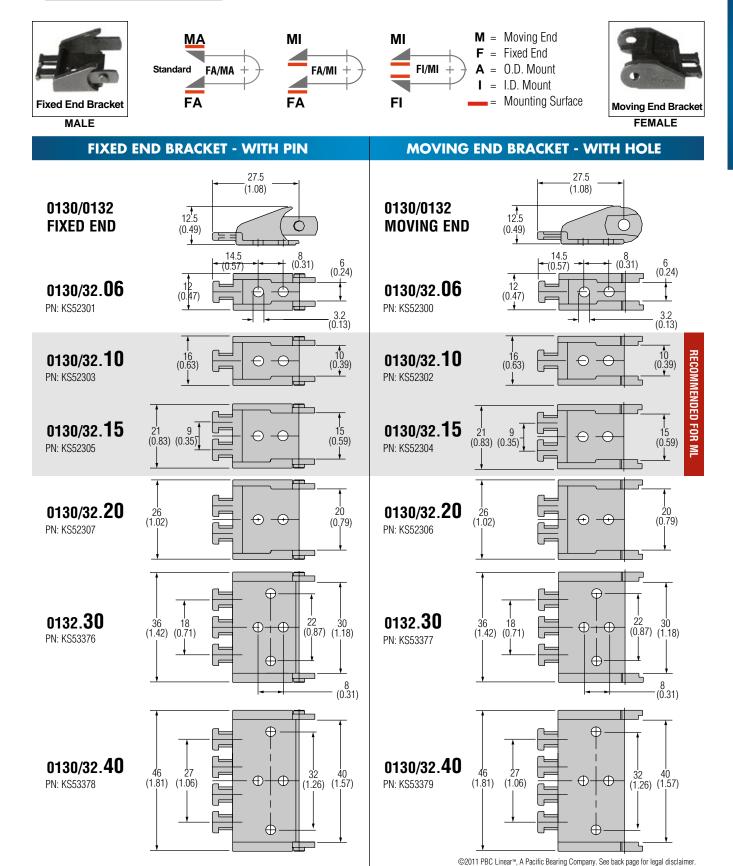
<u>lbs</u> ft Additional Load 1.1 1.5 0.7 1.0 Type 0130/0132 0.4 0.5 Unsupported 1.64 ft 3.28 ft 0.5 m Length 1.0 m

Extended Travel: When application travel exceeds the self-supporting length of the carrier, MICROTRAK™ carrier systems are designed to glide on themselves in a guide channel.


ORDERING GUIDE

EX: 4-KS0132-06KR20-1000+FI/MA


KABELSCHLEPP Links


 $egin{array}{lll} egin{array}{lll} egin{arra$

40 LINEAR MOTION SOLUTIONS I www.pbclinear.com

KABELSCHLEPP) End Bracket

Technical Selection Guide

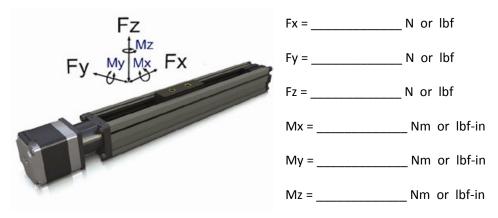
Before the selection process can begin, a few preliminary steps must be completed:

1. Define the payload and end effector (including wires, cables, hoses, etc)

2. Determine required Stroke for each axis

Stroke – X =	mm or in	(if mm is chosen, convert to meters =	m)
Stroke – Y =	mm or in	(if mm is chosen, convert to meters =	m)
Stroke – Z =	mm or in	(if mm is chosen, convert to meters =	m)

3. Determine the basic system shape


With the MLA, any configuration is possible. Choose a basic style which will meet your needs. Some samples are shown here:

Now that the basic system information has been established, the configuration process begins. The following steps should be repeated for each axis. Start with the Z-Axis (aka the top axis or the axis which is farthest away from the fixed axis). Once the Z-Axis is finalized, move on to the Y-Axis (middle axis) and then the X-Axis.

1. Complete a Force Diagram for Your System's Static Loads

A force diagram should be completed for each axis. Assume the system is statically loaded. The system will encounter additional forces as a result of acceleration/deceleration and these will be accounted for in a later step. If the actuator must support a cantilevered load, do not forget to include moment as a result of acceleration/deceleration.

For each moment (Mx, My, Mz), write down the moment arm distance (meters or inches) in the spaces below. Be sure to measure from the center of the screw.

 $Dx = \underline{\hspace{1cm}} m \ or \ in \qquad Dy = \underline{\hspace{1cm}} m \ or \ in \qquad Dz = \underline{\hspace{1cm}} m \ or \ in$

2. Determine if External Linear Guides are Necessary

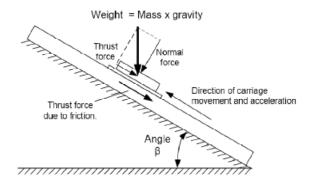
Compare your results with the Load chart shown on page 24 to determine if external linear guide supports are necessary. It's important to remember that it is not possible to maximize the loads and moments in all directions and that the applied forces and moments should conform to the formula shown below.

