Airflow Sensors Microbridge Mass Airflow

AWM 1000/2000/3000 Series

FEATURES

- State-of-the-art silicon micromachining
- Sensitive to low flows 0.1 sccm to 20 SLPM
- Adaptable for use with higher flows (See Application Note 2 page 128.)
- Fast response time
- Analog output
- Low power consumption

OPERATION

The microbridge mass airflow sensor operates on the theory of heat transfer. Mass airflow is directed across the surface of the sensing elements. Output voltage varies in proportion to the mass air or other gas flow through the inlet and outlet ports of the package. The specially designed housing precisely directs and controls the airflow across the microstructure sense element. Mechanical design of the package allows it to be easily mounted to printed circuit boards.

The microbridge mass airflow sensor has a unique silicon chip based on advanced microstructure technology. It consists of a thin-film, thermally isolated bridge structure containing heater and temperature sensing elements. The bridge structure provides a sensitive and fast response to the flow of air or other gas over the chip. Dual sensing elements positioned on both sides of a central heating element indicate flow direction as well as flow rate. Laser trimmed thick film and thin film resistors provide consistent interchangeability from one device to the next.

AWM 40000 Series

- Repeatable response
- Laser-trimmed interchangeability
- Accurate, cost effective flow sensing
- In-line printed circuit board terminals
- Standard 0.100" (2,54mm) mounting centers
- Accurate sensing of low pressure 0.001" to 4.0" H₂O (.003 to 10mBar)

The microbridge mass airflow sensor uses temperature-sensitive resistors deposited within a thin film of silicon nitride. They are suspended in the form of two bridges over an etched cavity in the silicon, shown below. The chip is located in a precisely dimensioned airflow channel to provide a repeatable flow response. Highly effective thermal isolation for the heater and sensing resistors is attained by etching the cavity space beneath the flow sensor bridges. The small size and thermal isolation of the microbridge mass airflow sensor are responsible for the extremely fast response and high sensitivity to flows.

Dual Wheatstone bridges control airflow measurement — one provides closed loop heater control, the other contains the dual sensing elements. The heater circuit minimizes shift due to ambient temperature changes by providing an output proportional to mass flow. The circuit keeps the heater temperature at a constant differential (160°C) above ambient air temperature which is sensed by a heat-sunk resistor on the chip. The ratiometric voltage output of the device corresponds to the differential voltage across the Wheatstone bridge circuit.

AWM 5000 Series

APPLICATIONS

- Damper control for heating, ventilation, and air conditioning systems
- Gas analyzers
- Low vacuum control
- Process control
- Medical respirators and ventilators
- Oxygen concentrators
- Leak detection equipment
- Vent hoods
- Anesthesia control
- Gas metering
- Gas chromatography

NOTICE

Dust contamination may be possible in some applications, the effects of which can be minimized. By design, dust particles that may be present in the air stream will flow past the chip parallel to the chip surface. In addition, the microstructure chip produces a thermophoretic effect, which repels micrometer-sized dust particles away from the bridge structure.

Dust adherence to chip edges and channel surfaces can be prevented using a simple filter. A disposable fivemicron filter used in series on the upstream side of the airflow device will provide adequate filtering in most applications. For a list of possible filter sources, see Filter Manufacturers, page 126.

CAUTION

PRODUCT DAMAGE AWM Series Microbridge Mass Airflow Sensors are **NOT** designed to sense liquid flow and will be damaged by liquid flow through the sensor.

FEATURES

- Cost-effective microbridge technology
- Accurate, repeatable airflow sensing
- Bi-directional sensing capability
- Low differential pressure sensing

Take advantage of microbridge mass flow sensor technology. The AWM1000 series mass flow sensor provides all of the outstanding performance benefits of the standard AWM2000 series in a more costeffective sensor platform. This device provides accurate, repeatable flow sensing. Sensor to sensor interchangeability specifications are approximately twice as large as compared to the AWM2000 series.

The heater control circuit in Figure 1 and the sensing bridge supply circuit in Figure 2 are both required for operation per specification. These two circuits are **NOT** on board the sensor and must be supplied in the application. The differential amplifier circuitry in Figure 3 may be useful in providing output gain and/or introducing voltage offsets to the sensor output (Ref. Equation 1).

NOTE: For applications involving sensing hydrogen (H_2) gas or helium (He) gas, see Application Note 3, page 131.

Figure 1 Heater Control Circuit

Figure 2 Sensing Bridge Supply Circuit

Figure 3 Differential Instrumentation Amplifier Circuit

Equation 1: $V_{o} = \left(\frac{2R_{e} + R_{1}}{R_{1}}\right) \left(\frac{R_{4}}{R_{3}}\right) \left(V_{2} \cdot V_{1}\right) + V \text{ offset}$ where V offset = $V_{s}\left(\frac{R_{6}}{R_{e_{s}}R_{5}}\right)$ Airflow

AWM1000 SERIES ORDER GUIDE (Performance Characteristics @ 10.0 ±0.01 VDC, 25°C)

Catalog Listings	AWM1100V	AWM1200V	AWM1300V
Flow Range (Full Scale)	±200 sccm		+1000 sccm to -600 sccm
Pressure Range (See Application Note #1)		±4.0" H ₂ O (10 mBar)	
Output Voltage @ Trim Point	30 mV @ 100 sccm	20 mV @ 2.0" H ₂ O	50 mV @ 650 sccm
Null Voltage Shift, Typ. +25 to -25°C, +25 to 85°C	±0.7 mV (max.)	±0.7 mV (max.)	±0.7 mV (max.)
Output Voltage Shift, Max. +25 to -25°C +25 to +85°C	±4% Full Scale ±4% Full Scale	+22% Reading (Note 2) -22% Reading	±4% Full Scale ±4% Full Scale
Repeatability & Hysteresis, Max.	±1% Full Scale	±1% Full Scale	±1% Full Scale
	Min.	Тур.	Max.
Excitation (VDC) (Note 1)	8.0	10±0.01	15
Power Consumption (mW)	_	30	50
Null Voltage (mV)	-1.0	0.0	+1.0
Response Time (msec)	—	1.0	3.0
Common Mode Pressure (psi)	—	—	25
Sensor Resistance (kΩ) Pin 2-Pin 1, Pin 6-Pin 1	_	5	_
Sensor Current (mA) Pin 2-Pin 1, Pin 6-Pin 1	_	0.3	0.6
Temperature Range	Operating: -25° to +85°C (-	-13° to $+185^{\circ}$ F); Storage: -40° to $+$	-90°C (-40° to +194°F)
Termination	2,54 mm (.100") centers, 0,6	35 mm (0.025") square	
Weight (grams)	10.8		
Shock Rating	100 g peak (5 drops, 6 axes)		

Notes:

1. Output Voltage is ratiometric to supply voltage.

2. Temperature shifts when sensing differential pressure correlates to the density change of the gas over temperature.

See Application Note 1.

3. Maximum allowable rate of flow change to prevent damage: 5 SLPM/1.0 sec.

MOUNTING DIMENSIONS (for reference only)

NOTE: Positive flow direction is defined as proceeding from Port 1 (P1) to Port 2 (P2) and results in positive output (Pin 6 > Pin 2). Negative flow direction is defined conversely and results in negative output (Pin 6 < Pin 2). Do not exert a force greater than 4.54 kg (10 lbs.) in any direction.

66 Honeywell • MICRO SWITCH Sensing and Control • 1-800-537-6945 USA • + 1-815-235-6847 International • 1-800-737-3360 Canada Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com

OUTPU	IPUT FLOW VS INTERCHANGEABILITY (Note 1) Performance Characteristics @ 10.0 ±0.01 VDC, 25°C										
AWM11	V00			AWM12	200V	(Note 2)		AWM13	300V		
Press mBar	Flow sccm	Nom. mV	Tol. ±mV	Flow sccm	Press. ″ H₂O	Nom. mV	Tol. ±mV	Press mBar	Flow sccm	Nom. mV	Tol. ±mV
0.49	200	44.25	4.25	120	4.00	31.75	8.0	3.4	1000	55.50	7.0
0.35	150	38.75	3.00	90	3.00	26.75	6.0	2.4	800	52.90	6.0
0.21	100	30.00	1.00	60	2.00	20.00	3.0	1.8	650	50.00	5.0
0.09	50	18.40	2.00	30	1.00	11.20	4.0	0.83	400	42.50	6.0
0	0	0.00	1.00	0	0.00	0.00	1.0	0.31	200	29.20	5.0
-0.09	-50	-18.40	3.90	-30	-1.00	-11.20	7.0	0	0	0.00	1.5
-0.21	-100	-30.00	5.00	-60	-2.00	-20.00	7.0	-0.31	-200	-28.90	15.0
-0.35	-150	-38.75	7.65	-90	-3.00	-26.75	11.0	-0.83	-400	-41.20	26.0
-0.49	-200	-44.25	9.75	-120	-4.00	-31.75	15.0	-1.6	-600	-48.20	30.0

Notes:

1. Numbers in BOLD type indicate calibration type, mass flow or differ-

ential pressure. Tolerance values apply to calibration type only.

2. Differential pressure calibrated devices are not recommended for flow

measurement. Use flow calibrated devices for flow measurement.

