DIGITAL PANEL METERS

The Trusted Source for Innovative Control Solutions

225

	Digital Panel Meters				
		VOLT/CURRENT		UNIVERSAL	
	CUB4V / I	CUB5V / I	PAXLV / I	PAXLA	
	- 320	red iğn Gil (2 V Gues	/ <u>558</u> ∨ red lijn	FAR SEL RST red lijn	
Description	Miniature DC Volt/Current Meter	DC Volt/Current Meter with Output Option Card Capability	1/8 DIN, AC or DC Volt/Current Meter	1/8 DIN, DC Volt/Current/Process Meter with Setpoint Card Capability	
Dimensions (Height)x(Width)	39mm (H) x 75mm (W)	39mm (H) x 75mm (W)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	
Display	3 1/2 Digit, .6" (15mm) Reflective, Green and Red Backlight LCD	5 Digit, .48" (12mm) Reflective, Green and Red Backlight LCD	3 1/2 Digit, .56" (14mm) Red LED	5 Digit, .56" (14mm) Red LED	
Input Ranges	Current (CUB4I) 0 to 199.9 µA DC through 199.9 mA DC Voltage (CUB4V) 0 to 199.9 mV DC through 199.9 VDC	Current (CUB5I) 0 to 200 µA DC through 200 mA DC Voltage (CUB5V) 0 to 200 mV DC through 200 VDC	Current (PAXLI) (AC or DC) 0 to 199.9 µA through 1.999 A Voltage(PAXLV) (AC or DC) 0 to 1.999 mV DC through 300 VDC	Current: 0 to 200 µA through 200 mA DC Voltage: 0 to 200 mV through 200 VDC Process: 4 to 20 mA and 0 to 10 VDC	
Zero/Offset	Zero Based	Zero Based	Zero Based	Non Zero Based	
Setpoint Capability*	No	Single Form C Relay Dual Sinking	No	Dual Form C Relays	
Communication Capability	No	RS232 RS485	No	No	
Other Features/ Options	No	User Input Min/Max Memory Custom Units Indicator	Custom Units Overlay	User Input Excitation Custom Units Overlay Min/Max Memory	
Power Source	9 to 28 VDC	9 to 28 VDC	115/230 VAC	50 to 250 VAC 21.6 to 250 VDC	
Page Number	*	Page 233/244	Page 255	Page 273	

	Digital Panel Meters						
	VOLT/C	URRENT	UNIVERSAL				
	PAXLIT	PAXLHV	DP5D	PAXD			
	<u>на по соста</u> Ч <u>Б</u> О А red tign	/25 V red tijn	AT II III AAAAAAAAAAAAAAAAAAAAAAAAAAAAA	DEF FA FA FET RET red ign			
Description	1/8 DIN, 5 amp AC Current Meter	1/8 DIN, AC Voltage Monitor	1/8 DIN, Universal DC Meter	1/8 DIN, Universal DC Meter with Output Option Card Capability			
Dimensions (Height) x (Width)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)			
Display	3 1/2 Digit, .56" (14mm) Red LED	3 Digit, .56" (14mm) Red LED	5 Digit, .56" (14mm) Red LED	5 Digit, .56" (14mm) Standard Green or Sunlight Readable Red LED, Adjustable Intensity			
Input Ranges	0 to 5 A AC	0 to 600 VAC	Current +/-200 µA DC to +/-2 A DC Voltage +/-200 mV DC to +/-300 VDC	Current +/-200 µA DC to +/-2 A DC Voltage +/-200 mV DC to +/-300 VDC Resistance 100 Ohm to 10K Ohm			
Zero/Offset	Zero Based	Zero Based	Non Zero Based	Non Zero Based			
Setpoint Capability*	No	Yes	No	Form C Relay (Dual) Form A Relay (Quad) Solid State Outputs (Quad)			
Communication Capability	No	No	No	RS232 RS485 Modbus DeviceNet Profibus Ethernet w/ICM8			
Other Features/ Options	Custom Units Overlay	Custom Units Overlay	Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Overlay	Analog Output*, Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Overlay			
Power Source	115/230 VAC	115/230 VAC	85 to 250 VAC or 11 to 36 VDC	85 to 250 VAC or 11 to 36 VDC			
Page Number	Page 262	Page 268	Page 283	Page 301			

* Field Installable Option Card

227

	Digital Panel Meters				
	UNIVERSAL	VOLT/CURRENT	PROC	ESS	
	PAX2A	PAXH	CUB4CL / LP	CUB5P	
	1522 (R) 363 1459 12 (R	DER FAR FAR RET rod lign	red Iţin 1085		
Description	1/8 DIN Dual Line Process Signal, DC Voltage, DC Current Meter With Output Option Card Capability	1/8 DIN, AC True RMS Voltage and Current Meter with Output Option Card Capability	Miniature Current Loop and Loop Powered Meters	DC Process meter with Output Option Card Capability	
Dimensions (Height)x(Width)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	39mm (H) x 75mm (W)	39mm (H) x 75mm (W)	
Display	Top Line: 6 Digit, .71" (18mm) Tri-color Backlight Bottom Line: 9 Digit, .35" (9mm) Green Backlight	5 Digit, .56" (14mm) Standard Green or Sunlight Readable Red LED, Adjustable Intensity	3 1/2 Digit, .6" (15mm) Reflective, Green and Red Backlight LCD	5 Digit, .48" (12mm) Reflective, Green and Red Backlight LCD	
Input Ranges	Current +250 μA DC to +2 A DC Voltage +250 mV DC to +200 VDC	Current +200 µA AC to +5 A AC Voltage +200 mV AC to +300 VAC	Current Loop Dual Range 4 to 20 mA DC or 10 to 50 mA DC	0 to 10 VDC 4 to 20 mA DC or 10 to 50 mA DC	
Zero/Offset	Non Zero Based	Non Zero Based	Non Zero Based	Non Zero Based	
Setpoint Capability*	Yes	Yes	No	Single Form C Relay Dual Sinking	
Communication Capability	RS232 or RS485 Modbus DeviceNet Profibus	RS232 RS485 Modbus DeviceNet Profibus Ethernet w/ICM8	No	RS232 RS485	
Other Features/ Options	Analog Output*, Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Display	Analog Output*, Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Overlay	No	User Input Min/Max Memory Custom Units Indicator	
Power Source	50 to 250 VAC 21.6 to 250 VDC	85 to 250 VAC or 11 to 36 VDC	9 to 28 VDC (CUB4CL) Derives Operating Power from Current Loop 3 Volts Max. (CUB4LP)	9 to 28 VDC	
Page Number	Page 332	Page 362	Page 363	Page 367	

	Digital Panel Meters					
		PRO	CESS			
	PAXLCL	PAXLPV	DP5P	ΡΑΧΡ		
	7,4 % F 7,4 % red lijn	Poi poi red lijn	DSP PAR FIA FIX RST red ign	DEP PAR PIA RY RET red ign		
Description	1/8 DIN, Current Loop Meter	1/8 DIN, Process Volt Meter	1/8 DIN, Process Meter	1/8 DIN, Process Meter with Output Option Card Capability		
Dimensions (Height)x(Width)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)		
Display	3 1/2 Digit, .56" (14mm) Red LED	3 1/2 Digit, .56" (14mm) Red LED	5 Digit, .56" (14mm) Red LED	5 Digit, .56" (14mm) Standard Green or Sunlight Readable Red LED, Adjustable Intensity		
Input Ranges	Current Loop Dual Range 4 to 20 mA DC or 10 to 50 mA DC	Process Volt 1 to 5 VDC	Process Current/Voltage 0 to 20 mA DC or 0 to 10 VDC	Process Current/Voltage 0 to 20 mA DC or 0 to 10 VDC		
Zero/Offset	Non Zero Based	Non Zero Based	Non Zero Based	Non Zero Based		
Setpoint Capability*	No	No	No	Form C Relay (Dual) Form A Relay (Quad) Solid State Outputs (Quad)		
Communication Capability	No	No	No	RS232 RS485 Modbus DeviceNet Profibus Ethernet w/ICM8		
Other Features/ Options	Custom Units Overlay, Excitation	Custom Units Overlay, Excitation	Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Overlay	Analog Output*, Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Overlay		
Power Source	85 to 250 VAC	85 to 250 VAC	85 to 250 VAC or 11 to 36 VDC	85 to 250 VAC or 11 to 36 VDC		
Page Number	Page 378	Page 386	Page 394	Page 395		

