

ModuSystems

Product Catalog

Corporate Profile

ABOUT US :

ModuSystems was founded in March 2014 with a goal of creating an easier way to implement everything from simple to complex motion control solutions. Core to ModuSystems Products are Modular Based Controls and Easy to Use Block Based Programming. In order to not limit the controller capabilities, the availability of text based programming was also made available for the advanced user.

In addition to Controls, ModuSystems designs and builds Unique Mechanical Motion Solutions. Heavy emphasis in this area is in designing solutions that solve conventional problems in an unconventional way which adds value for the customer that cannot be attained via existing solutions.

Our management team has over 50 years experience in Electro-Mechanical Engineering and Controls Design as well as Systems Design and Specification.

FOUNDING PRINCIPLE :

ModuSystems was founded on the premise that Motion Control Solutions should be Modular in nature, Flexible in Problem Solving and Accessible to a wide variety of Ability Levels

MODULAR - having parts that can be connected or combined in different ways FLEXIBLE - easily modified to respond to altered circumstances or conditions ACCESSIBLE - easy to approach, use, or understand

CORE STRENGTHS :

Control Systems - Single & Multi-Axis Motion Control and I/O Control Systems Unique Mechanics - Conventional Motion by Unconventional Means

Table of Contents

Controllers4
Snap2Motion [®] Overview5
• MMC-T6
• MMC-3T7
• MAC9
Accessories11
Stepper Motors12
Power Supplies21
• Joysticks22
Custom Solutions23

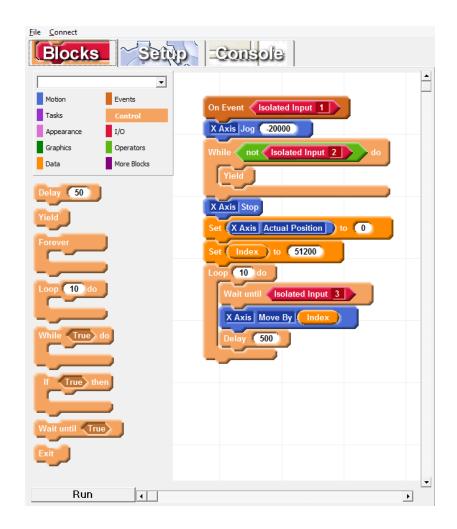
Controllers

ModuSystems Controllers are separated into Modular and Fixed Axis Count Types referred to as MMC and MAC respectively.

MMC Modules come in Single and 3-Axis forms. All Modules can be connected together for instant multi-axis capability. Communication for Programming is done through the left most controller in the system and all connected axes appear as resources within Snap2Motion[®]. As such, any axis can be programmed on its own, but when connected together, the system operates seamlessly as a multi-axis system.

MAC Modules are fixed axis count controllers that can control mixed motor axis types and with many extensibility options available. Axis configuration is in pairs and modules can be connected together via high-speed communication such that complex coordination of over 100 axes is possible.

When to use MMC – when you need to "add an axis" or "add I/O" to an existing system. Additionally, if you have 3-axes or less in your machine, ModuSystems Modular Controllers would be most cost effective.


When to use MAC – when the axis count of the machine is fixed and more than 3 axes. MAC also employs a faster processor capable of more complex kinematic equations and contouring than MMC.

Snap2Motion® Overview

Snap2Motion®

- Intuitive Design
 - Zero to Motion in 60 sec
- Drag Drop Edit
- Rename Axes, I/O, and
 Variables as Desired
- Geometrically Shaped
 Blocks Organize Data
 Types and only Allow
 Proper Construction
- Simple to Complex
 Capabilities
 - Basic Blocks
 - User Defined Blocks and Procedures
 - Fully Text Based Options

Inspired by MIT Media Labs "Scratch" software that was developed to teach the fundamentals and structure of programming

* Once Wired Properly

MMC-T

KEY FEATURES:

- > Integrated Stepper Motor Controller & Driver
- > 12-48Vdc Input, 6A Output
- Microstepping at 256 mSteps/Full Step
- > (6) Programmable Digital I/O
- > (1) 16-bit Analog Inputs
- > Flexible Encoder Inputs (Single, Quad, Serial, etc.)
- > Closed Loop Control of a Stepper
- Separate Logic Power Input
- > Pluggable for Multi-Axis Configuration
- > USB, Ethernet, and Serial Communication

The MMC-T is a Single Axis Modular Stepper Motor Controller with Integrated Amplifiers.