OUTPUT CURVES

Honeywell
MICRO SWITCH Sensing and Control
Horosoft USA
HI-815-235-6847 International
HI-800-737-3360 Canada
Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com

FEATURES

- · Bidirectional sensing capability
- Actual mass air flow sensing
- Low differential pressure sensing

The AWM2000 Series microbridge mass airflow sensor is a passive device comprised of two Wheatstone bridges. The heater control circuit in Figure 1 is required for operation per specifications. The sensing bridge supply circuit in Figure 2 is also required for operation per specifications. These two circuits are **not on board** the package and must be supplied in the application. The differential amplifier in Figure 3 is a useful interface for the sensing bridge. It can be used to introduce the gain and to introduce voltage offsets to the sensor output as referenced in Equation 1.

Note: For applications sensing hydrogen or helium, see Application Note 3, page 131.

Figure 1 Heater Control Circuit

Figure 2

Sensing Bridge Supply Circuit

Figure 3

AWM2000 SERIES ORDER GUIDE (Performance Characteristics @ 10.01 ±0.01 VDC, 25°C)

				1
Catalog Listings	AWM2100V	AWM2150V	AWM2200V	AWM2300V
Flow Range (Full Scale)	±200 sccm	±30 sccm		±1000 sccm
Pressure Range (See Application Note #1)			±4.0" H ₂ O (10 mBar)	
Output Voltage @ Trim Point	30 mV @ 100 sccm	11.8 mV @ 25 sccm	20 mV @ 2" H ₂ O	50 mV @ 650 sccm
Null Voltage Shift, Typ. +25° to -25°C, +25° to 85°C	±0.20 mV	±0.20 mV	±0.20 mV	±0.20 mV
Output Voltage Shift, Max. +25° to -25°C +25° to +85°C	+2.5% Reading -2.5% Reading	+5% Reading -5% Reading	+22% Reading (Note 2) -22% Reading	+5% Reading -5% Reading
Repeatability & Hysteresis, Max.	±0.35% Reading	±0.35% Reading	±0.35% Reading	±1% Reading
	Min.	Тур.	Max.	
Excitation (VDC) (Note 1)	8.0	10±0.01	15	
Power Consumption (mW)	_	30	50	
Null Voltage (mV)	-1.0	0.0	+1.0	
Response Time (msec)	_	1.0	3.0	
Common Mode Pressure (psi)	_	_	25	
Sensor Resistance (kΩ) Pin 2-Pin 1, Pin 6-Pin 1	_	5	_	
Sensor Current (mA) Pin 2-Pin 1, Pin 6-Pin 1	_	_	0.6	
Temperature Range	Operating: -25° to +85	5°C (−13° to +185°F); Ste	orage: -40° to $+90^\circ$ C (-40° t	to +194°F)
Termination	2,54 mm (.100") centers	s, 0,635 mm (0.025″) squa	are	
Weight (grams)	10.8			
Shock Rating	100 g peak (5 drops, 6 a	axes)		

Notes:

1. Output Voltage is ratiometric to supply voltage.

2. Temperature shifts when sensing differential pressure correlates to the density change of the gas over temperature.

See Application Note 1.

3. Maximum allowable rate of flow change to prevent damage: 5.0 SLPM/1.0 sec.

MOUNTING DIMENSIONS (for reference only)

NOTE: Positive flow direction is defined as proceeding from Port 1 (P1) to Port 2 (P2) and results in positive output (Pin 6 > Pin 2). Negative flow direction is defined conversely and results in negative output (Pin 6 < Pin 2). Do not exert a force greater than 4.54 kg (10 lbs.) in any direction.

Honeywell
MICRO SWITCH Sensing and Control
Hono: Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com

OUTPUT FLOW VS INTERCHANGEABILITY (Note 1)

Performance Characteristics @ 10.0 \pm 0.01 VDC, 25°C

AWM2	2100V			AWM2	2150V			AWM2	2200V	(Note	2)	AWM2	2300V		
Press. mBar	Flow sccm	Nom. mV	Tol. ±mV	Press. μBar	Flow sccm	Nom. mV	Tol. ±mV	Flow sccm	Press. ″ H₂O	. Nom. mV	Tol. ±mV	Press. mBar	Flow sccm	Nom. mV	Tol. ±mV
0.49	200	44.50	4.25	53	30	14.0	2.5	120	4.00	31.75	3.50	3.4	1000	55.50	3.70
0.35	150	38.75	3.00	36	20	9.5	1.5	90	3.00	26.75	2.50	2.4	800	52.90	3.50
0.21	100	30.00	1.50	17	10	5.0	1.5	60	2.00	20.00	1.20	1.8	650	50.00	2.50
0.09	50	16.50	2.50	9.8	5	2.5	1.0	30	1.00	11.20	1.80	0.83	400	42.50	3.00
0.00	0	0.00	1.00	7.4	4	2.0	1.0	0	0.00	0.00	1.00	0.31	200	29.20	3.20
-0.09	-50	-16.50	4.50	6.2	3	1.5	1.0	-30	-1.00	-11.20	3.00	0	0	0.00	1.00
-0.21	-100	-30.00	5.00	5	2	1.0	1.0	-60	-2.00	-20.00	3.30	-0.31	-200	-28.90	15.00
-0.35	-150	-38.80	7.65	2.5	1	0.5	0.8	-90	-3.00	-26.75	5.30	-0.83	-400	-41.20	26.00
-0.49	-200	-44.50	9.75	0	0	0.0	0.6	-120	-4.00	-31.75	7.00	-1.6	-600	-48.20	29.50
				-9.8	-5	-2.5	2.0					-2.4	-800	-52.20	32.50
				-53	-30	-14.0	5.0					-3.4	-1000	-55.00	36.00

Notes:

1. Numbers in **BOLD** type indicate calibration type, mass flow or differential pressure. Tolerance values apply to calibration type only.

2. Differential pressure calibrated devices are not recommended for flow measurement. Use flow calibrated devices for flow measurement.

OUTPUT CURVES

AWM3000 Series

Airflow Sensors Microbridge Mass Airflow/Amplified

FEATURES

- Laser trimmed for improved sensor interchangeability
- Flow sensing up to 1.0 SLPM
- Low differential pressure sensing

Like the AWM2000 Series, the dual Wheatstone bridges control airflow measurement. The AWM3000 Series is amplified; therefore, it can be used to increase the gain and to introduce voltage offsets to the sensor output. The schematic in Figure 3 depicts the amplification circuitry on board the sensor. Also, the heater control circuit (see Figure 1) and the sensing bridge supply circuit (see Figure 2) are on board the package. Figure 1 Heater control circuit

Figure 2

Sensing bridge supply circuit

Figure 3 Differential instrumentation amplifier circuit

Airflow

AWM3000 SERIES ORDER GUIDE (Performance Characteristics @ 10.01 ±0.01 VDC, 25°C)

Catalog Listings	AWM3100V	AWM3150V	AWM3200V	AWM3300V		
Flow Range (Full Scale)	+200 sccm	+30 sccm		+1000 sccm		
Pressure Range (See Application Note 1)			+2.0" H ₂ O (5 mBar)			
Output Voltage @ Trim Point	5 VDC @ 200 sccm	3.4 VDC @ 25 sccm	5 VDC @ 2" H ₂ O	5 VDC @ 1000 sccm		
Null Voltage	1.00 ±0.05 VDC	1.00 ±0.10 VDC	1.00 ±0.08 VDC	1.00 ±0.10 VDC		
Null Voltage Shift, Typ. +25° to -25°C, 25° to +85°C	±25 mV	±100 mV	±25 mV	±25 mV		
Output Voltage Shift, Max. +25° to −25°C +25° to +85°C	-4% Reading +4% Reading	±5% Reading ±5% Reading	+24% Reading (Note 3) -24% Reading	-5% Reading +5% Reading		
Repeatability & Hysteresis, Max.	±0.50% Reading	±1% Reading	±0.50% Reading	±1% Reading		
	Min.	Тур.	Max.			
Excitation VDC (Note 2)	8.0	10±0.01	15			
Power Consumption (mW)	_	50	60			
Response Time (msec) (Note 1)	_	1.0	3.0			
Common Mode Pressure (psi)	_	_	25			
Temperature Range	Operating: -25° to +85	°C (-13° to +185°F); Sto	prage: -40° to $+90^{\circ}$ C (-40° t	o +194°F)		
Termination	2,54 mm (.100") centers	, 0,635 mm (0.025″) squa	are			
Weight (grams)	10.8					
Shock Rating	100 g peak (5 drops, 6 axes)					

Notes:

1. Initial warm-up time for signal conditioned circuitry is 1 minute max.

2. Output Voltage is ratiometric to supply voltage.

3. Temperature shifts when sensing differential pressure correlates to the density change of the gas over temperature. (See Application Note 1.)

4. Maximum allowable rate of flow change to prevent damage: 5 SLPM/1 sec.

MOUNTING DIMENSIONS (for reference only)

Note: Positive flow direction is defined as proceeding from Port 1 (P1) to Port 2 (P2) and results in positive output. Do not exert a force greater than 4.54kg (10 lbs.) in any direction.