QUICK	K Specs				
	Digital Panel Meters				
	PROCESS		STRAIN GAGE		
	PAXDP	PAXLSG	PAXS	PAX2S	
	DER FAR FIA FEY RET red ign	250 њ red tijn	USP PAR FOX FEW RST red tign	185709ыя Р51 269351 Ф генір	
Description	1/8 DIN, Dual Input Process Meter with Output Option Card Capability	1/8 DIN, Strain Gage Meter	1/8 DIN, Strain Gage Meter with Output Option Card Capability	1/8 DIN, Dual Line Strain Gage Meter with Output Option Card Capability	
Dimensions (Height) x (Width)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	50mm (H) x 97mm (W)	
Display	5 Digit, .56" (14mm) Sunlight Readable Red LED, Adjustable Intensity	3 1/2 Digit, .56" (14mm) Red LED	5 Digit, .56" (14mm) Standard Green or Sunlight Readable Red LED, Adjustable Intensity	Top Line: 6 Digit, .71" (18mm) Tri-color Backlight Bottom Line: 9 Digit, .35" (9mm) Green Backlight	
Input Ranges	Dual Inputs Process Current/Voltage 0 to 20 mA DC/0 to 10 VDC	Single-ended or Differential Input 0 to 10 mV through 1.999 A	+/- 24 mV DC or +/- 240 mV DC	+/- 24 mV DC or +/- 240 mV DC	
Zero/Offset	Non Zero Based	Non Zero Based	Non Zero Based	Non Zero Based	
Setpoint Capability*	Form C Relay (Dual) Form A Relay (Quad) Solid State Outputs (Quad)	No	Form C Relay (Dual) Form A Relay (Quad) Solid State Outputs (Quad)	Form C Relay (Dual) Form A Relay (Quad) Solid State Outputs (Quad)	
Communication Capability	RS232 RS485 Modbus DeviceNet Profibus Ethernet w/ICM8	No	RS232 RS485 Modbus DeviceNet Profibus Ethernet w/ICM8	RS232 RS485 Modbus DeviceNet Profibus	
Other Features/ Options	Analog Output*, Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Overlay	Custom Units Overlay Excitation,	Analog Output*, Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Overlay	Analog Output*, Tare, Min/Max Memory, Integrator/Totalizer, Linearizer, Excitation, Custom Units Display	
Power Source	85 to 250 VAC or 18 to 36 VDC	115/230 VAC	85 to 250 VAC or 11 to 36 VDC	50 to 250 VAC 21.6 to 250 VDC	
Page Number	Page 396	Page 424	Page 432	Page 462	

REPLACEMENT Guide

Note: Refer to the current product literature, as some differences may exist.

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Ε

This page intentionally left blank.

MODEL CUB5V - MINIATURE ELECTRONIC 5-DIGIT DC VOLTMETER

GENERAL DESCRIPTION

The CUB5 provides the user the ultimate in flexibility, from its complete user programming to the optional setpoint control and communication capability. The CUB5V accepts a DC Voltage input signal and provides a display in the desired unit of measure. The meter also features minimum and maximum display capture, display offset, units indicator, and programmable user input. The display can be toggled either manually or automatically between the selected displays.

The CUB5 display has 0.48" (12.2 mm) high digits. The LCD is available in two versions, reflective and red/green backlight. The backlight version is user selectable for the desired color and also has variable display intensity.

The capability of the CUB5 can be easily expanded with the addition of option cards. Setpoint capability is field installable with the addition of the setpoint output cards. Serial communications capability for RS232 or RS485 is added with a serial option card.

The CUB5 can be powered from an optional Red Lion Micro-Line/Sensor Power Supply (MLPS), which attaches directly to the back of a CUB5. The MLPS is powered from 85 to 250 VAC and provides up to 400 mA to drive the unit and sensors.

VOLTAGE

The CUB5V is the DC Volt meter. It features 4 voltage input ranges, that are selected by the user via a programming jumper and software input range selection. The ranges consist of following: 0 to 200 mV, 2 V, 20 V, 200 V. Users should select the appropriate voltage range that covers their maximum input.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter.

CAUTION: Risk of Danger. Read complete instructions prior to installationand operation of the unit. CAUTION: Risk of electric shock.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.15" (54.6) H x 3.00" (76.2) W.

1-717-767-6511

ORDERING INFORMATION

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
		DC Volt Meter with reflective display	CUB5VR00
COBS	COBSV	DC Volt Meter with backlight display	CUB5VB00
	CUB5RLY	Single Relay Option Card	CUB5RLY0
	CUB5SNK	Dual Sinking Open Collector Output card	CUB5SNK0
Optional Plug-in Cards	CURECOM	RS485 Serial Communications Card	CUB5COM1
	COBSCOM	RS232 Serial Communications Card	CUB5COM2
	CUB5USB	USB Programming Card	CUB5USB0
	MLDS	+12 VDC Micro-Line Power Supply, 85 to 250 VAC source, 400 mA max out	MLPS1000
	IVILP5	+24 VDC Micro-Line Power Supply, 85 to 250 VAC source, 200 mA max out	MLPS2000
Accessories	CBLPRO	Programming Cable RS232 (RJ11-DB9)	CBLPROG0
Accessories	CBPRO	Programming Cable RS485 (RJ11-DB9)	CBPRO007
	SFCRD	Crimson 2 PC Configuration Software for Windows 98, ME, 2000, XP ¹	SFCRD200
	CBLUSB	USB Programming Cable	CBLUSB00

¹ Crimson software is a free download from http://www.redlion.net/

GENERAL METER SPECIFICATIONS

- 1. DISPLAY: 5 digit LCD 0.48" (12.2 mm) high digits
 - CUB5VR00: Reflective LCD with full viewing angle

CUB5VB00: Transmissive LCD with selectable red or green LED backlight, viewing angle optimized. Display color change capability with output state when using an output module.

2. **POWER**: Input voltage range is +9 to +28 VDC with short circuit and input polarity protection.

MODEL NO.	DISPLAY COLOR	INPUT CURRENT @ 9 VDC WITHOUT CUB5RLY0	INPUT CURRENT @ 9 VDC WITH CUB5RLY0
CUB5VR00		10 mA	40 mA
CUB5VB00	Red (max intensity)	85 mA	115 mA
CUB5VB00	Green (max intensity)	95 mA	125 mA

3. INPUT RANGES: Jumper Selectable

4. SIGNAL INPUTS:

INPUT RANGE	ACCURACY @23 °C, less than 85% RH	INPUT IMPEDANCE	MAX INPUT SIGNAL	RESOLUTION	TEMP. COEFFICIENT
200 mVDC	0.1% of span	1.027 M Ω	75 VDC	10 µV	70 ppm / °C
2 VDC	0.1% of span	1.027 M Ω	75 VDC	.1 mV	70 ppm / °C
20 VDC	0.1% of span	1.027 M Ω	250 VDC	1 mV	70 ppm / °C
200 VDC	0.1% of span	$1.027~\mathrm{M}\Omega$	250 VDC	10 mV	70 ppm / °C

- 5. OVERRANGE RATINGS, PROTECTION & INDICATION: 9 to 28 VDC power circuit is not isolated from the signal circuit. Input Overrange Indication: "UU". Input Underrange Indication: "UU". Display Overrange/Underrange Indication: "....."/"-....."
- 6. A/D CONVERTER: 16 bit resolution
- 7. RESPONSE TIME:
- Display: 500 msec min.

Output: 800 msec max (with input filter setting of 0)

- 8. NORMAL MODE REJECTION: 60 dB 50/60 Hz
- USER INPUT (USR): Programmable input. Connect terminal to common (USR COMM) to activate function. Internal 10KΩ pull-up resistor to +9 to 28 VDC.

Threshold Levels: $V_{IL} = 0.7 \text{ V}$ max; $V_{IH} = 2.4 \text{ V}$ min; $V_{MAX} = 28 \text{ VDC}$ **Response Time**: 5 msec typ.; 50 msec debounce (activation and release)

- 10. CONNECTIONS: Wire clamping screw terminalsWire Strip Length: 0.3" (7.5 mm)Wire Gage: 30-14 AWG copper wire
 - Torque: 5 inch-lbs (0.565 N-m) max.
- MEMORY: Nonvolatile E²PROM memory retains all programming parameters and max/min values when power is removed.
- CONSTRUCTION: This unit is rated for NEMA 4X/IP65 requirements for outdoor use. Installation Category I, Pollution Degree 2. High impact plastic case with clear viewing window. Panel gasket and mounting clip included.

13. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range for CUB5VR00: -35 to 75°C Operating Temperature Range for CUB5VB00 depends on display color and intensity level as per below:

	1	
	INTENSITY LEVEL	TEMPERATURE
Red Display	1 & 2	-35 to 75°C
	3	-35 to 70°C
	4	-35 to 60°C
	5	-35 to 50°C
Green Display	1 & 2	-35 to 75°C
	3	-35 to 65°C
	4	-35 to 50°C
	5	-35 to 35°C

Storage Temperature: -35 to 85°C

Operating and Storage Humidity: 0 to 85% max. relative humidity (noncondensing)

Vibration to IEC 68-2-6: Operational 5-500 Hz, 5 g.

Shock to IEC 68-2-27: Operational 30 g

Altitude: Up to 2000 meters

14. CERTIFICATIONS AND COMPLIANCES:

CE Approved

EN 61326-1 Immunity to Industrial Locations

Emission CISPR 11 Class A

- IEC/EN 61010-1
- RoHS Compliant

UL Recognized Component: File #E179259

UL Listed: File #E137808

Type 4X Outdoor Enclosure rating (Face only)

IP65 Enclosure rating (Face only)

IP20 Enclosure rating (Rear of unit)

Refer to EMC Installation Guidelines for additional information.

15. WEIGHT: 3.2 oz (100 g)

www.redlion.net

D.C. Voltages: 200 mV, 2 V, 20 V, 200 V

OPTIONAL PLUG-IN CARDS

ADDING OPTION CARDS

The CUB5 meters can be fitted with optional output cards and/or serial communications cards. The details for the plug-in cards can be reviewed in the specification section below. The plug-in cards, that are sold separately, can be installed initially or at a later date.

Note: Measurement errors may occur if signal input common is shared with another circuit common (ie, serial common, Dual Sinking Output option card, or Power Supply common) on multiple units.

SINGLE RELAY CARD

Type: Single FORM-C relay

Isolation To Sensor & User Input Commons: 1400 Vrms for 1 min. Working Voltage: 150 Vrms

Contact Rating: 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive Life Expectancy: 100,000 minimum operations

DUAL SINKING OUTPUT CARD

Type: Non-isolated switched DC, N Channel open drain MOSFET Current Rating: 100 mA max.

V_{DS ON}: 0.7 V @ 100 mA V_{DS MAX}: 30 VDC Offstate Leakage Current: 0.5 mA max.

RS485 SERIAL COMMUNICATIONS CARD

Type: RS485 multi-point balanced interface (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity Bus Address: 0 to 99; max 32 meters per line Transmit Delay: Selectable (refer to CUB5COM bulletin)

RS232 SERIAL COMMUNICATIONS CARD

Type: RS232 half duplex (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity

USB PROGRAMMING CARD

Type: USB virtual comms port Connection: Type B Baud Rate: 300 to 38.4k Unit Address: 0 to 99

1.0 INSTALLING THE METER

INSTALLATION

The meter meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit.

Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approx. 28 to 36 in-oz [0.202 to 0.26 N-m]). Do not over-tighten the screws.

INSTALLATION ENVIRONMENT

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

2.0 SETTING THE JUMPERS

INPUT RANGE JUMPER

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum input to avoid overloads. To access the jumper, remove the rear cover of the meter.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

1-717-767-6511

3.0 INSTALLING PLUG-IN CARDS

The Plug-in cards are separately purchased option cards that perform specific functions. The cards plug into the main circuit board of the meter

Locking Tab

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

- . The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.

4.1 POWER WIRING

DC Power

CAUTION: The Plug-in cards and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

- c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be ran in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- 4. Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
- 5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC# FCOR0000) TDK # ZCAT3035-1330A Steward # 28B2029-0A0 Line Filters for input power cables: Schaffner # FN610-1/07 (RLC# LFIL0000)

- Schaffner # FN670-1.8/07
- Corcom # 1 VR3

Note: Reference manufacturer's instructions when installing a line filter.

- 6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC# SNUB0000.

4.2 USER INPUT WIRING

Sinking Logic

USR COMM USR Vonect external switching device between the User Input terminal and User Input Common.

PWR COMMON

The user input of the meter is internally pulled up to +9 to +28 V with 10 K resistance. The input is active when it is pulled low (<0.7 V).

+9-28 VDC

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

- a | |

4.3 INPUT WIRING

CAUTION: Power input common is NOT isolated from user and input commons. In order to preserve the safety of the meter application, the power input common must be suitably isolated from hazardous live earth referenced voltage; or input common must be at protective earth ground potential. If not, hazardous voltage may be present at the signal

or user inputs and input common terminals. Appropriate considerations must then be given to the potential of the user and input commons with respect to earth ground; and the common of the plug-in cards with respect to input common.

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

4.4 SETPOINT (OUTPUT) WIRING

4.5 SERIAL COMMUNICATION WIRING

4.6 USB PROGRAMMING

237

5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

ENTERING PROGRAM MODE

BUTTON DISPLAY MODE OPERATION

Resets values (MIN/MAX) or outputs

Index display through enabled values Press and hold for 2 seconds to activate

PROGRAMMING MODE OPERATION

Store selected parameter and index to next parameter Advances through the program menu Increments selected parameter value or selection

OPERATING MODE DISPLAY DESIGNATORS

MAX - Maximum display capture value

SEL

RST

MIN - Minimum display capture value

- "1" To the right of the display indicates setpoint 1 output activated.
- "2" To the right of the display indicates setpoint 2 output activated.

Pressing the **SEL** button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

6.0 PROGRAMMING THE METER

PROGRAMMING MODE ENTRY (SEL BUTTON)

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the **SEL** button. If it is not accessible then it is locked by either a security code, or a hardware lock.

MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between P_{ro} and the present module. The **RST** button is used to select the desired module. The displayed module is entered by pressing the **SEL** button.

MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The **SEL** button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro ND. Programming may continue by accessing additional modules.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The **RST** button is used to move through the selections/values for that parameter. Pressing the **SEL** button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the **RST** button to access the value. The right hand most digit will begin to flash. Pressing the **RST** button again increments the digit by one or the user can hold the **RST** button and the digit will automatically scroll. The **SEL** button will advance to the next digit. Pressing and holding the **SEL** button will enter the value and move to the next parameter.

PROGRAMMING MODE EXIT (SEL BUTTON)

The Programming Mode is exited by pressing the **SEL** button with $Pro \Pi D$ displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

PROGRAMMING TIPS

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter's Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

Indicates Program Mode Alternating Display				
Parameter	USr IN	প্দ		
	₹\$-	ПО	Selection/Value	
Factory Settings are shown.				

www.redlion.net

Ŀ

RANGE RANGE r 806E SELECTION SELECTION Ś RESOLUTION RESOLUTION 0.20 200.00 mV 20.000 V 2000 200 2.0000 V 2000 200.00 V 20

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

Select the decimal point location for the Input, MIN and MAX displays. This selection also affects the d5P1 and d5P2 parameters and setpoint values.

DISPLAY OFFSET VALUE

The display can be corrected with an offset value. This can be used to compensate for signal variations or sensor errors. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the effects of offset.

FILTER SETTING

If the displayed value is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.

PUNG প্ট P 10

FILTER BAND d5P 0 to 199 display units F

exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the filter permanently engaged at the filter level selected above.

РŁА SEYLE ᠬᠷ

РΕЧ If Input Values and corresponding Display Values are known, the Key-in (YEY) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (RPLY) scaling style must be used.

RPL Y

For Key-in (EEY) style, enter the first Input Value using the front panel buttons. (The Input Range selection sets the decimal location for the Input Value).

For Apply (RPLY) style, the meter shows the previously stored Input Value. To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 1 d SP 1 ናከ I9999 to 99999 \$ 0.00

Enter the first Display Value by using the front panel buttons. This is the same

for YEY and RPLY scaling styles. The decimal point follows the dEEPE selection.