Modular Controllers give users the power of a Multi-Axis Motion Controller with the flexibility to add Axes in a Modular Fashion. A single Axis Controller instantly becomes a multi-axis controller when snapped onto another controller. Due to the nature of the connection, no change of control or programming architecture is needed; the software simply recognizes that it has more available axes and I/O to utilize.

MMC-3T

KEY FEATURES:

- > Integrated 3-Axis Stepper Motor Controller & Driver
- > 12-24Vdc Input, 2A Output (Per Motor)
- Microstepping at 256 mSteps/Full Step
- > (12) Programmable Digital I/O
- > (3) 16-bit Analog Inputs
- Dedicated E-Stop Input
- Encoderless Stall Detect
- Pluggable for Additional Axes
- > Option Slot for Encoder Inputs or Added I/O
- > USB, Ethernet, and Serial Communication

The MMC-3T is a 3-Axis Modular Stepper Motor Controller with Integrated Amplifiers.

Modular Controllers give users the power of a Multi-Axis Motion Controller with the flexibility to add Axes in a Modular Fashion. A single Axis Controller instantly becomes a multi-axis controller when snapped onto another controller. Due to the nature of the connection, no change of control or programming architecture is needed; the software simply recognizes that it has more available axes and I/O to utilize.

MMC Controllers

Controller	Motor Type	Amplifier Included	Motor Power	Encoder Inputs	Inputs/Outputs*
ММС-Т	Stepper	Yes	24-48Vdc, 6A	Yes	6 Digital, 1 Analog
MMC-TC**	Stepper or Digital Servo	No	N/A	Yes	9 Digital, 1 Analog
MMC-V**	Servo	Yes	200W	Yes	6 Digital, 1 Analog
MMC-VC**	Servo	No	N/A	Yes	6 Digital, 1 Analog
MMC-3T	Stepper	Yes	24V, 2A (per channel)	Optional	12 Digital, 3 Analog
MMC-3TC**	Stepper or Digital Servo	No	N/A	Optional	12 Digital, 3 Analog
MMC-IO**	N/A	N/A	N/A	No	16 Digital, 3 Analog

*Inputs are 24Vdc, 1A per channel and can be configured as NPN or PNP, Outputs are 24V, 1A per channel PNP. Analog are 16-bit and Inputs only.

**Coming Soon

MAC

Didue Ittu Didue Par MAC-2-0-2DE-6	A-0-0	Plana de Plana de Plana de Plana de Plana de Plana de
Vower/Culputs/Luputs 1222-011-222222222 1222-122222222222 1222-122222222	Modušų	Alerna Alernation Aler
hipport 1 hipport 2 hipport 2 hipport 3 hipport 3 hipport 3 hipport 1 hipport 1 hippor		Encoder Axis 2

KEY FEATURES:

- Mix & Match Servo & Stepper Axes
- 2-16 Axes Coordinated Control
- Multi-Tasking (64 Concurrent Threads)
- ➤ (18) 24V General Purpose Inputs
- > (8) 24V, 1A Sourcing Outputs
- Dedicated E-Stop Input
- > Dual Encoders up to 8 MHz
- Optional Integrated Amplifiers
- > Option Slot for Additional Axes or I/O

The MAC Fixed Axis Count Multi-Axis Motion and Machine Controllers are ModuSystems' highest performance products. Whether the application is simple point-to-point motion, complex linear or circular interpolation, or even customizable Robot Kinematics; the MAC controllers are up to the task.

MAC Controllers are suited to High Axis Count and Coordination Applications. Utilizing the latest control architecture and proprietary Real Time Operating System (RTOS), ModuSystems is able to achieve update rates that allow even the most complex coordinated motion to be handled with ease.