OUTPUT FLOW VS INTERCHANGEABILITY (Note 1)

OUTP	UT FLOW VS INTERCHANGEABILITY (Note 1)									rmanc	e Characte	eristics	@ 10.0) ±0.01	VDC, 25 C
AWM	3100V			AWM	3150V			AWM	3200V	200V (Note 2)		AWM	AWM3300V		
Press. mBar	Flow sccm	Nom. VDC	Tol. ± VDC	Press mBar	Flow sccm	Nom. VDC	Tol. ± VDC	Flow sccm	Press ″ H₂O	Nom. VDC	Tol. ± VDC	Press. mBar	Flow sccm	Nom. VDC	Tol. ± VDC
0.49	200	5.00	0.15	2.50	30	3.75	0.70	60.0	2.00	5.00	0.15	3.40	1000	5.00	0.15
0.42	175	4.80	0.16	1.70	20	2.90	0.45	53.0	1.75	4.59	0.15	2.90	900	4.90	0.16
0.35	150	4.50	0.17	0.84	10	1.95	0.20	46.0	1.50	4.16	0.16	2.40	800	4.80	0.17
0.28	125	4.17	0.18	0.42	5	1.50	0.10	38.0	1.25	3.70	0.20	2.00	700	4.66	0.18
0.21	100	3.75	0.19	0.34	4	1.40	0.08	30.0	1.00	3.25	0.22	1.60	600	4.42	0.19
0.14	75	3.27	0.19	0.26	3	1.30	0.08	23.0	0.75	2.65	0.22	1.20	500	4.18	0.20
0.09	50	2.67	0.17	0.17	2	1.20	0.07	16.0	0.50	2.15	0.19	0.80	400	3.82	0.21
0.04	20	1.90	0.13	0.08	1	1.10	0.06	8.0	0.25	1.55	0.11	0.54	300	3.41	0.19
0.00	0	1.00	0.05	0.00	0	1.00	0.05	0.0	0.00	1.00	0.08	0.31	200	2.96	0.17
												0.12	100	2.30	0.14
												0.00	0	1.00	0.10

Notes:

1. Numbers in BOLD type indicate calibration type, mass flow or differential pressure. Tolerance values apply to calibration type only.

2. Differential pressure calibrated devices are not recommended for flow measurement. Use flow calibrated devices for flow measurement.

OUTPUT CURVES

Honeywell ● MICRO SWITCH Sensing and Control ● 1-800-537-6945 USA ● +1-815-235-6847 International ● 1-800-737-3360 Canada 73 Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com

AWM3000 SERIES ORDER GUIDE (Performance Characteristics @ 10.01 ±0.01 VDC, 25°C)

Catalog Listings	AWM3200CR*	AWM3201CR*	AWM3303V				
Flow Range (Full Scale)			±1000 sccm (1 SLPM)				
Differential Pressure Range	0 - 2" H ₂ O (5 mBar)	0 - 0.5″ H₂O (1.25 mBar)					
Output Type	4 - 20 mA DC (linear)	4 - 20 mA DC (linear)	1 - 5 VDC (Note 2)				
Output @ Trim Point	20.0 ± 1 mA DC @ 2" $H_{2}O$	20.0 ± 1 mA DC @ .05" $H_{\scriptscriptstyle 2}O$	5.00 ±0.150 VDC				
Null Output	4.00 ±0.3 mA DC	4.00 ±0.4 mA DC	3.00 ±0.050 VDC				
Null Shift +25° to −25°C, +25° to +85°C	±2 mA DC (max.)	±2 mA DC (max.)	±.050 VDC (max.)				
Output Shift +25° to -25°C +25° to +85°C	+24% Reading -31% Reading (Note 3)	+32% Reading -32% Reading (Note 3)	-5% Reading +5% Reading				
Linearity Error	±5% Reading	±5% Reading	N/A				
External Output Load	100 - 300 Ω (Note 4)	100 - 300 Ω (Note 4)	N/A				
Response Time (Note 1)	60 msec (max.)	60 msec (max.)	3 msec (max.)				
Repeatability & Hysteresis, Max.	±0.50% Reading	±0.50% Reading	±1% Reading				
Excitation VDC	10 ±0.01	10±0.01	8-15				
Power Consumption (mW)	—	50	100				
Common Mode Pressure (psi)	_	_	25				
Calibration Gas	Nitrogen						
Temperature Range	Operating: -25° to +85°C (-13° to +185°F); Storage: -40° to +90°C (-40° to +194°F)						
Termination	2,54 mm (.100") centers, 0,635 mm (0.025") square						
Weight (grams)	10.8						
Shock Rating	100 g peak (5 drops, 6 axes)						

Notes:

1. Initial warm-up time for signal conditioned circuitry is 1 minute max.

2. Output Voltage is ratiometric to supply voltage.

3. Temperature shifts when sensing differential pressure correlates to the density change of the gas over temperature.

4. Output load connected from V_{out} to GND (current sinking). 5. Maximum allowable rate of flow change to prevent damage: 5.0 SLPM/1.0 sec.

* A 5 micron filter must be used on differential pressure sensors.

MOUNTING DIMENSIONS (for reference only)

OUTPUT FLOW VS INTERCHANGEABILITY (Note 1)

Performance Characteristics @ 10.0 \pm 0.01 VDC, 25 C

AWM3	200CR	(Note 2)	AWM3	201CR	(Note 2)	AWM3	303V		
Flow sccm	Press. ″ H₂O	Nom. mA DC	Tol. ± mA DC	Flow sccm	Press. ″ H₂O	Nom. mA DC	Tol. ± mA DC	Press mBar	Flow sccm	Nom. VDC	Tol. ± VDC
0	0.00	4.00	0.3	0	0.00	4.0	0.4	3.49	1000	5.00	0.15
7	0.25	5.75	0.3	35	0.10	7.2	0.4	2.42	800	4.82	0.18
15	0.50	7.70	0.4	42	0.13	8.0	0.4	1.59	650	4.67	0.20
22	0.75	9.75	0.4	53	0.17	9.4	0.5	0.83	400	4.42	0.20
25	0.81	10.21	0.5	61	0.20	10.4	0.5	0.31	200	3.96	0.15
30	1.00	12.00	0.6	71	0.25	12.0	0.6	0.00	0	3.00	0.05
37	1.25	13.90	0.7	81	0.30	13.6	0.7	-0.31	-200	2.03	0.18
45	1.50	16.00	0.8	87	0.35	15.2	0.8	-0.83	-400	1.62	0.20
52	1.75	18.00	0.8	97	0.40	16.8	0.9	-1.59	-600	1.35	0.25
55	1.83	18.50	0.9	105	0.45	18.4	1.0	-2.42	-800	1.15	0.30
60	2.00	20.00	1.0	113	0.50	20.0	1.0	-3.44	-1000	1.00	0.35

Notes:

1. Numbers in **BOLD** type indicate calibration type, mass flow or differential pressure. Tolerance values apply to calibration type only.

2. Differential pressure calibrated devices are not recommended for flow measurement. Use flow calibrated devices for flow measurement.

OUTPUT CURVES

Honeywell
MICRO SWITCH Sensing and Control
Hono: Control

Airflow Sensors Microbridge Mass Airflow/Unamplified and Amplified

FEATURES

- Manifold mount/o-ring sealed
- Ceramic flow-tube (non-outgassing), 0-1000 sccm
- Plastic flow tube, 0-6 SLPM
- High common mode pressure (150 psi ceramic flow-tube only)
- Operating temperature up to 125°C (unamplified only)
- High stability at null and full-scale

The AWM40000 Series mass flow sensor family is based on proven microbridge technology and includes both amplified signal conditioned devices and unamplified sensor only devices.

When using the unamplified devices (AWM42150VH and AWM42300V), the heater control circuit in Figure 1 and the sensing bridge supply circuit in Figure 2 are both required for operation per specification. These two circuits are **NOT** on board the sensor and must be supplied in the application. The differential amplifier circuitry in Figure 3 may be useful in providing output gain and/or introducing voltage offsets to the sensor output (Ref. Equation 1).

The amplified devices (AWM43300V and AWM43600V) can be used to increase output gain and introduce voltage offsets. The differential instrumentation amplifier circuitry, heater control circuitry and sensing bridge supply circuitry are all provided onboard the amplified sensors. Figure 1 Heater Control Circuit

Figure 2 Sensing Bridge Supply Circuit

Figure 3 Differential Instrumentation Amplifier Circuit

Airflow Sensors Microbridge Mass Airflow/Unamplified and Amplified

AWM40000 Series

AWM40000 SERIES ORDER GUIDE (Performance Characteristics @ 10.01 ±0.01 VDC, 25°C)