INPUT VALUE FOR SCALING POINT 2 IUb 7 ᠬᠴ 0 to 29999 P 100.00

For Key-in (EE) style, enter the known second Input Value using the front panel buttons.

For Apply (RPLY) style, the meter shows the previously stored Input Value for Scaling Point 2. To retain this value, press the **SEL** button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 2

7 ᠬ - 19999 to 99999 10000

Enter the second Display Value by using the front panel buttons. This is the same for EEY and RPLY scaling styles.

General Notes on Scaling

- 1. When using the Apply (RPLY) scaling style, input values for scaling points must be confined to the signal input imits of the selected range.
- 2. The same Input Value should not correspond to more than one Display Value. (Example: 10 V can not equal 0 and 10.)
- For input levels beyond the programmed Input Values, the meter extends the 3 Display Value by calculating the slope from the two coordinate pairs (INP 1 / dSP I & INP2 / dSP2).

1-717-767-6511

USER INPUT FUNCTION

DISPLAY	MODE	DESCRIPTION
ПО	No Function	User Input disabled.
P-Loc	Program Mode Lock-out	See Programming Mode Access chart (Module 3).
2Er 0	Zero Input (Edge triggered)	Zero the Input Display value causing Display Reading to be Offset.
rESEE	Reset (Edge triggered)	Resets the assigned value(s) to the current input value.
q.xrq	Display Hold	Holds the assigned display, but all oth meter functions continue as long as activated (maintained action).
9-2EF	Display Select (Edge Triggered)	Advance once for each activation.
q-ren	Display Intensity Level (Edge Triggered)	Increase intensity one level for each activation (backlight version only).
[OLOr	Backlight Color (Edge Triggered)	Change backlight color with each activation (backlight version only).

£

F

PLAT	MODE	DESCRIPTION
r int	Print Request	Serial transmit of the active parameters selected in the Print Options menu (Module 5).
۰r5Ł	Print and Reset	Same as Print Request followed by a momentary reset of the assigned value(s).
5£ • 1	Setpoint 1 Reset	Resets setpoint 1 output.
56-5	Setpoint 2 Reset	Resets setpoint 2 output.
5E 12	Setpoint 1 and 2 Reset	Reset both setpoint 1 and 2 outputs.

DESCRIPTION

USER INPUT ASSIGNMENT

U-R	5n 🕤	H I	X I · LO
₿	dSP	LD	dSP

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, display hold, or print and reset is selected in the User Input Function menu.

but all other

H1-En ናከ ПΟ 00

Enables the Maximum Display Capture capability.

H1-F প্ম Ε \$ 2.0

\$

MAX CAPTURE DELAY TIME

00 to 9999 seconds

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

ПО	YES

Enables the Minimum Display Capture capability.

LD-F	ৰ্দ্ম
\swarrow	2.0

MIN CAPTURE DELAY TIME

0.0 to 999.9 seconds

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

FACTORY SERVICE OPERATIONS

Select YE5 to perform either of the Factory Service Operations shown below.

Entering Code 50 will display the version (x.x) of the meter. The display then returns to LodE 00. Press the SEL button to exit the module.

Entering Code 66 will overwrite all user settings with

the factory settings. The meter will display rESEE and then

return to LodE 00. Press the SEL button to exit the module.

CALIBRATION

VIEW VERSION DISPLAY

The CUB5V uses stored voltage calibration values to provide accurate voltage measurements. Over time, the electrical characteristics of the components inside the meter will slowly change, with the result that the stored calibration values no longer accurately define the input circuit. For

most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the CUB5V involves an input voltage calibration, which should only be performed by individuals experienced in calibrating electronic equipment. Allow a 30 minute warm up before performing any calibration related procedures. The following procedures should be performed at an ambient temperature of 15 to 35°C (59 to 95°F).

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the CUB5V.

Voltage Calibration

- 1. Connect a precision DC voltage source with an accuracy of 0.01% or better to the INP+ (positive) and COMM (negative) terminals of the CUB5V. Set the output of the voltage source to zero.
- 2. With the display at Lode 48, press and hold the SEL button for 2 seconds. Unit will display [AL ND.
- 3. Press the **RST** button to select the range to be calibrated.
- Press the SEL button. Display reads 0.0.
- 5. With the voltage source set to zero (or a dead short applied to the input), press SEL. Display reads [RL[for about 8 seconds.
- 6. When the display reads the selected range, apply full-scale input signal for the range. (Note: For 200V range, apply 100V as indicated on the display.) Press SEL. Display reads [RL[for about 8 seconds.
- 7. Repeat steps 3 through 6 for each input range to be calibrated. When display reads [RL ND, press the SEL button to exit calibration.

www.redlion.net

MIN DISPLAY ENABLE

6.3 MODULE 3 - DISPLAY AND FRONT PANEL BUTTON PARAMETERS (3-45P)

DISPLAY UPDATE TIME

2

seconds

This parameter sets the display update time in seconds.

DISPLAY COLOR (BACKLIGHT UNIT ONLY)

Enter the desired display color, red or green. This parameter is active for backlight units only.

6r n

FRONT PANEL DISPLAY SELECT ENABLE (SEL)

SEL	. িম		
\clubsuit	YES	YES	no

The \$E5 selection allows the **SEL** button to toggle through the enabled displays.

FRONT PANEL RESET ENABLE (RST)

r 51	<u>:</u>	nD	LO	dSP
\clubsuit	dSP	H i	H I-LU	

This selection allows the **RST** button to reset the selected value(s).

ZERO DISPLAY WITH DISPLAY RESET

28r 0			
₿	ПО	962	ND

This parameter enables the **RST** button or user input to zero the input display value, causing the display reading to be offset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to $d5^{p}$ and the Input value must be displayed. If these conditions are not met, the display will not zero.

DISPLAY SCROLL ENABLE

501	ol	<u></u> ∽ <u></u>		
\mathcal{O}		ПΟ	YE 5	ПО

The $\frac{1}{5}$ selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

This parameter activates the Units Indicator on the display. There are two methods of selecting the Indicator. List will present a group of Units preprogrammed into the meter. Segments allows the user to choose which of the segments should light.

DISPLAY INTENSITY LEVEL (BACKLIGHT UNIT ONLY)

1 to 5

Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed. This parameter is active for backlight units only.

PROGRAMMING SECURITY CODE

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (p-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the LodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the LodE prompt appears (see chart).

USER INPUT FUNCTION	USER INPUT STATE	SECURITY CODE	MODE WHEN "SEL" BUTTON IS PRESSED	FULL PROGRAMMING MODE ACCESS
		0	Full Programming	Immediate Access
not ^p ·Loc		1-99	Quick Programming	After Quick Programming with correct code entry at LodE prompt *
		100-999	[₀dE prompt	With correct code entry at LodE prompt *
	Active	0	Programming Lock	No Access
		1-99	Quick Programming	No Access
,		100-999	EødE prompt	With correct code entry at LodE prompt *
	Not Active	0-999	Full Programming	Immediate Access

* Entering Code 222 allows access regardless of security code.

1-717-767-6511

6.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-5Pt)

The Setpoint Output Parameters are only active when an optional output module is installed in the meter.

Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to 595£L. Repeat steps for each setpoint to be programmed. Select nD to exit the module. The number of setpoints available is setpoint output card dependent.

5P-2

LO-Ub

SETPOINT 2 ENABLE

ПΟ

ᠬᠷ

X I-Ub

Select $\frac{1}{5}$ to enable Setpoint 2 and access the setup parameters. If \mathbb{N} is selected, the unit returns to $\frac{5}{5}$ and setpoint 2 is disabled.

SETPOINT ACTION

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

Н I- ЫL =	High Acting,	with balanced	hysteresis
-----------	--------------	---------------	------------

- LO-bL = Low Acting, with balanced hysteresis
- HI: Ub = High Acting, with unbalanced hysteresis
- LO-Ub = Low Acting, with unbalanced hysteresis

SETPOINT VALUE

· 19999 to 99999

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

HYSTERESIS VALUE

1 to 59999

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

QD to 5999 seconds

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

FOU-u

P

দি

0.0

OFF TIME DELAY

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OUTPUT RESET ACTION

Ruto

LAFLA T-9FA

Enter the reset action of the output. See figure for details.

Indea = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The "on" output may be manually reset (off) immediately by the front panel **RST** button or user input. The output remains off until the trigger point is crossed again.