MAC Part Numbers

		PULSE/DIR CONTROL	ANALOG SERVO			
	FAMILY	 ONLY AXES** 	- CONTROL ONLY	 ENCODER AXES** 	- OPTION SL	DT Example
PART NUMBER	MAC	-	-	- 4E	- 4K	= MAC-4E-4K
		[] = BLANK	[] = BLANK	[] = BLANK	[] = BLANK	
		2TC = Stepper (2-Axes)	2VC = Servo (2-Axes)	2E = Encoder (2-Axes)	1K = Stepper w/ D	rive
		4TC = Stepper (4-Axes)	4VC = Servo (4-Axes)	4E = Encoder (4-Axes)	2K = 2 Steppers w	/ Drives
		6TC = Stepper (6-Axes)	6VC = Servo (6-Axes)*	6E = Encoder (6-Axes)*	3K = 3 Steppers w	/ Drives
		8TC = Stepper (8-Axes)			4K = 4 Steppers w	/ Drives
		10TC = Stepper (10-Axes)*			G8	(8) 16-Bit Analog Inputs
		12TC = Stepper (12-Axes)*			G16	(16) 16-Bit Analog Inputs
		14TC = Stepper (14 Axes)*			A8	(8) 12-Bit Analog Inputs
		16TC = Stepper (16 Axes)*			A16	(16) 12-Bit Analog Inputs
					08	(8) 14-Bit Analog Outputs
					P2	(2) RS232 Ports
					P4	(4) RS232 Ports
					R1	(1) RS485 Port
					F1	(1) Additional Fiber Optic Port
					G12O8	(12) 16-Bit Analog Inputs, (8) 14-Bit Analog Outputs
* = OPTION SLOT IS N	OT AVAILABI	LE FOR THIS CONFIGURATION			G16R2	(16) 16-Bit Analog Inputs, (2) RS485 Ports
					O8R2	(8) 14-Bit Analog Outputs, (2) Rs485 Ports
** = MAX (X)VC+(X)E	< 4 without	using Option Slot			G12O8R2	(12) 16-Bit Analog Inputs, (8) 14-Bit Analog Outputs, (2) RS485 Ports

Accessories

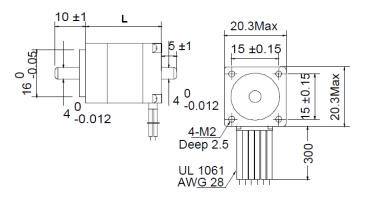
Stepper Motors

Motor P/N	Frame Size	Step Angle (deg)	Rated Current (A/phase)	Holding Torque (oz-in)	Motor Length (in)	Mass (lbs)
N08-1D	NEMA 8	1.8	0.2	2.5	1.1	0.11
N08-2D	NEMA 8	1.8	0.6	2.5	1.2	0.132
N08-3D	NEMA 8	1.8	0.6	2.8	1.3	0.154
N08-4D	NEMA 8	1.8	0.35	4.5	1.78	0.187
N11-1D	NEMA 11	1.8	0.67	8.3	1.26	0.242
N11-2D	NEMA 11	1.8	0.67	13.2	1.56	0.309
N11-3D	NEMA 11	1.8	0.67	16.7	2.03	0.441
N14-1D	NEMA 14	1.8	1.32	6.94	1	0.198
N14-2D	NEMA 14	1.8	0.47	13.88	1.1	0.265
N14-3D	NEMA 14	1.8	0.5	18.04	1.3	0.309
N1509	PANCAKE	0.9	0.35	5.66	0.551	0.128
N17-1D	NEMA 17	1.8	0.91	21.5	1	0.419
N1709-1D	NEMA 17	0.9	0.91	21.5	1	0.419
N17-2D	NEMA 17	1.8	1.33	30	1.3	0.485
N1709-2D	NEMA 17	0.9	1.33	30	1.3	0.485
N17-3D	NEMA 17	1.8	1.68	50	1.5	0.617
N1709-3D	NEMA 17	0.9	1.68	50	1.5	0.617
N17-4D	NEMA 17	1.8	1.68	62	1.85	0.772
N1709-4D	NEMA 17	0.9	1.68	62	1.85	0.772
N1809	PANCAKE	0.9	0.25	6.372	0.512	0.22
N23-1D	NEMA 23	1.8	2.8	75	1.6	0.992
N2309-1D	NEMA 23	0.9	2.8	75	1.6	0.992
N23-2D	NEMA 23	1.8	2.8	140	2	1.433
N2309-2D	NEMA 23	0.9	2.8	140	2	1.433
N23-3D	NEMA 23	1.8	2.8	175	2.2	1.543
N2309-3D	NEMA 23	0.9	2.8	175	2.2	1.543
N23-4D	NEMA 23	1.8	2.8	262	3	2.205
N2309-4D	NEMA 23	0.9	2.8	262	3	2.205
N34-1D	NEMA 34	1.8	4.2	397	2.36	3.748
N34-2D	NEMA 34	1.8	4.2	634	3.07	5.291
N34-3D	NEMA 34	1.8	4.2	1150	4.6	8.818
N34-4D	NEMA 34	1.8	6	1685	6.14	12.125
N42-1D	NEMA 42	1.8	5.9	1388	3.86	11.023
N42-2D	NEMA 42	1.8	5.9	2776	5.75	18.519