Catalog Listings	AWM42150VH	AWM42300V	AWM43300V	AWM43600V	
Flow Range (Full Scale)	±25 sccm	±1000 sccm	+1000 sccm	+6 SLPM	
Output Voltage @ Trim Point	8.5 mV ±1.5 mV @ 25 sccm	54.7 mV ±3.7 mV DC @ 1000 sccm	5 V ±0.15 VDC @ 1000 sccm	5 V ±0.15 VDC @ 6 SLPM	
Null Voltage	0.0 ±1.0 mVDC	0.0 ±1.5 mVDC	1.0 ±0.05 VDC	1.0 ±0.05 VDC	
Null Voltage Shift +25° to -25°C, +25° to +85°C	±0.20 mVDC	±0.20 mVDC	±0.025 VDC	±0.025 VDC	
Output Voltage Shift +25° to -25°C +25° to +85°C	Itage Shift +2.5% Reading typ. +2.5% Reading max. +85°C -2.5% Reading typ. -2.5% Reading max.		-5.0% Reading max. +6.0% Reading max.	-6.0% Reading max. +6.0% Reading max.	
Power Consumption (mW)	60 (Max.)	60 (Max.)	60 (Max.)	75 (Max.)	
Repeatability & Hysteresis	±0.35% Reading (3)	±0.50% Reading	±0.50% Reading	±1.00% Reading	
Pressure Drop @ Full Scale (in H_2O)	0.008″ H₂O (Typ.)	1.02 (Typ.)	1.02 (Тур.)	8.00 (Typ.)	
	Min.	Тур.	Max.		
Excitation VDC	8.0	10±0.01	15		
Response Time (msec)		1.0	3.0 (Note 1)		
Common Mode Pressure (psi) (max.)	_	_	150 psi (10 Bar)	25 psi (1.7 Bar)	
Common Mode Pressure (psi) (max.) Output Load		_	150 psi (10 Bar) NPN (Sinking): 10 mA PNP (Sourcing): 20 mA	25 psi (1.7 Bar)	
Common Mode Pressure (psi) (max.) Output Load Temperature Range	Operating: -40° to +12 Storage: -40° to +125°		150 psi (10 Bar) NPN (Sinking): 10 mA PNP (Sourcing): 20 mA Operating: -25° to +85°C (Storage: -40° to +90°C (-40°)	25 psi (1.7 Bar) - 13° to +185°F) 40° to +194°F)	
Common Mode Pressure (psi) (max.) Output Load Temperature Range Calibration Gas	Operating: -40° to +12 Storage: -40° to +125°		150 psi (10 Bar) NPN (Sinking): 10 mA PNP (Sourcing): 20 mA Operating: -25° to +85°C (Storage: -40° to +90°C (-4 Nitrogen	25 psi (1.7 Bar) - 13° to + 185°F) 40° to + 194°F)	
Common Mode Pressure (psi) (max.) Output Load Temperature Range Calibration Gas Ratiometricity Error	— Operating: -40° to +12 Storage: -40° to +125°	 25°C (-40° to +251°F) 2C (-40° to +251°F) ±0.	150 psi (10 Bar) NPN (Sinking): 10 mA PNP (Sourcing): 20 mA Operating: -25° to +85°C (Storage: -40° to +90°C (25 psi (1.7 Bar) –13° to +185°F) 40° to +194°F)	
Common Mode Pressure (psi) (max.) Output Load Temperature Range Calibration Gas Ratiometricity Error Weight (grams)	 Operating: -40° to +12 Storage: -40° to +125°	 25°C (-40° to +251°F) 2C (-40° to +251°F) ±0.	150 psi (10 Bar) NPN (Sinking): 10 mA PNP (Sourcing): 20 mA Operating: -25° to +85°C (Storage: -40° to +90°C (-4) Nitrogen 30% Reading 14 g	25 psi (1.7 Bar) 13° to +185°F) 40° to +194°F) 11 g	
Common Mode Pressure (psi) (max.) Output Load Temperature Range Calibration Gas Ratiometricity Error Weight (grams) Shock Rating	 Operating: -40° to +12 Storage: -40° to +125°	— 25°C (-40° to +251°F) 'C (-40° to +251°F) ±0. 100 g pea	150 psi (10 Bar) NPN (Sinking): 10 mA PNP (Sourcing): 20 mA Operating: -25° to +85°C (Storage: -40° to +90°C (/ Nitrogen 30% Reading 14 g ak (5 drops, 6 axes)	25 psi (1.7 Bar) 13° to +-185°F) 40° to +-194°F) 11 g	

Notes:

1. Response time is typically 1 msec from 10 to 90%.

2. Repeatability & Hysteresis tolerances reflect inherent inaccuracies of the measurement equipment.

3. Maximum allowable rate of flow change to prevent damage: 5.0 SLPM/1.0 sec.

MOUNTING DIMENSIONS (for reference only)

Amplified Sensors

Unamplified Sensors

Airflow

Note: Positive flow direction is defined as proceeding from Port 1 (P1) to Port 2 (P2), and results in positive output.

.31

12,<u>7</u> .50

Honeywell
MICRO SWITCH Sensing and Control
1-800-537-6945 USA
+1-815-235-6847 International
1-800-737-3360 Canada
77

Airflow Sensors Microbridge Mass Airflow/Unamplified and Amplified

OUTF	PUT FLOW VS INTERCHANGEABILITY (Note 1)							Performance Characteristics @ 10.0 \pm 0.01 VDC, 25						VDC, 25°C		
AWM	42150	VH		AWM	42300	V		AWM	AWM43300V				AWM43600V			
Press μBar	Flow sccm	Nom. mV	Tol. ± mV	Press. mBar	Flow sccm	Nom. mV	Tol. ± mV	Press. mBar	Flow sccm	Nom. VDC	Tol. ± VDC	Press. mBar	Flow SLPM	Nom. VDC	Tol. ± VDC	
20	30	9.9	1.5	2.23	1000	54.7	2.00	2.23	1000	5.00	0.15	20.0	6	5.00	0.15	
17	25	8.5	1.5	1.52	800	53.0	2.0	1.87	900	4.97	0.16	14.7	5	4.89	0.20	
14	20	6.8	1.5	0.94	600	49.3	2.5	1.52	800	4.89	0.17	9.07	4	4.70	0.25	
10	15	5.2	1.0	0.49	400	42.5	3.5	1.16	700	4.78	0.18	6.40	3	4.40	0.35	
7	10	3.5	1.0	0.19	200	29.8	4.0	0.94	600	4.63	0.19	3.35	2	3.80	0.30	
3	5	1.7	1.0	0.00	0	0.0	1.5	0.71	500	4.43	0.20	1.17	1	3.10	0.30	
0	0	0.0	1.0	-0.19	-200	-29.8	4.0	0.50	400	4.15	0.21	0.00	0	1.00	0.05	
				-0.49	-400	-42.5	5.0	0.33	300	3.76	0.19					
				-0.94	-600	-49.3	6.0	0.19	200	3.23	0.17					
				-1.52	-800	-53.0	6.0	0.08	100	2.49	0.14					
				-2.23	-1000	-55.2	6.0	0.00	0	1.00	0.05					

Notes:

1. Numbers in **BOLD** type indicate calibration type, mass flow or differential pressure.

Tolerance values apply to calibration type only.

Airflow Sensors High Flow Mass Airflow/Amplified

In-Line Flow Measurement

AWM5000 Series Microbridge Mass Airflow Sensors feature a venturi type flow housing. They measure flow as high as 20 standard liters per minute (SLPM) while inducing a maximum pressure drop of 2.25" H₂O. The microbridge chip is in direct contact with the flow stream, greatly reducing error possibilities due to orifice or bypass channel clogging.

Rugged, Versatile Package

The rugged plastic package has been designed to withstand common mode pressures up to 50 psi, and the small sensing element allows 100 gs of shock without compromising performance. The included "AMP" compatible connector provides reliable connection in demanding applications.

On-board Signal Conditioning

Each AWM5000 sensor contains circuitry which performs amplification, linearization, temperature compensation, and gas calibration. Figure 1 (Heater Control Circuit) and Figure 2 (Sensor Bridge Circuit and Amplification Linearization Circuit) illustrate the on-board electrical circuitry for the AWM5000 Series. A 1 to 5 VDC linear output is possible for all listings regardless of flow range (5, 10, 15, or 20 SLPM) or calibration gas (nitrogen, carbon dioxide, nitrous oxide, or argon). All calibration is performed by active laser trimming.

FEATURES

- Linear voltage output
- Venturi design
- Remote mounting capability
- Active laser trimming improves interchange ability
- Separate gas calibration types:
- Ar (argon)
- N₂ (nitrogen) or
- CO₂ (carbon dioxide)

Figure 1

Heater Control Circuit

Figure 2

Sensor Bridge Circuit and Amplification Linearization Circuit

Airflow Sensors Highflow Mass Airflow/Amplified

SPECIFICATIONS (Performance Characteristics @ 10.0 ±0.01 VDC, 25°C)

	AWM5101	AWM5102		AWM5103		AWM5104
Flow Range (Note 3)	0-5 SLPM	0-10 SLPM		0-15 SLPM		0-20 SLPM
Suffix - Calibration gas	VA - Argon (A	r)	VC - Ca	arbon dioxide (CO ₂)		VN - Nitrogen (N2)
	Min. Typ.				Max	κ.
Excitation VDC	8 10±0.01				15	
Power consumption (mW)	—		_		100	
Response time (msec)	—		_		60	
Null output VDC	0.95		1		1.05	5
Null output shift –20° to 70°C	_		±0.050 VD	C	±.2	00 VDC
Common Mode Pressure (psi)	_		_		50	
Temperature range			-20° to +7	′0°C, (−4° to 158°F)		
Weight			60 gr	ams (2.12 oz.)		
Shock ratings	10)0 g peak, 6 n	nsec half-sin	e (3 drops, each directio	on of 3	3 axes)
Output @ laser trim point			5 VDC @	Full Scale Flow		
Output voltage shift +20° to −25°C, +20° to 70°C		Suffix VA or V	/N ±7.0% Re	ading, Suffix VC ±10.09	% Rea	ding
Linearity error (2)			±3.0%	Reading (max.)		
Repeatability & Hysteresis	±0.5% Reading (max.)					
Connector (Included) —Four pin receptacle	MICRO SWITCH (SS12143)/AMP (103956-3)					
Leak rate, max	0.1 psi/min. at static condition, (Note 2)					

Notes:

1. Linearity specification applies from 2 to 100% full scale of gas flow range, and does not apply to null output at 0 SLPM.

2. The AWM5000 series product has a leakage spec of less than 0.1 psi per minute at 50 psi common mode pressure. If during installation, the end adapters are twisted with respect to the flowtube, this may compromise the seal between the o-ring and the flowtube and may cause a temporary leak. This leak might be as high as 1 psi or might remain in specification. It will self-reseal as the o-ring takes a new set. Approximately 85% of the leakage will dissipate in 24 hours. Within 48 hours, complete recovery will take place.