Equation 1. :
$$\frac{F_{y,applied}}{F_{y,max}} + \frac{F_{z,applied}}{F_{z,max}} + \frac{M_{x,applied}}{M_{x,max}} + \frac{M_{y,applied}}{M_{y,max}} + \frac{M_{z,applied}}{M_{z,max}} \leq 1$$

IF the axis being designed is in the middle or at the bottom of a multi-axis assembly, choose at least 1 external linear guide, even if the force diagram says that it is not necessary. Without the linear quides, the system may not have the necessary rigidity for your application.

3. Determine the Velocity/Acceleration Needed.

n = number of equal time segmentsEquation 2.


Equation 3.
$$V_{MAX} = \frac{n}{n-1} * \frac{\Delta x}{\Delta t} = \frac{n}{n-1} * \frac{(distance)}{(move\ time)}$$

Equation 4.
$$A_{ACCEL} = A_{DECEL} = \frac{\Delta v}{\Delta t} = \frac{(V_{MAX})}{\frac{(move\ time)}{n}} = n * \frac{(V_{MAX})}{(move\ time)}$$

$$V_{MAX} = \underline{\hspace{1cm}} m/s \text{ or in/s}$$
 $A_{ACCEL} = \underline{\hspace{1cm}} m/s^2 \text{ or in/s}^2$

Start with n=2, which is the triangular motion profile. The triangular motion profile is generally the most efficient and has the highest velocity, but the lowest acceleration. If you want a trapezoidal with three egual time segments, use n=3. With this profile, the system will spend 1/3 of the time accelerating, 1/3 of the time at a constant velocity and 1/3 of the time decelerating. The trapezoidal profile will lower the maximum velocity by 25% and increase the acceleration by only 12.5%. For now, ignore any trajectory smoothing algorithms (i.e. S-curves, jerk reduction, etc) and consider only the "theoretical" values calculated here. If you need to account for the extra time necessary for the S-curves, reduce the move time by 10% and re-calculate.

Once the maximum velocity has been calculated, double check that V_{MAX} falls within the allowable travel speed shown in the chart on page 13 (Maximum Travel Speeds, lower left-hand corner)

4. Calculate the Applied Thrust Load (see diagram on previous page)

Equation 5.

 $F_{Thrust,total} = \sum F_{external} + \sum F_{weight and friction} + \sum F_{Accel}$ $F_{Thrust,total} = \sum F_{external} + \sum F_{mass (gravity)} + \sum F_{Thrust (friction)} + \sum F_{Accel}$ $\sum F_{external} = Sum \ of \ all \ other \ external \ forces \ (except \ load)$ Equation 6.

Equation 7.

 $\sum F_{mass\,(gravity)} = \sum mass \times gravity \times \sin \beta$ Equation 8.

 $\sum F_{Thrust\ (friction)} = \sum mass \times gravity \times \cos \beta \times \mu$ Equation 9.

Per the chart on page 10, μ = 0.19 for 0 or 1 external linear guide; μ = 0.01 for 2 external linear guides

 $\sum F_{Accel} = \sum mass \times acceleration$ Equation 10.

Weight = $W = mass \times gravity = m \times g$ (mass = kg or lbm) $Gravity = g \cong 9.81 \frac{m}{s^2} \cong 32.174 \frac{ft}{s^2}$ Equation 11.

Equation 12.

 β = angle of incline from horizontal (degrees) Equation 13.

After the thrust load has been calculated, compare this to the Maximum Column Loading chart on page 13. Be sure that the calculated value is within the acceptable range.

- * Don't forget to include the weight of the carriage in the total mass of the system!
- * Unit for mass is "lbm" or "kg", not to be confused with "lbf" or "kgf"!
- * BE SURE TO DOUBLE CHECK THE UNITS OF MEASURE!

5. Compare to PV Rating Chart & Critical Speed (whip) Chart (Page 12-13)

The next step is to calculate the actual rotations per minute (RPM) of the screw and to verify that the PV Value and thrust capacity of the nut have not been exceeded. To do this, use one of the formulas in Equation 15, below, to calculate the RPM of the screw. Once the RPM has been calculated, plot the location on the PV Rating chart (page 12). Once the point has been plotted, ensure that the selected lead's colored line is above and to the right of the plotted point. If it is not, the Thrust Load or the Maximum Velocity must be reduced or the lead must be increased so that the RPM can be reduced.