Normally Stocked Items

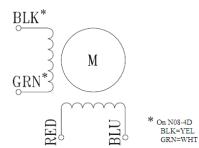
Size 8 Stepper Motors

1.8° Size 08 (20mm) Hybrid Motors


General Specification for Hybrid Step Motors

ltem	Specifications
Step Angle Accuracy	± 5% (full step, no load)
Resistance Accuracy	± 10%
Inductance Accuracy	± 20%
Temperature Rise	80°C Max. (rated current, 2 phase on)
Ambient Temperature	- 10°C ~ +50°C
Insulation Resistance	100 MΩ Min., 500 VDC
Dielectric Strength	500 VAC for one minute
Shaft Radial Play	0.06 Max. (450 g-load)
Shaft Axial Play	0.08 Max. (450 g-load)

Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	Inductance (mh/phase)	Holding Torque (oz-in)	Motor Length (in)	Rotor Inertia (oz-in^2)	Mass (lbs)
N08-1D	1.8	0.2	24	8.02	2.5	1.1	0.015	0.11
N08-2D	1.8	0.6	6.5	1.7	2.5	1.2	0.016	0.132
N08-3D	1.8	0.6	6.5	1.7	2.8	1.3	0.018	0.154
N08-4D	1.8	0.35	16	7	4.5	1.78	0.022	0.187


Stocked Item

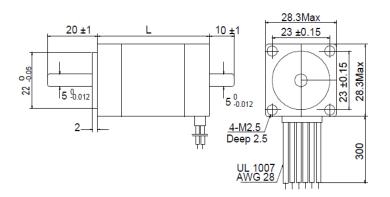
• Motor Dimensions

• Wiring Diagram

4 LEADS

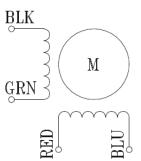
Size 11 Stepper Motors

1.8° Size 11 High Torque Hybrid Motors


General Specification for Hybrid Step Motors

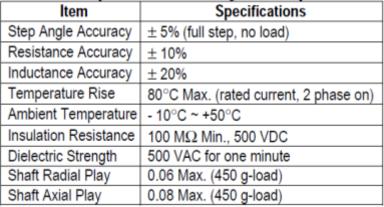
ltem	Specifications					
Step Angle Accuracy	\pm 5% (full step, no load)					
Resistance Accuracy	± 10%					
Inductance Accuracy	± 20%					
Temperature Rise	80°C Max. (rated current, 2 phase on)					
Ambient Temperature	- 10°C ~ +50°C					
Insulation Resistance	100 MΩ Min., 500 VDC					
Dielectric Strength	500 VAC for one minute					
Shaft Radial Play	0.06 Max. (450 g-load)					
Shaft Axial Play	0.08 Max. (450 g-load)					

Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	Inductance (mh/phase)	Holding Torque (oz-in)	Motor Length (in)	Rotor Inertia (oz-in^2)	Mass (lbs)
N11-1D	1.8	0.67	5.6	4.2	8.3	1.26	0.049	0.242
N11-2D	1.8	0.67	6.8	4.9	13.2	1.56	0.066	0.309
N11-3D	1.8	0.67	9.2	5.7	16.7	2.03	0.098	0.441


Stocked Item

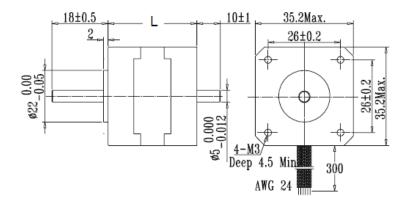
• Dimensions:

• Wiring Diagram:

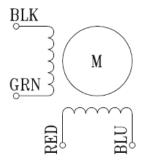


Size 14 Stepper Motors

1.8° Size 14 Hybrid Motors



Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	Inductance (mh/phase)	Holding Torque (oz-in)	Motor Length (in)	Rotor Inertia (oz-in^2)	Mass (lbs)
N14-1D	1.8	1.32	1.75	1.2	6.94	1	0.055	0.198
N14-2D	1.8	0.47	20	19	13.88	1.1	0.066	0.265
N14-3D	1.8	0.5	18.5	26	18.04	1.3	0.077	0.309