3. SLPM denotes standard liters per minute, which is a flow measurement referenced to standard conditions of 0°C/1 bar (sea level), 50% RH.

NOTICE

AWM5000—Chimney Effect

AWM microbridge mass airflow sensors detect mass airflow caused by heat transfer. The thermally isolated microbridge structure consists of a heater resistor positioned between two temperature sensing resistors.

The heater resistor maintains a constant temperature, 160°C above ambient, during sensor operation. Airflow moving past the chip transfers heat from the heater resistor. This airflow warms the downstream resistor and cools the upstream resistor. The temperature change and the resulting change in resistance of the temperature resistors is proportional to the mass airflow across the sensing element.

When the sensor is mounted in a vertical position, under zero flow conditions, the sensor may produce an output that is the result of thermally induced convection current. This occurrence is measurable in the AWM5000 Series, particularly in the 5 SLPM versions. When designing the sensor into applications where null stability is critical, avoid mounting the sensor in a vertical position.

Airflow Sensors High Flow Mass Airflow/Amplified

OUTPUT CURVES (Performance Characteristics @ 10.0 ±0.01 VDC, 25°C)

Airflow

Airflow Sensors Highflow Mass Airflow/Amplified

AWM5000 ORDER GUIDE

Catalog Listing	Flow Range
AWM5101VA	5 SLPM, Argon calibration
AWM5101VC	5 SLPM, CO ₂ calibration (2)
AWM5101VN	5 SLPM, N_2 calibration (1)
AWM5102VA	10 SLPM, Argon calibration
AWM5102VC	10 SLPM, CO_2 calibration (2)
AWM5102VN	10 SLPM, N ₂ calibration (1)
AWM5103VA	15 SLPM, Argon calibration
AWM5103VC	15 SLPM, CO ₂ calibration (2)
AWM5103VN	15 SLPM, N ₂ calibration (1)
AWM5104VA	20 SLPM, Argon calibration
AWM5104VC	20 SLPM, CO_2 calibration (2)
AWM5104VN	20 SLPM, N ₂ calibration (1)

CONNECTOR ORDER GUIDE

Catalog Listing	Description
SS12143	Four pin Electrical connector Connectors use Amp 103956-3

Note: All listings have 1 - 5 VDC linear output with 10 VDC supply over given flow range for a specific calibration gas.

1. N_2 calibration is identical to O_2 and air calibration.

2. CO_2 calibration is identical to N_2O calibration.

3. For additional gas correction factors, see Application Note 3.

OUTPUT CONNECTIONS

Pin 1 + Supply voltage

Pin 2 Ground

Pin 3 No connection

Pin 4 Output voltage

Arrow on bottom of housing indicates direction of flow.

MOUNTING DIMENSIONS (for reference only)

82 Honeywell • MICRO SWITCH Sensing and Control • 1-800-537-6945 USA • + 1-815-235-6847 International • 1-800-737-3360 Canada Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com

Mass Airflow Sensors AWM720P1 Airflow

AWM700 Series

FEATURES

- Flow tubes for ranges up to 200 SLPM
- Highly stable null and fullscale
- Compact package design
- Extremely low hysteresis and repeatability errors, less than 0.35% of reading
- Fast response time, 6 ms typical
- Low power consumption, less than 60 mW

TYPICAL APPLICATIONS

- Oxygen concentrators
- Oxygen conservers
- Respirators and ventilators
- Nebulizers
- Continuous positive airway pressure (CPAP) equipment
- Anesthesia delivery
- Leak detection
- Spectroscopy
- Mass flow controllers
- Telecommunication systems
- Environmental climate controls
- Fuel cell controls

PERSONAL INJURY

 DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

AWM700 Series microbridge mass airflow sensors provide in-line flow measurement with a specially designed bypass flow housing. The sensors measure flow as high as 200 standard liters per minute (SLPM) while inducing a pressure drop of 1 inch H_2O , typically. The AWM700 has a high flow range capability in a small package.

The AWM700 has a 6 millisecond response time, requires a 10 Vdc supply, but consumes only 60 mW of power. The compact plastic package withstands overpressures of 25 psi without compromising performance. The snap-in AMP compatible connector provides reliable connection. The sensor is also well suited for use in portable devices and battery-powered applications.

The AWM700 Series provides a combination of time proven reliability, high accuracy, and precision operating characteristics. This inherent accuracy over life reduces need for recalibration. AWM700 sensor circuitry performs amplification and temperature compensation.

The AWM720P1 200 LPM Mass Airflow Sensor, developed primarily for the medical ventilation market, meets the high performance requirements of many medical and analytical instrumentation applications.

MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do
 not use this document as product installation information.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

Sensing and Control

Mass Airflow Sensors AWM720P1 Airflow

AWM700 Series

PERFORMANCE SPECIFICATIONS

iow Range (Full Scale) + 200 SLPM				
	Min.	Тур.	Max.	Units
Excitation (1)	9.990	10.000	10.010	Vdc
Power Supply	8.000	10.000	15.000	Vdc
Power Consumption			60	mW
Output Load				
Sinking		10		mA
Sourcing		20		mA
Calibration gas		Air		
Null Voltage Shift				
+25°C to -25°C,				
+25°C to +85°C		\pm .025 typ.		Vdc
Full Scale Output Shift				
+25°C to +10°C	-2.0			% Reading
+25°C to +40°C	+2.0 %			% Reading
Ratiometricity Error (1)	± 0.30 typ.			% Reading
Repeatability and Hysteresis (2)	± 0.50		% Reading	
Response Time		6 typ.		ms
Pressure Drop		1.0 typ.		inch H ₂ O
@ Full Scale	2,5 typ.		mBar	
Overpressure	25 max.			psi
Temperature Range				
Operating	-25°C to +85°C [-13°F to +185°F]			
Storage	-40°C to +90°C [-40°F to +194°F]			
Weight	34 [1.20 oz] gram			gram
Connector—4 pin receptacle	AMP 103956-3 (provided with sensor)			

FLOW SPECIFICATIONS

Flow	Nominal	±Tolerance	Pressur	e Drop
 (SLPM)	(Vdc) Typical	(Vdc)	(inch H ₂ O)	(mBar)
0	1.00	0.05	0	0
25	2.99	—	0.04	0.10
50	3.82	0.18	0.13	0.33
75	4.30	—	0.21	0.53
100	4.58	—	0.34	0.85
150	4.86	_	0.65	1.64
200	5.00	0.36	1.09	2.74

Notes: 1. Output voltage is ratiometric to supply voltage.

2. Repeatability and Hysteresis tolerances reflect inherent inaccuracies of the measurement equipment.

www.honeywell.com/sensing

AWM720P1 Airflow

OUTPUT CURVES

Figure 1, Voltage Output vs. Airflow and Figure 2, Pressure Drop vs. Airflow depict performance characteristics for the AWM700 Series sensors at 10.0 ± 0.01 Vdc at 25°C.

NOTICE

LAMINAR FLOW

Due to the fast response time of the sensor, these specifications were generated using laminar flow. Airflow instability or "turbulence" present in the airstream will result in an increase in measurement uncertainty.

The turbulent flow problem can be corrected by either straightening the airflow using flow laminarizing or by slowing the response of the sensor using a simple RC time constant on the output of the sensor. This, of course, slows down the sensor response time. The values needed depend on the amount of turbulence present in the application.

Several techniques for laminarizing the flow include adding hex shaped honeycombs, foam, screen materials or adding constrictors (frits) to the flow stream. There are various commercial laminar flow elements that can be purchased. Unfortunately the greater the efficiency of the laminarizer, the greater the increase in pressure drop in order to establish a given flow rate. Plastic honeycomb material probably gives the most improvement for the least pressure drop. In any test fixture, the avoidance of sharp radii is an absolute requirement.

Failure to comply with these application instructions may result in product failures.

ELECTRICAL CONNECTION

The AWM700 Series accepts a latch detent connector, such as: AMP part number 103956-3. Information on latch detent connectors is available from the AMP Product Information Center, 1-800-522-6752 or the AMP Customer Hotline, 1-800-722-1111.

RELATED AMP LITERATURE

82160	MTE Interconnection System (AMPMODU) Catalog
108-25034	Product Specification (technical performance information)
114-25026	Application Specification (describes product, proper assembly, full tooling information)
IS 6919	Instruction Sheet for assembly procedure

MAKING ELECTRICAL CONNECTIONS

- 1. Remove (unlatch) the connector from the AWM700.
- 2. Hand-crimp the interface wire to the appropriate pin on the connector. One possible tool: AMP Hand-Crimp Tool, part number 58342-1.
- Insert the terminal contacts into the connector housing after carrier strip (lead-frame) is removed.
- 4. Reconnect (latch) connector to AWM700 device.

MOUNTING INSTRUCTIONS

Mount AWM700 Series sensors with 6-32 screws. Honeywell recommends use of washers below screw head. Mounting torque is 0.68 N m [6.0 in lb] max.

AWM700 Series

www.honeywell.com/sensing

Honeywell • Sensing and Control 3

AWM720P1 Airflow

MOUNTING DIMENSIONS (for reference only) mm/in

AWM700 Series

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of

merchantability and fitness for a particular purpose.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

While we provide application to determine the suitability of the product in the application.