LRELH = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST**

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

н I-ы со-ы н I-иы

button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

L·dL^y = Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST** button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous L·dL^y reset if it is not activated at power up.)

OUTPUT RESET WITH DISPLAY RESET

This parameter enables the **RST** button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to d5P and the Input value must be displayed. If these conditions are not met, the output will not reset.

When $\frac{1}{5}$, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset Action.

This parameter enables the backlight CUB5 to switch the backlight color when the output state changes. This parameter is only active for the backlight version.

The Serial Setup Parameters are only active when one of the optional serial communication/programming cards is installed in the meter.

Refer to the CUB5COM bulletin for details on CUB5 RS232 or RS485 serial communications.

Refer to the CUB5USB bulletin for details on the CUB5 USB programming and programming requirements.

MODEL CUB5I - MINIATURE ELECTRONIC 5-DIGIT DC CURRENT METER

- FOUR SELECTABLE D.C. RANGES 200 μA, 2 mA, 20 mA, 200 mA
- MINIMUM AND MAXIMUM DISPLAY CAPTURE
- LCD, REFLECTIVE OR RED/GREEN LED BACKLIGHTING
- 0.48" (12.2 mm) HIGH DIGITS
- OPTIONAL SETPOINT OUTPUT CARD
- OPTIONAL SERIAL COMMUNICATIONS CARD (RS232 or RS485)
- OPTIONAL USB PROGRAMMING CARD
- OPERATES FROM 9 TO 28 VDC POWER SOURCE
- FRONT PANEL OR CRIMSON PROGRAMMABLE
- DISPLAY COLOR CHANGE CAPABILITY AT SETPOINT OUTPUT
- NEMA 4X/IP65 SEALED FRONT BEZEL

GENERAL DESCRIPTION

The CUB5 provides the user the ultimate in flexibility, from its complete user programming to the optional setpoint control and communication capability. The CUB51 accepts a DC Current input signal and provides a display in the desired unit of measure. The meter also features minimum and maximum display capture, display offset, units indicator, and programmable user input. The display can be toggled either manually or automatically between the selected displays.

The CUB5 display has 0.48" (12.2 mm) high digits. The LCD is available in two versions, reflective and red/green backlight. The backlight version is user selectable for the desired color and also has variable display intensity.

The capability of the CUB5 can be easily expanded with the addition of option cards. Setpoint capability is field installable with the addition of the setpoint output cards. Serial communications capability for RS232 or RS485 is added with a serial option card.

The CUB5 can be powered from an optional Red Lion Micro-Line/Sensor Power Supply (MLPS), which attaches directly to the back of a CUB5. The MLPS is powered from 85 to 250 VAC and provides up to 400 mA to drive the unit and sensors.

CURRENT

The CUB5I is the DC Current meter. It features 4 current input ranges, that are selected by the user via a programming jumper and software input range selection. The ranges consist of following: 200 μ A, 2 mA, 20 mA, or 200 mA. Users should select the appropriate current range that covers their maximum signal input.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter.

CAUTION: Risk of electric shock.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.15" (54.6) H x 3.00" (76.2) W.

www.redlion.net

ORDERING INFORMATION

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
CLIPE	CLIDEL	DC Current Meter with Reflective Display	CUB5IR00
COBS	COBSI	DC Current Meter with Backlight Display	CUB5IB00
	CUB5RLY	Single Relay Option Card	CUB5RLY0
	CUB5SNK	Dual Sinking Open Collector Output Card	CUB5SNK0
Optional Plug-in Cards	CURSCOM	RS485 Serial Communications Card	CUB5COM1
	COBSCOM	RS232 Serial Communications Card	CUB5COM2
	CUB5USB	USB Programming Card	CUB5USB0
	MLDO	+12 VDC Micro-Line Power Supply, 85 to 250 VAC source, 400 mA max out	MLPS1000
	IVILF5	+24 VDC Micro-Line Power Supply, 85 to 250 VAC source, 200 mA max out	MLPS2000
Accessories	CBLPROG	Programming Cable RS232 (RJ11-DB9)	CBLPROG0
Accessories	CBPRO	Programming Cable RS485 (RJ11-DB9)	CBPRO007
	SFCRD	Crimson PC Configuration Software for Windows 98, ME, 2000, XP ¹	SFCRD200
	CBLUSB	USB Programming Cable	CBLUSB00

¹ Crimson software is a free download from http://www.redlion.net

GENERAL METER SPECIFICATIONS

- 1. **DISPLAY**: 5 digit LCD 0.48" (12.2 mm) high digits
 - CUB5IR00: Reflective LCD with full viewing angle
 - **CUB51B00**: Transmissive LCD with selectable red or green LED backlight, viewing angle optimized. Display color change capability with output state when using an output module.
- POWER: Input voltage range is +9 to +28 VDC with short circuit and input polarity protection. Must use an RLC model MLPS or an NEC Class 2 or Limited Power Source (LPS) rated power supply.

MODEL NO.	DISPLAY COLOR	INPUT CURRENT @ 9 VDC WITHOUT CUB5RLY0	INPUT CURRENT @ 9 VDC WITH CUB5RLY0
CUB5IR00		10 mA	40 mA
CUB5IB00	Red (max intensity)	85 mA	115 mA
CUB5IB00	Green (max intensity)	95 mA	125 mA

- 3. INPUT RANGES: Jumper Selectable
- D.C. Currents: 200 µA, 2 mA, 20 mA, or 200 mA
- 4. SIGNAL INPUTS:

INPUT RANGE	ACCURACY @23 °C, less than 85% RH	INPUT IMPEDANCE	MAX INPUT SIGNAL	RESOLUTION	TEMP. COEFFICIENT
200 µA	0.1% of span	1.111 KΩ	15 mA	10 nA	70 ppm / °C
2 mA	0.1% of span	111 Ω	50 mA	0.1 µA	70 ppm / °C
20 mA	0.1% of span	11 Ω	150 mA	1 µA	70 ppm / °C
200 mA	0.1% of span	1Ω	500 mA	10 µA	70 ppm / °C

- 5. OVERRANGE RATINGS, PROTECTION & INDICATION: 9 to 28 VDC power circuit is not isolated from the signal circuit. Input Overrange Indication: "UU". Display Overrange/Underrange Indication: "......"/"-....." 6. RESPONSE TIME:
- **Display:** 500 msec min.
- **Output:** 800 msec max (with input filter setting of 0)
- 7. NORMAL MODE REJECTION: 60 dB 50/60 Hz
- 8. USER INPUT (USR): Programmable input. Connect terminal to common (USR COMM) to activate function. Internal $10K\Omega$ pull-up resistor to +9 to 28 VDC.
 - **Threshold Levels**: $V_{IL} = 0.7 \text{ V}$ max; $V_{IH} = 2.4 \text{ V}$ min; $V_{MAX} = 28 \text{ VDC}$ **Response Time**: 5 msec typ.; 50 msec debounce (activation and release)
- MEMORY: Nonvolatile E²PROM memory retains all programming parameters and max/min values when power is removed.

10. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range for CUB5IR00: -35 to 75°C **Operating Temperature Range for CUB5IB00 depends on display color and intensity level as per below**:

-	-	
	INTENSITY LEVEL	TEMPERATURE
Red Display	1 & 2	-35 to 75°C
	3	-35 to 70°C
	4	-35 to 60°C
	5	-35 to 50°C
Green Display	1 & 2	-35 to 75°C
	3	-35 to 65°C
	4	-35 to 50°C
	5	-35 to 35°C
~ ~	25 0500	

- Storage Temperature: -35 to 85°C
- **Operating and Storage Humidity**: 0 to 85% max. relative humidity (noncondensing)
- Vibration to IEC 68-2-6: Operational 5-500 Hz, 5 g
- Shock to IEC 68-2-27: Operational 30 g
- Altitude: Up to 2000 meters
- 11. CONNECTIONS: Wire clamping screw terminals
- Wire Strip Length: 0.3" (7.5 mm)
- Wire Gage: 30-14 AWG copper wire
- Torque: 5 inch-lbs (0.565 N-m) max.
- CONSTRUCTION: This unit is rated for NEMA 4X/IP65 requirements for outdoor use. Installation Category I, Pollution Degree 2. High impact plastic case with clear viewing window. Panel gasket and mounting clip included.
- 13. CERTIFICATIONS AND COMPLIANCES:
- **CE Approved**
 - EN 61326-1 Immunity to Industrial Locations
 - Emission CISPR 11 Class A
 - IEC/EN 61010-1
- RoHS Compliant
- UL Recognized Component: File #E179259
- UL Listed: File #E137808
- Type 4X Outdoor Enclosure rating (Face only)
- IP65 Enclosure rating (Face only)
- IP20 Enclosure rating (Rear of unit)
- Refer to EMC Installation Guidelines for additional information.
- 14. WEIGHT: 3.2 oz (100 g)

OPTIONAL PLUG-IN CARDS

ADDING OPTION CARDS

The CUB5 meters can be fitted with optional output cards and/or serial communications cards. The details for the plug-in cards can be reviewed in the specification section below. The plug-in cards, that are sold separately, can be installed initially or at a later date.