Stocked Item

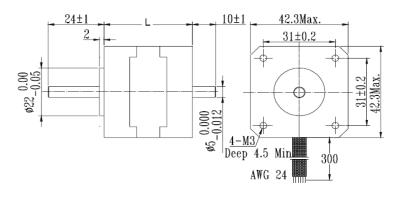
Motor Dimensions

• Wiring Diagram

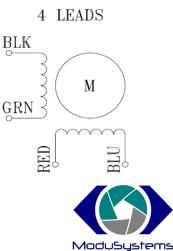
4 LEADS

Size 17 Stepper Motors

1.8° Size 17 High Torque Hybrid Motors


General Specification for Hybrid Step Motors

•	J
ltem	Specifications
Step Angle Accuracy	\pm 5% (full step, no load)
Resistance Accuracy	± 10%
Inductance Accuracy	± 20%
Temperature Rise	80°C Max. (rated current, 2 phase on)
Ambient Temperature	- 10°C ~ +50°C
Insulation Resistance	100 MΩ Min., 500 VDC
Dielectric Strength	500 VAC for one minute
Shaft Radial Play	0.06 Max. (450 g-load)
Shaft Axial Play	0.08 Max. (450 g-load)


Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	Inductance (mh/phase)	Holding Torque (oz-in)	Motor Length (in)	Rotor Inertia (oz-in^2)	Mass (lbs)
N17-1D	1.8	0.91	3.3	8	21.5	1	0.153	0.419
N1709-1D	0.9	0.91	3.3	8	21.5	1	0.153	0.419
N17-2D	1.8	1.33	2.1	2.5	30	1.3	0.191	0.485
N1709-2D	0.9	1.33	2.1	2.5	30	1.3	0.191	0.485
N17-3D	1.8	1.68	1.65	3.2	50	1.5	0.295	0.617
N1709-3D	0.9	1.68	1.65	3.2	50	1.5	0.295	0.617
N17-4D	1.8	1.68	1.65	2.5	62	1.85	0.372	0.772
N1709-4D	0.9	1.68	1.65	2.8	62	1.85	0.372	0.772

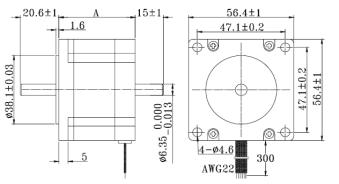
Stocked Item

• Dimensions:

• Wiring Diagram

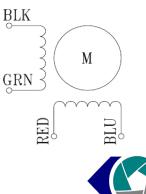
Size 23 Stepper Motors

1.8° Size 23 High Torque Hybrid Motor


• General Specification for Hybrid Step Motors

ltem	Specifications						
Step Angle Accuracy	\pm 5% (full step, no load)						
Resistance Accuracy	± 10%						
Inductance Accuracy	± 20%						
Temperature Rise	80°C Max. (rated current, 2 phase on)						
Ambient Temperature	- 10°C ~ +50°C						
Insulation Resistance	100 MΩ Min., 500 VDC						
Dielectric Strength	500 VAC for one minute						
Shaft Radial Play	0.06 Max. (450 g-load)						
Shaft Axial Play	0.08 Max. (450 g-load)						

Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	(mh/phase) Torque		Motor Length (in)	Rotor Inertia (oz-in^2)	Mass (lbs)
N23-1D	1.8	2.8	0.7	1.4	75	1.6	0.656	0.992
N2309-1D	0.9	2.8	0.7	1.4	75	1.6	0.656	0.992
N23-2D	1.8	2.8	0.83	2.2	140	2	1.503	1.433
N2309-2D	0.9	2.8	0.83	2.2	140	2	1.503	1.433
N23-3D	1.8	2.8	0.9	2.5	175	2.2	1.64	1.543
N2309-3D	0.9	2.8	0.9	2.5	175	2.2	1.64	1.543
N23-4D	1.8	2.8	1.13	3.6	262	3	2.624	2.205
N2309-4D	0.9	2.8	1.13	3.6	262	3	2.624	2.205


Stocked Item

• Dimensions:

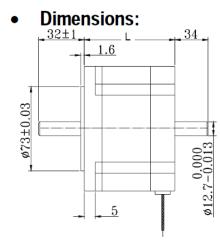
Wiring Diagram

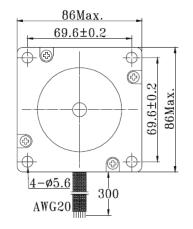
4 LEADS

ModuSystems

Size 34 Stepper Motors

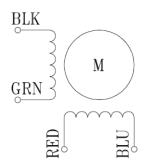
1.8° Size 34 High Torque Hybrid Motors




General Specification for Hybrid Step Motors

ltem	Specifications
Step Angle Accuracy	\pm 5% (full step, no load)
Resistance Accuracy	± 10%
Inductance Accuracy	± 20%
Temperature Rise	80°C Max. (rated current, 2 phase on)
Ambient Temperature	- 10°C ~ +50°C
Insulation Resistance	100 MΩ Min., 500 VDC
Dielectric Strength	500 VAC for one minute
Shaft Radial Play	0.06 Max. (450 g-load)
Shaft Axial Play	0.08 Max. (450 g-load)

Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	Inductance (mh/phase)	Holding Torque (oz-in) Motor Length Rotor Inerti (in) (oz-in^2)		Rotor Inertia (oz-in^2)	Mass (lbs)
N34-1D	1.8	4.2	0.57	3.1	397	2.36	5.467	3.748
N34-2D	1.8	4.2	0.8	13.6	634	3.07	7.654	5.291
N34-3D	1.8	4.2	1.04	12.2	1150	4.6	14.761	8.818
N34-4D	1.8	6	0.75	9.5	1685	6.14	21.868	12.125

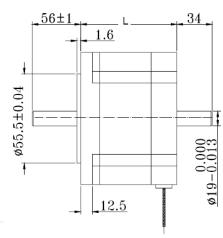

Stocked Item

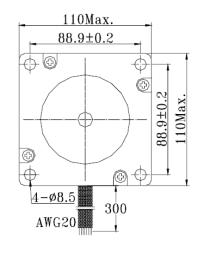
Wiring Diagram

4 LEADS

Size 42 Stepper Motors

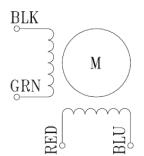
1.8° Size 42 High Torque Hybrid Motors


General Specification for Hybrid Step Motors

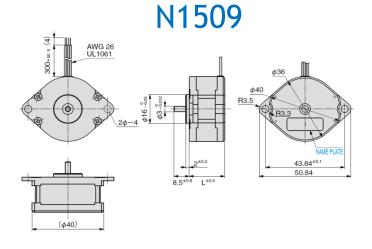

ltem	Specifications
Step Angle Accuracy	\pm 5% (full step, no load)
Resistance Accuracy	± 10%
Inductance Accuracy	± 20%
Temperature Rise	80°C Max. (rated current, 2 phase on)
Ambient Temperature	- 10°C ~ +50°C
Insulation Resistance	100 MΩ Min., 500 VDC
Dielectric Strength	500 VAC for one minute
Shaft Radial Play	0.06 Max. (450 g-load)
Shaft Axial Play	0.08 Max. (450 g-load)

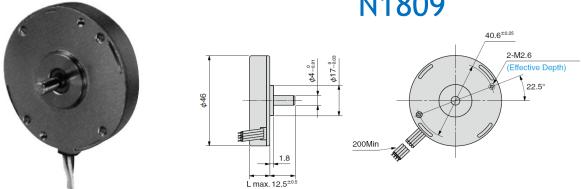
Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	Inductance (mh/phase)	Holding Torque (oz-in)	Motor Length (in)	Rotor Inertia (oz-in^2)	Mass (lbs)
N42-1D	1.8	5.9	0.88	13.2	1388	3.86	30.069	11.023
N42-2D	1.8	5.9	1.35	26.5	2776	5.75	60.137	18.519

Stocked Item


• Dimensions:

• Wiring Diagram


4 LEADS



Specialty Stepper Motors

N1809

Motor P/N	Step Angle (deg)	Rated Current (A/phase)	Winding Resistance (ohm/phase)	Inductance (mh/phase)	Holding Torque (oz-in)	Motor Length (in)	Rotor Inertia (oz-in^2)	Mass (lbs)
N1509	0.9	0.35	17.5	13	5.66	0.551	0.052	0.128
N1809	0.9	0.25	20	16.5	6.372	0.512	0.049	0.22