For application assistance, current specifications, or name of the nearest Authorized Distributor, check the Honeywell web site or call: 1-800-537-6945 USA 1-800-737-3360 Canada 1-815-235-6847 International FAX info.sc@honeywell.com

Honeywell

Sensing and Control Honeywell 11 West Spring Street Freeport, Illinois 61032

Printed with Soy Ink on 50% Recycled Paper 008058-1-EN IL50 GLO 0800 Printed in USA www.honeywell.com/sensing

assistance personally, through 1-815-235-6545 USA our literature and the Honeywell INTERNET www.honeywell.com/sensing web site, it is up to the customer

AWM90000 Airflow

AWM90000 Series

FEATURES

- Mass flow and differential pressure versions
- Bi-directional sensing capability
- Highly stable null and full-scale
- Extremely low pressure drop
- Compact package design
- Extremely low hysteresis and repeatability errors, less than 0.35% of reading
- Fast response time, 1 ms typical
- Low power consumption, 50 mW max.

TYPICAL APPLICATIONS

- Continuous Positive Airway
 Pressure (CPAP) equipment
- Sleep apnea monitors
- Respirators and ventilators
- Oxygen conservers
- Oxygen concentrators
- Nebulizers
- Spirometers
- Anesthesia delivery
- Variable Air Volume (VAV) damper control
- Clogged filter detection
- Fuel to air ratio sensing
- Leak detection equipment
- Spectroscopy equipment

PERSONAL INJURY DO NOT USE these products as safety

or emergency stop devices or in any other application where failure of the product could result in personal injury. Failure to comply with these

instructions could result in death or serious injury.

AWM90000 Series microbridge mass airflow sensors are available in two versions, Mass Flow and Differential Pressure. The AWM92100V has a flow range of +/- 200 sccm with a pressure drop of only 0.49 mBar, typically. The AWM92200V is a differential pressure version that has a range of +/- 2" H₂O.

The AWM90000 Series sensors have a 1 millisecond response time, operate with a supply voltage from 8.0 Vdc to 15.0 Vdc, while consuming only 50 mW of power. The compact plastic package will withstand a maximum overpressure of 25 psi without compromising performance. The sensor is well suited for use in portable devices and battery-powered applications.

The AWM90000 Series provides customers with a combination of time proven reliability, repeatable flow sensing, and the ability to customize the sensor functions to meet their specific application needs.

AWARNING MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as product installation information.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

Sensing and Control

AWM90000 Airflow

PERFORMANCE SPECIFICATIONS

Catalog Listings	AWM92100V	AWM92200V
Flow Range (Full Scale)	+/- 200 sccm	
Pressure Range		+/- 2.0 H ₂ O (5 mBar)
Null Voltage Shift, Typ.		
-25 °C to 25 °C [-13 °F to 77 °F]	+/- 2.0 mV ⁽¹⁾	+/- 2.0 mV ⁽¹⁾
25 °C to 85 °C [77 °F to 185 °F]	+/- 2.0 mV ⁽¹⁾	+/- 2.0 mV ⁽¹⁾
Output Voltage Shift, Typ.		
-25 °C to 25 °C [-13 °F to 77 °F]	-3.0% FSO (2)	25% Reading
25 °C to 85 °C [77 °F to 185 °F]	+/-1% FSO ⁽²⁾	-30% Reading

1. Assumes low TCR Bridge resistance used (pins 2 and 8)

2. Requires recommended RC value of 1K Ohm is used (pins 3 to 7) and typ. Heater control circuit. Maximum current RH.

Specifications	Min.	Тур.	Max.
Excitation (1)	8.0 Vdc	10 ±0.01 Vdc	15.0 Vdc
Power Consumption			50 mW
Calibration Gas	Air		
Ratiometricity Error (1)	± 0.30 typ. % Rea	ding	
Repeatability and Hysteresis (2)	± 0.35% Reading		
Response Time	1 ms typ.		
Pressure Drop @ Full Scale (200 sccm)	0.49 typ. mBar		
Overpressure	25 psi max.		
Operating Temperature Range	-25 °C to 85 °C [-13 °F to 185 °F]		
Storage Temperature Range	-40 °C to 90 °C [-40 °F to 194 °F]		
Vibration	20 g's, 10 Hz to 2000 Hz		
Shock	100 g, 6 ms		
Weight	5.6 grams		

1. Output voltage is ratiometric to supply voltage.

2. Repeatability and Hysteresis tolerances reflect inherent inaccuracies of the measurement equipment.

AWM90000 Airflow

AWM90000 Series

AWM92100V FLOW SPECIFICATIONS

Flow (sccm)	Nominal (mV Typical)	± Tolerance (mV Typical)
200	77	32
150	68	29
100	56	25
50	36	17
0	0	20
-50	-37	18
-100	-57	26
-150	-69	30
-200	-78	33

AWM92200V FLOW SPECIFICATIONS				
Pressure (inch H2O)	Nominal (mV) Typical	Typical Min. (mV)	Typical Max. (mV)	
2.0	38	22	77	
1.5	32	18	66	
1.0	23	12	49	
.5	12	7	29	
0	0	-20	20	
5	-12	-7	-30	
-1.0	-23	-12	-51	
-1.5	-32	-18	-68	
-2.0	-39	-22	-79	

AWM92100V VOLTAGE OUTPUT VS. FLOW CURVE

Depicts performance characteristics for the AWM92100V sensor at 10.0 ±0.01 Vdc at 25 °C [77 °F].

AWM92100V Output vs. Flow

AWM92200V OUTPUT VOLTAGE VS. PRESSURE CURVE

Depicts performance characteristics for the AWM92200V sensor at 10.0 ±0.01 Vdc at 25 °C [77 °F].

AWM92200V Output vs. Pressure

AWM90000 Airflow

AWM90000 Series

WIRING DIAGRAMS

Mass Airflow Sensors AWM90000 Airflow

AWM90000 Series

Honeywell • Sensing and Control 5

AWM90000 Airflow

AWM90000 Series

NOTICE

LAMINAR FLOW

Due to the fast response time of the sensor, these specifications were generated using laminar flow. Airflow instability or "turbulence" present in the airstream will result in an increase in measurement uncertainty.

The turbulent flow problem can be corrected by either straightening the airflow using flow laminarizing or by slowing the response of the sensor using a simple RC time constant on the output of the sensor. This, of course, slows down the sensor response time. The values needed depend on the amount of turbulence present in the application.

Several techniques for laminarizing the flow include adding hex shaped honeycombs, foam, screen materials or adding constrictors (frits) to the flow stream. There are various commercial laminar flow elements that can be purchased. Unfortunately the greater the efficiency of the laminarizer, the greater the increase in pressure drop in order to establish a given flow rate. Plastic honeycomb material probably gives the most improvement for the least pressure drop. In any test fixture, the avoidance of sharp radii is an absolute requirement.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

For application assistance, current specifications, or name of the nearest Authorized Distributor, check the Honeywell web site or call: 1-800-537-6945 USA 1-800-737-3360 Canada 1-815-235-6847 International FAX 1-815-235-6545 USA INTERNET www.honeywell.com/sensing info.sc@honeywell.com

Sensing and Control Honeywell 11 West Spring Street Freeport, Illinois 61032 008080-1-EN ILSO GLO 703 Printed in USA Copyright 2003 Honeywell International Inc.

www.honeywell.com/sensing

Honeywell

Honeywell Zephyr™ Analog Airflow Sensors: HAF Series-High Accuracy

DESCRIPTION

Honeywell Zephyr[™] Analog Airflow Sensors: HAF Series-High Accuracy, provide an analog interface for reading airflow over the specified full scale flow span and temperature range. Their thermally isolated heater and temperature sensing elements help these sensors provide a fast response to air or gas flow.

Zephyr sensors are designed to measure mass flow of air and other non-corrosive gases. They are available in standard flow ranges and are fully calibrated and temperature compensated with an on-board Application Specific Integrated Circuit (ASIC).

The HAF Series is compensated over the temperature range of 0 °C to 50 °C [32 °F to 122 °F] and operates across a temperature range of -20 °C to 70 °C [-4 °F to 158 °F]. The state-of-the-art ASIC-based compensation provides analog outputs with a response time of 1 ms.

FEATURES AND BENEFITS (*****= competitive differentiator)

- ★ High ±2.5% accuracy allows for very precise airflow measurement, often ideal for demanding applications with high accuracy requirements
- Full calibration and temperature compensation typically allow customer to remove additional components associated with signal conditioning from the PCB, reducing PCB size as well as costs often associated with those components (e.g., acquisition, inventory, assembly)
- ★ Customizable for specific end-user needs
- ★ High sensitivity at very low flows allows a customer's application to detect presence or absence of airflow
- ★ High stability reduces errors due to thermal effects and null shift to provide accurate readings over time, often eliminating need for system calibration after PCB mount and periodically over time
- ★Low pressure drop typically improves patient comfort in medical applications, and reduces noise and system wear on other components such as motors and pumps
- ★Linear output provides more intuitive sensor signal than the raw output of basic airflow sensors, which can help reduce production costs, design, and implementation time
- Fast response time allows a customer's application to respond quickly to airflow change, important in critical medical (i.e., anesthesia) and industrial (i.e., fume hood) applications

These sensors operate on the heat transfer principle to measure mass airflow. They consist of a microbridge Microelectronic and Microelectromechanical System (MEMS) with temperature-sensitive resistors deposited with thin films of platinum and silicon nitride. The MEMS sensing die is located in a precise and calculated airflow channel to provide repeatable flow response.

Zephyr sensors provide customers with enhanced reliability, analog accuracy, repeatable measurements and the ability to customize sensor options to meet many specific application needs. The combination of rugged housings with a stable substrate makes these products extremely robust. They are designed and manufactured according to ISO 9001 standards.