Equation 14.
$$RPM = \frac{rotations}{minute} = \left[V_{max}\left(\frac{m}{s}\right)\right] \times \left[\frac{60}{1}\left(\frac{s}{min}\right)\right] \times \left[\frac{1000}{1}\left(\frac{mm}{m}\right)\right] \times \left[\frac{1}{(LEAD)}\left(\frac{rot}{mm}\right)\right]$$

Equation 15.
$$RPM = \frac{rotations}{minute} = (metric) \frac{\left[V_{max}\left(\frac{m}{s}\right)\right] \times 60,000}{screw\;lead\left(\frac{mm}{rot}\right)} = (imperial) \frac{\left[V_{max}\left(\frac{in}{s}\right)\right] \times 60}{screw\;lead\left(\frac{in}{rot}\right)}$$

38.1(1.50), 25.4 (1.00), 10.16(0.40), 3.18(0.125), 1(0.039) Optional leads: Units = mm (in): * Additional leads are available, contact factory for more information

6. Double Check All Values

Double check all charts and graphs on page 12-13 to ensure the selected system will perform as needed.

7. Determine the Required Motor

In order to determine the required motor, the maximum torque must be calculated.

Equation 16.
$$Torque_{total} = \sum torque_{load} + \sum torque_{actuator\ components}$$

Equation 17.
$$\sum torque_{load} (Nm) = \frac{\sum F_{Thrust (friction)} (N) \times lead (m)}{2 \times \pi \times Efficiency (\%)}$$

Equation 18.
$$\sum torque_{actuator\ components} = No\ Load\ Torque\ (Nm) + Torque_{rot,inertia}$$

Equation 19. No Load
$$Torque(Nm) = Nut Torque + Seal Strip Torque + Linear Guide Torque$$

Nut torque:

standard nut = .007 Nm (0.06 in-lbf)light preload nut = .057 Nm (.50 in-lbf) normal preload nut = .106 Nm (0.94 in-lbf)

Seal strip torque:

without seal strip = 0 Nm (0 in-lbf) with seal strip = .028 Nm (0.25 in-lbf)

Linear guide torque:

Single linear guide = .017 Nm (0.15 in-lbf) Dual Linear guides = .034 Nm (0.30 in-lbf)

Equation 20.
$$Torque_{rot,inertia}(Nm) = screw rot.intertia x angular acceleration$$

Equation 21.
$$screw rot.intertia = 4.169 \times 10^{-9} \frac{(kg \times m^2)}{mm} \times (body length (mm) + 32mm)$$

Equation 22.
$$angular\ acceleration = \frac{A_{accel}(\frac{m}{s^2})}{(screw\ lead\ (mm))\ x\left(\frac{1\ m}{1000\ mm}\right)}$$

Once you have calculated the required torque, a comparison must be made to the speed-torque curves for each specific motor. Don't forget to include a safety margin of at least 30%, i.e. the required toque must be at least 30% below the plotted torque curve.

A gear box may be required if the total inertia of the system is too far mismatched from the inertia of the motor. Each motor manufacturer will publish the maximum mismatch allowed for their motor. A general guideline is that stepper motors will allow up to a 10:1 mismatch. Servo's are capable of handling a much higher mismatch; however, the higher the mismatch, the more time will be spent tuning the servo during installation. Manufacturers will typically recommend staying under 6:1 mismatch and definitely under 10:1 mismatch¹. Please contact a PBC Application Engineer for assistance with selecting a gearbox.

For Torque charts, refer to the "Stepper Motor" section of the main LAT Catalog or www.pbclinear.com For servo motor driven applications, please contact our Applications Engineers at 1-800-962-8979.

LEGAL DISCLAIMER: The ratios presented on this page should be used as a GUIDELINE ONLY. Users should refer to the specifications published by each motor manufacturer as the numbers listed herein are likely to change and will vary from manufacturer to manufacturer.

8. Choose Dovetail Clamps (Mounting Type)

The mounting feet kits are listed on page 33. IF this axis will be mounted to another MLA axis underneath it, one (1) MLA028A-HDC-M3-KIT is necessary. If this is a single axis, or a bottom axis of a multiple axis gantry, then there are 3 choices. The basic kit is the MLA028A-HDC-M3-KIT and a minimum of (2) two kits are necessary. Use the *Distance Between Supports* chart on page 13 to determine the minimum number of supports based upon the body length and load of the specified system. (Extra supports can always be added to increase the rigidity of the system)

If a NEMA17 or NEMA23 motor are specified, the design may call for a Riser Plate to be used. The Riser Plate will raise the actuator off the mounting surface, which allows for the larger motor size to not interfere with the mounting surface. The 8 mm Riser Plate should be used with NEMA17 (or equivalent metric frame sizes) motors and the 15 mm Riser Plate should be used with NEMA23 (or equivalent metric frame sizes) motors. Multiple Riser Plate kits may be necessary.