Stocked Item

Power Supplies

KEY FEATURES:

- Universal AC Input (90-264VAC) \geq
- 24VDC & 48VDC Outputs \geq
- Din Rail Mountable \geq
- Load Regulation = 1% \geq
- Protection: Over Voltage / Over Temp \geq
- Automatic Current Limiting \succ
- Operating Temperature = -20 C to +60 C \succ

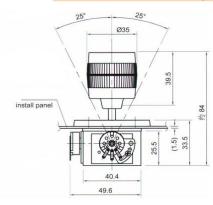
Model Number	Output	Output	Rated	Dimensions		U			- L
WoderNumber	Power	Voltage	Current	L x H x D (mm)	1		[*		0.0.0.0
PS75-24-DIN	75W	24VDC	3.2A	35 x 125.2 x 102	39	6			TB2 +V ADJ. ◯*
PS120-24-DIN	120W	24VDC	5A	40 x 125.2 x 113.5	4	()		DC OK Ŏ
PS120-48-DIN	120W	48VDC	2.5A	40 x 125.2 x 113.5				Н	
PS240-24-DIN	240W	24VDC	10A	125.5 x125.2 x 100	ŕ				
PS240-48-DIN	240W	48VDC	5A	125.5 x125.2 x 100		۵	1		TB1
PS480-24-DIN	480W	24VDC	30A	85.5 x 125.2 x 128.5		0	n h		
PS480-48-DIN	480W	48VDC	15A	85.5 x 125.2 x 128.5	Ŀ	l	Ľŀ	Ţ	
		•	•	•		Side V	ew		Front View

Front View

Joysticks

KEY FEATURES:

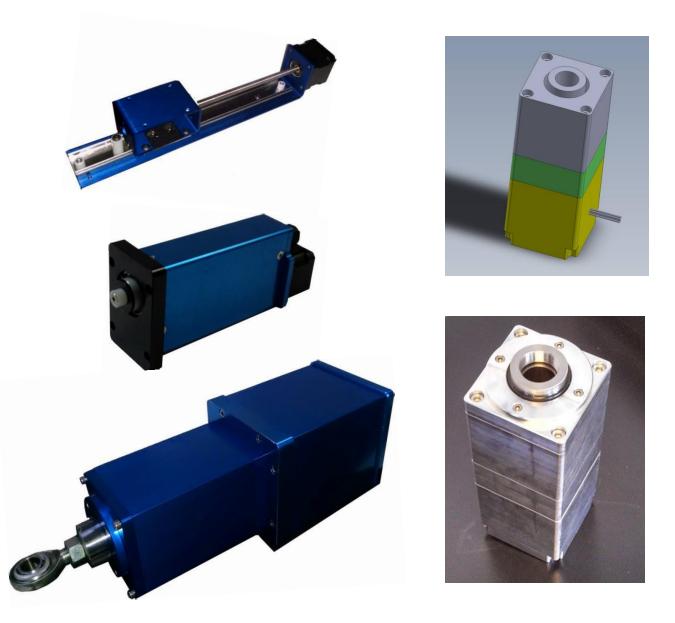
- > 3 Axis Potentiometer Based Joystick
- > 5k ohm Potentiometers for Each Axis
- Automatic Spring Return
- Momentary Push Button (Optional)
- \blacktriangleright Linearity = +/- 1%
- \blacktriangleright Resistance Tolerance = 5%
- Operational Torque Required = 440 gf
- Life Expectancy = 5,000,000 cycles
- Operating Temperature = -10 C to +80 C


This high quality 3 Axis Joystick comes equipped with rubber boot, momentary push-button, and M12 circular connector for quick and flexible connectivity.

The JOY-3B was designed as a desktop joystick fully compatible with all ModuSystems controller products and comes with a removable 2m cable.

Panel Mount versions and alternate cable lengths are available.

Joystick P/N	Description				
JOY-2	2-Axis Desktop Joystick				
PM-JOY-2	Panel Mount 2-Axis Joystick				
JOY-3	3-Axis Desktop Joystick				
PM-JOY-3	Panel Mount 3-Axis Joystick				
JOY-3B	3-Axis Desktop Joystick with				
JO1-3B	Momentary Pushbutton				
PM-JOY-3B	Panel Mount 3-Axis Joystick with Momentary Pushbutton				


Additional Hardware Required for Mounting

Custom Solutions