- 11-bit resolution increases ability to sense small airflow changes, allowing customers to more precisely control their application
- Low 3.3 Vdc operating voltage option and low power consumption allow for use in battery-driven and other portable applications
- Bidirectional flow sensing capability eliminates the need for two airflow sensors, helping to reduce production costs and implementation time
- Insensitivity to mounting orientation allows customer to position sensor in most optimal point in the system, eliminating concern for positional effects
- Insensitivity to altitude eliminates customer-implemented altitude adjustments in the system, easing integration and reducing production costs by not having to purchase additional sensors for altitude adjustments
- Small size occupies less space on PCB, allowing easier fit and potentially reducing production costs; PCB size may also be reduced for easier fit into space-constrained applications
- RoHS-compliant materials meet Directive 2002/95/EC

Honeywell Zephyr[™] Analog Airflow Sensors

POTENTIAL APPLICATIONS

Medical

- Anesthesia delivery machines
- Ventricular assist devices (heart pumps)
- Hospital diagnostics (spectrometry, gas chromatography) •
- Nebulizers
- Oxygen concentrators
- Patient monitoring systems (respiratory monitoring) .
- Sleep apnea machines
- Spirometers
- Ventilators

Table 4. Abaaluta Maximum Datingal

Industrial

- Air-to-fuel ratio
- Analytical instrumentation (spectrometry, chromatography)
- Fuel cells
- Gas leak detection •
- Gas meters
- HVAC filters VAV system on HVAC systems .
- Meteorolgy

Characteristic	Parameter	
Supply voltage	-0.3 Vdc to 6.0 Vdc	
Voltage on output pin	-0.3 V to Vsupply	
Storage temperature range	-40 °C to 125 °C [-40 °F to 257 °F]	
Maximum flow change	5.0 SLPM/s	
Maximum common mode pressure	25 psi at 25 °C [77 °F]	
Maximum flow	10 SLPM	

CAUTION **IMPROPER USE**

Do not use these products to sense liquid or fluid flow.

Failure to comply with these instructions may result in product damage.

Note 1: Using the sensor at or beyond the Absolute Maximum Ratings may affect the reliability of the device or cause permanent damage. This is a stress rating only. Using the sensor beyond the operational characteristic ranges may still affect the functional operation of the device.

Table 2: Operating Characteristics

Characteristic	Parameter	Note
Supply voltage	3.3 Vdc ±10%; 5.0 Vdc ±10%	-
Current draw	16 mA max. (no load)	-
Power:		-
3.3 Vdc	40 mW typ. (no load)	
5.0 Vdc	55 mW typ. (no load)	
Operating temperature range	-20 °C to 70 °C [-4 °F to 158 °F]	-
Compensated temperature range	0 °C to 50 °C [32 °F to 122 °F]	1
Accuracy:		2, 4
forward flow	±0.25% FSS or ±2.5% Reading, whichever is greater	
reverse flow	±0.25% FSS or ±15% Reading, whichever is greater	
Total error band:		3, 4
forward flow:	±0.25% FSS or ±4.5% Reading, whichever is greater	
reverse flow:	±0.25% FSS or ±15% Reading, whichever is greater	
Null accuracy	±0.08 %FSS	4, 8
Response time	1 ms typ.	5
Resolution	11 bit	-
Warm up time	15 ms	6
Calibration media	gaseous nitrogen	7
Null stability	±0.06 FSS max. deviation from null output after 1000 hrs at 25 °C	-
Reverse polarity protection	no	-

Notes:

Custom and extended compensated temperature ranges are possible. Contact Honeywell for details.

Accuracy is the maximum deviation from the nominal digital output over the compensated flow range at a reference temperature of 25 °C. 2

Errors include offset, span, non-linearity, hysteresis and non-repeatability (see Figure 3 for the Accuracy Error Band vs Flow). Total error band includes all errors over the compensated flow range including all effects due to temperature over the compensated

3 temperature range (see Figure 4 for the Total Error Band). Full Scale Span (FSS) is the algebraic difference between the digital output at the forward Full Scale (FS) flow and the digital output at the

4 reverse FS flow. Forward flow is defined as flow for P1 to P2 as shown in Figure 4. The references to mass flow (SCCM) refer to gas flows at the standard conditions of 0 °C and atmospheric pressure 760 (101.3 kPa).

Response time: time to electrically respond to any mass flow change at the microbridge airflow transducer (response time of the transducer 5 may be affected by the pneumatic interface). Warm-up time: time to the first valid flow measurement after power is applied. Default calibration media is dry nitrogen gas. Please contact Honeywell for other calibration options. Null accuracy is the maximum deviation in output at 0 SCCM from the ideal transfer function over the compensated temperature range. This

6

8 includes offset errors, thermal airflow hysteresis and repeatability errors.

Honeywell

HAF Series-High Accuracy

Table 3. Suggested Load

Characteristic	Parameter
Minimum suggested resistance:	
3.3 Vdc	3.3 kOhm
5.0 Vdc	5.0 kOhm
Maximum suggested capacitance:	
3.3 Vdc	10 nF
5.0 Vdc	10 nF

CAUTION

LARGE PARTICULATE DAMAGE

Use a 5-micron filter upstream of the sensor to keep media flow through the sensor free of condensing moisture and particulates. Large, high-velocity particles or conductive particles may damage the sensing element. Failure to comply with these instructions may result in product damage.

Table 4. Environmental Characteristics

Characteristic	Parameter
Humidity	0% to 95% RH, non-condensing
Shock	100 g, 11 ms
Vibration	15 g at 20 Hz to 2000 Hz
ESD	Class 3B per MIL-STD 883G
Radiated Immunity	Level 3 from (80 MHz to 1000 MHz)
	per spec IEC61000-4-3

Table 6 Recommended Mounting and Implementation

Table 5. Wetted Materials Characteristic Parameter high temperature polymer Covers Substrate PCB Adhesives epoxy Electronic components silicon, gold Compliance RoHS, WEEE

Table 0. Recommended mounting and implementation		
Characteristic	Parameter	
Mounting screw size	5-40	
Mounting screw torque	0.68 N m [6 in-lb]	
Tubing for long port style	70 durometer, size 0.125 inch inside diameter, 0.250 inch outside diameter silicone tubing	
O-ring for short port style	AS568A, Size 7, Silicone, Shore A 70	
O-ring for long port style	AS568A, Size 10, Silicone, Shore A 70	
Filter recommendation	5-micron filter upstream of the sensor	

Honeywell Zephyr™ Analog Airflow Sensors

Figure 6. Long Port Style Flow vs Pressure

Q0.030	Flow	Тур	bical Pressure	Drop
Î I	(SCCM)	in H₂O	mBar	kPa
8	-200	-0.019	-0.047	-0.005
0.010	-150	-0.013	-0.032	-0.003
	-100	-0.007	-0.017	-0.002
6 .000 -50 50 150 250	-50	-0.001	-0.002	0.000
-0.010	0	0.000	0.000	0.000
	50	0.005	0.012	0.001
S	100	0.010	0.025	0.002
	150	0.016	0.040	0.004
Flow (SCCM)	200	0.022	0.055	0.005

Figure .7 Short Port Style Flow vs Pressure

6	Flow	Ту	oical Pressure	Drop
1 I I I I I I I I I I I I I I I I I I I	(SCCM)	in H₂O	mBar	kPa
<u>8</u> 0.400	-200	-0.470	-1.171	-0.117
20.200	-150	-0.284	-0.707	-0.071
E	-100	-0.143	-0.356	-0.036
Q-250 -150 -50 50 150 250	-50	-0.045	-0.112	-0.011
Φ	0	0.000	0.000	0.000
-0.400	50	0.048	0.120	0.012
e es	100	0.139	0.346	0.035
	150	0.287	0.715	0.071
	200	0.452	1.126	0.113

HAF Series-High Accuracy

Figure 9. Mounting Dimensions (For reference only: mm [in]). Additional port and housing styles available.

A WARNING

PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

A WARNING

MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

SALES AND SERVICE

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com

Internet: www.honeywell.com/sensing

Phone and Fax:

Asia Pacific	+65 6355-2828
	+65 6445-3033 Fax
Europe	+44 (0) 1698 481481
	+44 (0) 1698 481676 Fax
Latin America	+1-305-805-8188
	+1-305-883-8257 Fax
USA/Canada	+1-800-537-6945
	+1-815-235-6847
	+1-815-235-6545 Fax

Sensing and Control Honeywell 1985 Douglas Drive North Golden Valley, MN 55422 www.honeywell.com

008217-1-EN IL50 GLO Printed in USA November 2010 © 2010 Honeywell International Inc. All rights reserved.

Honeywell

Honeywell Zephyr™ Digital Airflow Sensors: HAF Series-High Accuracy

DESCRIPTION

Honeywell Zephyr[™] Digital Airflow Sensors: HAF Series-High Accuracy, provide a digital interface for reading airflow over the specified full scale flow span and temperature range. Their thermally isolated heater and temperature sensing elements help these sensors provide a fast response to air or gas flow.

Zephyr sensors are designed to measure mass flow of air and other non-corrosive gases. They are available in standard flow ranges and are fully calibrated and temperature compensated with an on-board Application Specific Integrated Circuit (ASIC).

The HAF Series is compensated over the temperature range of 0 °C to 50 °C [32 °F to 122 °F] and operates across a temperature range of -20 °C to 70 °C [-4 °F to 158 °F]. The state-of-the-art ASIC-based compensation provides digital (I²C) outputs with a response time of 1 ms.