WARNING: Disconnect all power to the unit before installing Plug-in card.

Note: Measurement errors may occur if signal input common is shared with another circuit common (ie, serial common, Dual Sinking Output option card, or Power Supply common) on multiple units.

SINGLE RELAY CARD

Type: Single FORM-C relay

Isolation To Sensor & User Input Commons: 1400 Vrms for 1 min. Working Voltage: 150 Vrms

Contact Rating: 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive Life Expectancy: 100,000 minimum operations

DUAL SINKING OUTPUT CARD

Type: Non-isolated switched DC, N Channel open drain MOSFET Current Rating: 100 mA max. V_{DS ON}: 0.7 V @ 100 mA V_{DS MAX}: 30 VDC Offstate Leakage Current: 0.5 mA max.

RS485 SERIAL COMMUNICATIONS CARD

Type: RS485 multi-point balanced interface (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity Bus Address: 0 to 99; max 32 meters per line Transmit Delay: Selectable (refer to CUB5COM bulletin)

RS232 SERIAL COMMUNICATIONS CARD

Type: RS232 half duplex (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity

USB PROGRAMMING CARD

Type: USB virtual comms port Connection: Type B Baud Rate: 300 to 38.4k Unit Address: 0 to 99

1.0 INSTALLING THE METER

INSTALLATION

The meter meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Prepare the panel latch from the

to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The

panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approx. 28 to 36 in-oz [0.202 to 0.26 N-m]). Do not over-tighten the screws.

INSTALLATION ENVIRONMENT

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

- 2 68 +.025	
2.00000 (68 ^{+.8} 0	1.30 +.024 000
	(33 ^{+.6}) 0
	1

2.0 SETTING THE JUMPERS

INPUT RANGE JUMPER

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum signal input to avoid overloads. To access the jumper, remove the rear cover of the meter.

Ε

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

www.redlion.net

3.0 INSTALLING PLUG-IN CARDS

The Plug-in cards are separately purchased option cards that perform specific functions. The cards plug into the main circuit board of the meter

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long

4.1 POWER WIRING

DC Power

CAUTION: The Plug-in cards and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.

- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:

Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)

- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
 - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
 - b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

VisitRLC'swebsiteathttp://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

4.2 USER INPUT WIRING

Sinking Logic

USR COMM Connect external switching device between the USR User Input terminal and User Input Common.

PWR COMMON

The user input of the meter is internally pulled up to +9 to +28 V with 10 K resistance. The input is active when it is pulled low (<0.7 V).

1-717-767-6511

4.3 INPUT WIRING

CAUTION: Power input common is NOT isolated from user and input commons. In order to preserve the safety of the meter application, the power input common must be suitably isolated from hazardous live earth referenced voltage; or input common must be at protective earth ground potential. If not, hazardous voltage may be present at the signal or user inputs and input common terminals. Appropriate considerations must then be given to the potential of the user and input commons with respect to earth ground; and the

common of the plug-in cards with respect to input common. Before connecting signal wires, the Input Range Jumper should be verified for proper position.

Input Signal (self powered)

Series Loop (must use separate supply for sensor power and each CUB5)

4.4 SETPOINT (OUTPUT) WIRING

DUAL SETPOINT N-FET OPEN DRAIN PLUG-IN CARD

4.5 SERIAL COMMUNICATION WIRING

2 Wire With External Power

2 Wire With MLPS Power Supply

2 Wire With Separate Sensor And CUB5 Power

ELECTRICAL CONNECTIONS

ELECTRICAL CONNECTIONS

Output Common is not isolated from DC Power Common. Load must be wired between OSNK terminal and V+ of the load supply.

4.6 USB PROGRAMMING

www.redlion.net

5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

ENTERING PROGRAM MODE

Press and hold for 2 seconds to activate

BUTTON DISPLAY MODE OPERATION

SEL Index display through enabled values

RST Resets values (MIN/MAX) or outputs

PROGRAMMING MODE OPERATION

Store selected parameter and index to next parameter Advances through the program menu Increments selected parameter value or selection

OPERATING MODE DISPLAY DESIGNATORS

MAX - Maximum display capture value

MIN - Minimum display capture value

- "1" To the right of the display indicates setpoint 1 output activated.
- "2" To the right of the display indicates setpoint 2 output activated.

Pressing the **SEL** button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

6.0 PROGRAMMING THE METER

PROGRAMMING MODE ENTRY (SEL BUTTON)

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the **SEL** button. If it is not accessible then it is locked by either a security code, or a hardware lock.

MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between P_{ro} and the present module. The **RST** button is used to select the desired module. The displayed module is entered by pressing the **SEL** button.

MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The **SEL** button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro ND. Programming may continue by accessing additional modules.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The **RST** button is used to move through the selections/values for that parameter. Pressing the **SEL** button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the **RST** button to access the value. The right hand most digit will begin to flash. Pressing the **RST** button again increments the digit by one or the user can hold the **RST** button and the digit will automatically scroll. The **SEL** button will advance to the next digit. Pressing and holding the **SEL** button will enter the value and move to the next parameter.

PROGRAMMING MODE EXIT (SEL BUTTON)

The Programming Mode is exited by pressing the **SEL** button with P_{ro} nD displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

PROGRAMMING TIPS

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter's Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

Indicates Program Mode Alternating Display				
Parameter	USr IN	প্ম		
	₩>	ПО	Selection/Value	
Factory Settings are shown.				

Ε

1-717-767-6511

	CUB5I INPUT RANGE					
r 81	76E	ি	SELECTION	RANGE RESOLUTION	SELECTION	RANGE RESOLUTION
Ø		<u> </u>	8°002	200.00 μA	R50,0	20.000 mA
v		0.06,	L 0.0028	2.0000 mA	0,28	200.00 mA

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

Select the decimal point location for the Input, MIN and MAX displays. This selection also affects the dSP | and dSP2 parameters and setpoint values.

DISPLAY OFFSET VALUE

· 19999 to 19999

The display can be corrected with an offset value. This can be used to compensate for signal variations or sensor errors. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the effects of offset.

FILTER SETTING

If the displayed value is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.

PULA		5
₿		10

FILTER BAND

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the filter permanently engaged at the filter level selected above.

SCALING STYLE

RPLY REA

If Input Values and corresponding Display Values are known, the Key-in (EEY) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (RPLY) scaling style must be used.

INPUT VALUE FOR SCALING POINT 1

প্ট

hEA

SEYLE

0 to 29999

For Key-in (EE) style, enter the first Input Value using the front panel buttons. (The Input Range selection sets the decimal location for the Input Value).

For Apply (RPLY) style, the meter shows the previously stored Input Value. To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the **RST** button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 1

I9999 to 99999

Enter the first Display Value by using the front panel buttons. This is the same for YEY and RPLY scaling styles. The decimal point follows the dEEPt selection.

INPUT VALUE FOR SCALING POINT 2 0 to 29999

IUb দি P 10.000

For Key-in (EEY) style, enter the known second Input Value using the front panel buttons

For Apply (RPLY) style, the meter shows the previously stored Input Value for Scaling Point 2. To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 2

- 19999 to 99999

Enter the second Display Value by using the front panel buttons. This is the same for EEY and RPLY scaling styles.