9. Choose Sensors/Limit Switches

Now that the axis has been specified, choose the switches/sensors which will be mounted along the axis. PBC recommends that a minimum of two (2) sensors are used (one at each end of the axis) in order to prevent overtravel. Additional sensors may be necessary, depending upon the application. The most common reason for the additional sensors is to set a "home" and/or "target" positions.

10. Choose Cable Carrier

The last step in completing the system is to specify the cable carrier. This can only be done once all of the cables which will run through it have been defined. For most applications, this means a minimum of a power cable for the motor, 2 sensor cables and whatever cables/hoses are required for the payload. Servo and closed loop stepper motors will have a sensor cable and motors with a brake will also have a cable for the brake. Once a list of all of the cables has been compiled, visit the Cable Carrier section of the main LAT Catalog (or visit www.pbclinear.com) to complete the step by step selection guide for the cable carriers.

11. Place order

PBC Linear[™], A Pacific Bearing Co.

6402 E. Rockton Road Roscoe, IL 61073 USA Toll-Free: 1.800.962.8979 Fax: 1.815.389.5790

sales@pbclinear.com www.pbclinear.com European Branch
PBC Lineartechnik GmbH,
A Pacific Bearing Co.

Niermannsweg 11-15 D-40699 Erkrath, Germany

Office: +49.211.416073.10 Fax: +49.211.416073.11 sales_gmbh@pbclinear.de www.pbclinear.de

Application Data Sheet

Deceleration m/s² (ft/s²)

RFQ:			FAX COMPLETE FORMS TO:			
					1(815)	389-5/90
Date:					F	z
Company:						Mz _
Contact:					Fy My	Mx FX
Address:				Z-AX	as	LOAD
Phone:				- }		ARM - Y
E-mail:					Fy	Fz, Mx, My, Mz, 1
				_ X-AXIS	Y-AXIS Fy	$\frac{A}{A} + \frac{Fz_A}{Fz} + \frac{Mx_A}{Mx} + \frac{My_A}{My} + \frac{Mz_A}{Mz} \le 1$
APPLICATION DESCR	IPTION -	- Sketch if avail	able.			
Dunio et Nove e				D:		D. D. simu
Project Name:				Project Status	s: Concept Prototype	
Project Description: _					a i lototype	
Project Timing:					·	
Quantity:	· · · · · · · · · · · · · · · · · · ·		(Components:		☐ Actuator/Motor
Environment: ☐ Clea			Shop □ Heav	-	☐ Food/Washdowr	
SYSTEM TYPE						
☐ Single Axis	□ X-Y	Axis	☐ Y-Z Axis		X-Y-Z Axis	☐ X1/X2-Y-Z Axis
2 onigio 7 talo		7 0.10			1 27000	NINE 12 TAIL
Fv. Fz. Mx. Mv	, Mz,					
Axi $\frac{Fy_A}{Fy} + \frac{Fz_A}{Fz} + \frac{Mx_A}{Mx} + \frac{My}{My}$	+ Mz <:	= 1 s Orientat	ion: 🗅 Vertica	I □ Horizont	al □ Inverted □ /	Angled
			AXIS		Comments:	
		Х	Υ	Z		
Load N (lbf)						
Moment Nm (lbf-in)						
Stroke mm (in)						, , , , , , , , , , , , , , , , , , ,
Velocity mm/s (in/s)	/o ² \					
Acceleration m/s ² (ft/	'S) I		I	1		

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Worldwide Headquarters PBC Linear, A Pacific Bearing Co.

6402 E. Rockton Road Roscoe, IL 61073 USA

Toll-Free: 1.800.962.8979 Fax: 1.815.389.5790

sales@pbclinear.com www.pbclinear.com

European Branch PBC Lineartechnik GmbH, A Pacific Bearing Co.

Röntgenstr. 8 40699 Erkrath, Germany

Telefon: 0049 2104 957440 0 Fax: 0049 2104 957440 91

info@pbclinear.de www.pbclinear.de

DISTRIBUTED BY

© 2011 PBC Linear™, A Pacific Bearing Company

"PBC Linear" and "PBC Lineartechnik GmbH" are subsidiaries of Pacific Bearing Company ("PBC"). The data and specifications in this publication have been carefully compiled and are believed to be accurate and correct. Specifications are subject to change without notice. It is the responsibility of the user to determine and ensure the suitability of PBC's products for a specific application. PBC's only obligation will be to repair or replace, without charge, any defective components if returned promptly. No liability is assumed beyond such replacement. Other corporate and product names, images, text and logos may be trademarks or copyrights of other companies and are used only for explanation and to the owners benefit; without intent to infringe. This document may not be reproduced, in part or whole, without the prior written authorization of PBC. Consult www.pbclinear.com for the latest technical updates.

LITLAT-002 [r10-12]