FEATURES AND BENEFITS (*****= competitive differentiator)

- ★ High ±2.5% accuracy allows for very precise airflow measurement, often ideal for demanding applications with high accuracy requirements
- Full calibration and temperature compensation typically allow customer to remove additional components associated with signal conditioning from the PCB, reducing PCB size as well as costs often associated with those components (e.g., acquisition, inventory, assembly)
- ★ Customizable for specific end-user needs
- ★ High sensitivity at very low flows allows a customer's application to detect presence or absence of airflow
- ★ High stability reduces errors due to thermal effects and null shift to provide accurate readings over time, often eliminating need for system calibration after PCB mount and periodically over time
- ★Low pressure drop typically improves patient comfort in medical applications, and reduces noise and system wear on other components such as motors and pumps
- ★ Linear output provides more intuitive sensor signal than the raw output of basic airflow sensors, which can help reduce production costs, design, and implementation time
- Fast response time allows a customer's application to respond quickly to airflow change, important in critical medical (i.e., anesthesia) and industrial (i.e., fume hood) applications

These sensors operate on the heat transfer principle to measure mass airflow. They consist of a microbridge Microelectronic and Microelectromechanical System (MEMS) with temperature-sensitive resistors deposited with thin films of platinum and silicon nitride. The MEMS sensing die is located in a precise and calculated airflow channel to provide repeatable flow response.

Zephyr sensors provide customers with enhanced reliability, digital accuracy, repeatable measurements and the ability to customize sensor options to meet many specific application needs. The combination of rugged housings with a stable substrate makes these products extremely robust. They are designed and manufactured according to ISO 9001 standards.

- High 12-bit resolution increases ability to sense small airflow changes, allowing customers to more precisely control their application
- Low 3.3 Vdc operating voltage option and low power consumption allow for use in battery-driven and other portable applications
- ASIC-based I²C digital output compatibility eases integration to microprocessors or microcontrollers, reducing PCB complexity and component count
- Bidirectional flow sensing capability eliminates the need for two airflow sensors, helping to reduce production costs and implementation time
- Insensitivity to mounting orientation allows customer to position sensor in most optimal point in the system, eliminating concern for positional effects
- Insensitivity to altitude eliminates customer-implemented altitude adjustments in the system, easing integration and reducing production costs by not having to purchase additional sensors for altitude adjustments
- Small size occupies less space on PCB, allowing easier fit and potentially reducing production costs; PCB size may also be reduced for easier fit into space-constrained applications
- RoHS-compliant materials meet Directive 2002/95/EC

Honeywell Zephyr™ Digital Airflow Sensors

POTENTIAL APPLICATIONS

Medical

- Anesthesia delivery machines
- Ventricular assist devices (heart pumps)
- Hospital diagnostics (spectrometry, gas chromatography) •
- Nebulizers
- Oxygen concentrators
- Patient monitoring systems (respiratory monitoring) .
- Sleep apnea machines
- Spirometers
- Ventilators

Table 1: Absolute Maximum Ratings¹

Characteristic	Parameter
Supply voltage	-0.3 Vdc to 6.0 Vdc
Voltage on output pin	-0.3 V to Vsupply
Storage temperature range	-40 °C to 125 °C [-40 °F to 257 °F]
Maximum flow change	5.0 SLPM/s
Maximum common mode pressure	25 psi at 25 °C [77 °F]
Maximum flow	10 SLPM

Industrial

- Air-to-fuel ratio
- Analytical instrumentation (spectrometry, chromatography)
- Fuel cells
- Gas leak detection •
- Gas meters
- HVAC filters
- VAV system on HVAC systems .
- Meteorolgy

CAUTION **IMPROPER USE**

Do not use these products to sense liquid or fluid flow.

Failure to comply with these instructions may result in product damage.

Note 1: Absolute maximum ratings are the extreme limits that the device will withstand without damage to the device. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached, nor will the device necessarily operate at absolute maximum ratings.

Table 2: Operating Characteristics

Characteristic	Parameter	Note
Supply voltage	3.3 Vdc ±10%; 5.0 Vdc ±10%	_
Supply current	16 mA max.	—
Power:		—
3.3 Vdc	23 mW typ.	
5.0 Vdc	38 mW typ.	
Operating temperature range	-20 °C to 70 °C [-4 °F to 158 °F]	—
Compensated temperature range	0 °C to 50 °C [32 °F to 122 °F]	1
Accuracy:		2, 4
forward flow	$\pm 0.25\%$ FSS or $\pm 2.5\%$ of reading, whichever is greater	
reverse flow	$\pm 0.25\%$ FSS or $\pm 9\%$ of reading, whichever is greater	
Total error band:		3, 4
forward flow:	$\pm 0.25\%$ FSS or $\pm 4.5\%$ of reading, whichever is greater	
reverse flow:	$\pm 0.25\%$ FSS or $\pm 9\%$ of reading, whichever is greater	
Null accuracy	±0.02% FSS	4, 10
Response time	1 ms typ.	5
Resolution	12 bit min.	_
Start up time	17 ms	6
Warm up time	30 ms	7
Calibration media	gaseous nitrogen	8
Bus standards	I ² C, fast mode (400 kHz)	9
Null stability	±0.01% FSS maximum deviation from null output after 1000 hours at 25 °C	_
Reverse polarity protection	no	_

Notes

5

2.

3.

tes: Custom and extended compensated temperature ranges are possible. Contact Honeywell for details. Accuracy is the maximum deviation from the nominal digital output over the compensated flow range at a reference temperature of 25 °C. Errors include offset, span, non-linearity, hysteresis and non-repeatability (see Figure 3 for the Accuracy Error Band vs Flow). Total error band includes all errors over the compensated flow range including all effects due to temperature over the compensated temperature range (see Figure 4 for the Total Error Band). Full Scale Span (FSS) is the algebraic difference between the digital output at the forward Full Scale (FS) flow and the digital output at the reverse FS flow. Forward flow is defined as flow from P1 to P2 as shown in Figure 4. The references to mass flow (SCCM) refer to gas flows at the standard conditions of 0 °C and atmospheric pressure 760 (101.3 kPa). Response time: time to electrically respond to any mass flow change at the microbridge airflow transducer (response time of the transducer may be affected by the pneumatic interface). Start-up time: time to the first valid flow measurement after power is applied. Default calibration media is dry nitrogen gas. Please contact Honeywell for other calibration options. Refer to Honeywell Technical Note for I²C protocol information. Null accuracy is the maximum deviation in output at 0 SCCM from the ideal transfer function over the compensated temperature range. This includes offset errors, thermal airflow hysteresis and repeatability errors. 4

6

9. 10

2 www.honevwell.com/sensing

HAF Series-High Accuracy

Table 3. Environmental Characteristics

Characteristic	Parameter
Humidity	0% to 95% RH, non-condensing
Shock	100 g, 11 ms
Vibration	15 g at 20 Hz to 2000 Hz
ESD	Class 3B per MIL-STD 883G
Radiated immunity	Level 3 from (80 MHz to 1000 MHz) per spec IEC61000-4-3

Table 4. Wetted Materials

Characteristic	Parameter
Covers	high temperature polymer
Substrate	PCB
Adhesives	ероху
Electronic components	silicon, gold
Compliance	RoHS, WEEE

Table 5. Recommended Mounting and Implementation

Characteristic	Parameter
Mounting screw size	5-40
Mounting screw torque	0.68 N m [6 in-lb]
Tubing for long port style	70 durometer, size 0.125 inch inside diameter, 0.250 inch outside diameter silicone tubing
O-ring for short port style	AS568A, Size 7, Silicone, Shore A 70
O-ring for long port style	AS568A, Size 10, Silicone, Shore A 70
Filter recommendation	5-micron filter upstream of the sensor

CAUTION

LARGE PARTICULATE DAMAGE

Use a 5-micron filter upstream of the sensor to keep media flow through the sensor free of condensing moisture and particulates. Large, high-velocity particles or conductive particles may damage the sensing element. Failure to comply with these instructions may result in product damage.

Figure 1. Nomenclature and Order Guide

Honeywell Zephyr™ Digital Airflow Sensors

Figure 3. Accuracy Error Band

Figure 4. Total Error Band

Figure 5. Long Port Style Flow vs Pressure

Figure 6. Short Port Style Flow vs Pressure

Flow (SCCM)	Pressure Drop (inches H₂O)
-200	-0.470
-150	-0.284
-100	-0.143
-50	-0.045
0	0.000
50	0.048
100	0.139
150	0.287
200	0.452

4 www.honeywell.com/sensing

HAF Series-High Accuracy

Figure 8. Mounting Dimensions (For reference only: mm [in]). Additional port and housing styles available.

A WARNING

PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

A WARNING

MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

SALES AND SERVICE

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com

Internet: www.honeywell.com/sensing

Phone and Fax:

Asia Pacific	+65 6355-2828
	+65 6445-3033 Fax
Europe	+44 (0) 1698 481481
	+44 (0) 1698 481676 Fax
Latin America	+1-305-805-8188
	+1-305-883-8257 Fax
USA/Canada	+1-800-537-6945
	+1-815-235-6847
	+1-815-235-6545 Fax

Sensing and Control Honeywell 1985 Douglas Drive North Golden Valley, MN 55422 www.honeywell.com

008178-3-EN IL50 GLO Printed in USA May 2010 © 2010 Honeywell International Inc. All rights reserved.