General Notes on Scaling

- 1. When using the Apply (RPLY) scaling style, input values for scaling points must be confined to the range limits shown.
- 2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA can not equal 0 and 20.)
- 3. For input levels beyond the programmed Input Values, the meter extends the Display Value by calculating the slope from the two coordinate pairs (INP 1 / d5P I & INP2 / d5P2).

www.redlion.net

0 1 2 3

Ε

USER INPUT FUNCTION

DISPLAY	MODE	DESCRIPT
ПО	No Function	User Inpu
P-Loc	Program Mode Lock-out	See Prog (Module 3
25,0	Zero Input (Edge triggered)	Zero the I Display R
rESEE	Reset (Edge triggered)	Resets th current in
q•Xrq	Display Hold	Holds the meter fun activated
9-255	Display Select (Edge Triggered)	Advance
9-750	Display Intensity Level (Edge Triggered)	Increase i activation
FDI D	Backlight Color	Change h

LULU Backlight Color (Edge Triggered) ION it disabled ramming Mode Access chart 3). Input Display value causing leading to be Offset. e assigned value(s) to the put value. assigned display, but all other ctions continue as long as (maintained action). once for each activation.

intensity one level for each (backlight version only). Change backlight color with each activation (backlight version only).

DISPL	.AY	Μ	0	D	Е	
-		_			_	

r in <u>k</u> Print R	Request	Serial transmit of the active parameters selected in the Print Options menu (Module 5).
יר <u>5</u> Ł Printa	nd Reset	Same as Print Request followed by a momentary reset of the assigned value(s)
SE-1 Setpoi	nt 1 Reset	Resets setpoint 1 output.
Setpoi	nt 2 Reset	Resets setpoint 2 output.

DESCRIPTION

r 52 2 Setpoint 1 and 2 Reset Reset both setpoint 1 and 2 outputs.

USER INPUT ASSIGNMENT

ΗI

LD

U-}	75N		প্ম	
\clubsuit		C	ISP	

HI.LO dSP

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, display hold, or print and reset is selected in the User Input Function menu.

MODULE 2 - Secondary Function Parameters (2-582) 6.2

MAX DISPLAY ENABLE

YES

ПΟ

Enables the Maximum Display Capture capability.

MAX CAPTURE DELAY TIME

00 to 9999 seconds

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN DISPLAY ENABLE

00 YES

Enables the Minimum Display Capture capability.

LO-F	ি
\$	2.0

MIN CAPTURE DELAY TIME

00 to 9999 seconds

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

FACTORY SERVICE OPERATIONS

Select YE5 to perform either of the Factory Service Operations shown below.

RESTORE FACTORY DEFAULT SETTINGS

Entering Code 66 will overwrite all user settings with the factory settings. The meter will display rESEL and then return to LodE 00. Press the SEL button to exit the module.

VIEW VERSION DISPLAY

ናከ EodE 50

EodE

ናት

66

Entering Code 50 will display the version (x.x) of the meter. The display then returns to LodE 00. Press the SEL button to exit the module.

CALIBRATION

The CUB5I uses stored current calibration values to provide accurate current measurements. Over time, the electrical characteristics of the components inside the CUB5I will slowly change with the result that the stored

calibration values no longer accurately define the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the CUB5I involves a current calibration which should only be performed by individuals experienced in calibrating electronic equipment. Allow 30 minute warm up before performing any calibration related procedure. The following procedures should be performed at an ambient temperature of 15 to 35 °C (59 to 95 °F).

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the CUB5I.

Current Calibration

- 1. Connect the negative lead of a precision DC current source with an accuracy of 0.01% or better to the COMM terminal. Leave the positive lead of the DC current source unconnected.
- With the display at LodE 48, press and hold the **SEL** button for 2 seconds. Unit will display [AL ND
- 3. Press the **RST** button to select the range to be calibrated.
- 4. Press the SEL button. Display reads 0.0A
- With the positive lead of the DC current source unconnected, press SEL. 5. Display reads [ALC for about 8 seconds.
- 6. When the display reads the selected range, connect the positive lead of the DC current source to INP+ and apply full-scale input signal for the range. (Note: For 200 mA range, apply 100 mA as indicated on the display.)
- 7. Repeat steps 3 through 6 for each input range to be calibrated. When display reads [AL NO, press the SEL button to exit calibration.

1-717-767-6511

MODULE 3 - DISPLAY AND FRONT PANEL BUTTON 6.3 PARAMETERS (3.45P)

DISPLAY UPDATE TIME d5P-F ĥ seconds 0.5 ł 2

This parameter sets the display update time in seconds.

DISPLAY COLOR (BACKLIGHT UNIT ONLY)

rEd 6r n

Enter the desired display color, red or green. This parameter is active for backlight units only.

FRONT PANEL DISPLAY SELECT ENABLE (SEL)

SEL	^		
\$	YES	YES	ND

The YES selection allows the SEL button to toggle through the enabled displays.

LD

HI-LO

dSP

FRONT PANEL RESET ENABLE (RST) r St ᠬᠴ ПΟ HI € dSP

ᠬᠷ

ΠΟ

This selection allows the RST button to reset the selected value(s).

2Er 0

P

ZERO DISPLAY WITH DISPLAY RESET

YES 00

This parameter enables the **RST** button or user input to zero the input display value, causing the display reading to be offset.

Note: For this parameter to operate, the RST button or User Input being used must be set to $d5^{p}$ and the Input value must be displayed. If these conditions are not met, the display will not zero.

DISPLAY SCROLL ENABLE

The YE5 selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

UNITS INDICATOR SELECTION

This parameter activates the Units Indicator on the display. There are two methods of selecting the Indicator. List will present a group of Units preprogrammed into the meter. Segments allows the user to choose which of the segments should light.

DISPLAY INTENSITY LEVEL (BACKLIGHT UNIT ONLY)

1 to 5

Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed. This parameter is active for backlight units only.

PROGRAMMING SECURITY CODE

000 to 999

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (P-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the LodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the LodE prompt appears (see chart).

USER INPUT FUNCTION	USER INPUT STATE	SECURITY CODE	MODE WHEN "SEL" BUTTON IS PRESSED	FULL PROGRAMMING MODE ACCESS
		0	Full Programming	Immediate Access
not ^p -Loc		1-99	Quick Programming	After Quick Programming with correct code entry at LodE prompt *
		100-999	[₀dE prompt	With correct code entry at [odE prompt *
	Active	0	Programming Lock	No Access
Peloc		1-99	Quick Programming	No Access
,		100-999	[₀dE prompt	With correct code entry at LodE prompt *
	Not Active	0-999	Full Programming	Immediate Access

* Entering Code 222 allows access regardless of security code.

www.redlion.net

6.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-5PL)

The Setpoint Output Parameters are only active when an optional output module is installed in the meter.

Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to 595£L. Repeat steps for each setpoint to be programmed. Select nD to exit the module. The number of setpoints available is setpoint output card dependent.

SETPOINT 2 ENABLE

ПΟ

YES

SPSEL

P

প্র

ΠΟ

Select YE5 to enable Setpoint 2 and access the setup parameters. If no is selected, the unit returns to 5P5EL and setpoint 2 is disabled.

SETPOINT ACTION

966.0	শ্দি	X I-6L	LD-6L	X I-Ub	
₽ ₽	- ИЬ				

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

LO-Ub

H I-PT =	High Acting,	with	balanced	hysteresis
----------	--------------	------	----------	------------

- LO-bL = Low Acting, with balanced hysteresis
- HI: Ib = High Acting, with unbalanced hysteresis
- LO-Ub = Low Acting, with unbalanced hysteresis

- 19999 to 99999

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

HYSTERESIS VALUE

1 to 59999

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

00 to 5999 seconds

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OFF TIME DELAY

0.0 to 5999 seconds

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OUTPUT RESET ACTION

Ruto = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The "on" output may be manually reset (off) immediately by the front panel **RST** button or user input. The output remains off until the trigger point is crossed again.

LRLEM = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST**

1-717-767-6511

button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

L·dL^y = Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST** button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous L·dL^y reset if it is not activated at power up.)

This parameter enables the **RST** button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to d5P and the Input value must be displayed. If these conditions are not met, the output will not reset.

STANDBY OPERATION

When $\frac{1}{5}$, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset Action.

CHANGE DISPLAY COLOR w/OUTPUT STATE

[h[•n]h]		প্য	_	
Ø		ПΟ	00	YES

This parameter enables the backlight CUB5 to switch the backlight color when the output state changes. This parameter is only active for the backlight version.

The Serial Setup Parameters are only active when one of the optional serial communications/programming cards is installed in the meter. Refer to the CUB5COM bulletin for details and setup for the CUB5 RS232 or RS485 serial communications. Refer to the CUB5USB bulletin for details on the CUB5 USB programming and programming requirements.

MODEL PAXLI - PAX LITE CURRENT METERS & MODEL PAXLV - PAX LITE VOLTMETERS

- FOUR MULTI-RANGE UNITS COVER: 199.9 μA to 1.999 A*, 199.9 mV (AC or DC)
 1.999 V to 300 V (AC or DC)
- 3 1/2-DIGIT, 0.56" (14.2 mm) HIGH RED LED DISPLAY W/ POLARITY
- BUILT-IN SCALING PROVISIONS
- SELECTABLE DECIMAL POINT LOCATION
- AUTO ZEROING CIRCUITS
- OVER-RANGE INDICATION
- NEMA 4X/IP65 SEALED FRONT BEZEL
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- * Accessory Shunts Available For Higher Current Ranges.

GENERAL DESCRIPTION

PAX Lite Current and Volt Meters are premium quality instruments designed for tough industrial applications. With multi-range capability, built-in provision for scaling, and DIP switch selectable decimal points, these meters offer the ultimate in application flexibility. Four models cover your voltage and current indicator needs. The meter can provide direct readout from pressure, speed or flow transducers, or any other variable that can be translated to voltage or current. The built-in scaling allows the display to be scaled to the desired engineering unit.

The 3 $\frac{1}{2}$ -digit bi-polar display (minus sign displayed when current or voltage is negative) features a 0.56" high, 7-segment LEDs for easy reading. The meter is also available with custom units label capability. Using the PAX label kit (PAXLBK30), the selected label is installed behind the panel, keeping it safe from washdown or other environmental conditions. A DIP switch is used to control the backlight for the units label.

The meters have a NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, allowing the meter to provide a tough yet reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

DEFINITION OF TERMS

- **INSTALLATION CATEGORY** (overvoltage category) **I**, (CAT I): Signal level, special equipment or parts of equipment, telecommunication, electronic, etc. with smaller transient overvoltages than Installation Category (overvoltage category) II. (See IEC 664 & IEC 61010)
- **INSTALLATION CATEGORY** (overvoltage category) **II**, (CAT II): Local level, appliances, portable equipment, etc. with smaller transient overvoltages than Installation Category (overvoltage category) III. (See IEC 664 & IEC 61010)

CAUTION: Risk of Danger. Read complete instructions prior to installation and operation of the unit.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

1-717-767-6511

TABLE OF CONTENTS

Ordering Information	. 2
General Meter Specifications	. 3
Accessories	. 3
Installing the Meter	. 4
Setting the Jumpers and Switches	. 4

Wiring the Meter5	
Scaling the Meter6	
Troubleshooting7	
Calibration7	

ORDERING INFORMATION

Meter Part Numbers

Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
Accessories	PAXLBK	Units Label Kit Accessory	PAXLBK30
	APSCM	10 Amp DC Current Shunt	APSCM010
		100 Amp DC Current Shunt	APSCM100

GENERAL METER SPECIFICATIONS

- 1. DISPLAY: 3 1/2-digit, 0.56" (14.2 mm) high, 7-segment red LED, (-) minus sign displayed when current or voltage is negative. Decimal points inserted before 1st, 2nd, or 3rd least significant digits by DIP switch selection.
- 2. POWER: 115/230 VAC, switch selectable. Allowable power line variation ±10%, 50/60 Hz, 6 VA.

Isolation: 2300 Vrms for 1 min. between input and supply Working Voltage: 300 V max., CAT II

3. INPUT RANGES/RESOLUTION: (Selectable by jumper connections.):

AC Voltmeters	AC Current Meters	DC Voltmeters	DC Current Meters
0-1.999 V/1 mV	0-199.9 μΑ/0.1 μΑ	±1.999 V/1 mV	±199.9 μΑ/0.1 μΑ
0-19.99 V/10 mV	0-1.999 mA/1 μA	±19.99 V/10 mV	±1.999 mA/1 μA
0-199.9 V/100 mV	0-19.99 mA/10 μA	± 199.9 V/100 mV	±19.99 mA/10 µA
0-300 V/1 V	0-199.9 mA/100 µA	±300 V/1 V	±199.9 mA/100 μA
	0-1.999 A/1 mA		±1.999 A/1 mA
	0-199.9 mV/100 µV		±199.9 mV/100 µV

Input Impedance:

Voltage: All ranges1M Ω				
Current: 199.9 µA	1000.1 KΩ			
1.999 mA	100.1 Ω			
19.99 mA	10.1 Ω			
199.9 mA	1.1 Ω			
1.999 A	0.1 Ω			
	Lana CATI			

- Working Voltage: 300 V max., CAT II
- 4. ACCURACY:
 - AC Voltmeters: ±(0.1% of Reading + 3 digits) (45-500 Hz) AC Current Meters (45-500 Hz):
 - 199.9 µA/199.9 mV, 1.999 mA, 19.99 mA: ±(0.1% of Reading + 3 digits) **199.9 mA**: ±(0.15% of Reading + 3 digits)
 - 1 A: $\pm (0.5\% \text{ of Reading} + 3 \text{ digits})$
 - DC Voltmeters: ±(0.1% of Reading + 1 digit)
 - DC Current Meters:
 - 199.9 μA/199.9 mV, 1.999 mA, 19.99 mA: ±(0.1% of Reading + 1 digit) 199.9 mA: ±(0.15% of Reading + 1 digit) 1.999 A: ±(0.5% of Reading + 1 digit)
 - Note: Any individual range may be recalibrated (scaled) to 0.1% accuracy with appropriate calibration equipment.
- 5. OVER-RANGE INDICATION: on all modes is indicated by blanking 3 least significant digits.
- 6. MAX. VOLTAGE ON LOWEST INPUT RANGE: 75 VAC or DC (Both voltmeters and current meters).
- MAX. VOLTAGE ON TERMINAL BLOCK: 300 VAC or DC (Both 7 voltmeters and current meters).
- 8. MAX. CURRENTS (FOR CURRENT METERS):
- 199.9 µA through 19.99 mA: 10 times max. range current 199.9 mA: 1 A
- 1.999 A: 3 A

Caution: In circuits where fault currents can exceed the maximum shunt current, a fast-blow fuse should be installed in series with the input signal. Otherwise, a slow blow 10 amp fuse is recommended that will allow for start-up over current situations, while still protecting the instrument.

9. TEMPERATURE COEFFICIENTS: Voltmeters

Current meters	Voltmeters
DC: ±100 PPM/°C	DC: ±75 PPM/°C
AC: ±200 PPM/°C	AC: ±150 PPM/°

C: ±150 PPM/°C 10. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0° to 60 °C Storage Temperature: -40° to 80 °C

Operating and Storage Humidity: 85% max. relative humidity (noncondensing) Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2g. Shock According to IEC 68-2-27: Operational 30 g, 11 msec in 3 directions. Altitude: Up to 2000 meters

- 11. RESPONSE TIME TO STEP CHANGE INPUT: 1 sec. nominal
- 12. READING RATE: 2.5 readings/sec., nominal
- 13. NORMAL MODE REJECTION: 50 dB 50/60 Hz (DC units only)
- 14. COMMON MODE REJECTION: 110 dB DC or 50/60 Hz (DC units only)
- 15. COMMON MODE VOLTAGE (COMM. TO EARTH): 350 volt peak
- 16. CERTIFICATIONS AND COMPLIANCES:

SAFETY

- UL Recognized Component, File #E179259, UL61010A-1, CSA C22.2 No. 61010-1
 - Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
 - UL Listed, File #E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50
 - IECEE CB Scheme Test Report #04ME11209-20041018
 - Issued by Underwriters Laboratories, Inc.
 - IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.

IP65 Enclosure rating (Face only), IEC 529 **ELECTROMAGNETIC COMPATIBILITY:**

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

Immunity to Industrial Locations:

Electrostatic discharge	EN 61000-4-2	Criterion A 4 kV contact discharge 8 kV air discharge
Electromagnetic RF fields	EN 61000-4-3	Criterion B 10 V/m
Fast transients (burst)	EN 61000-4-4	Criterion B 2 kV power 2 kV signal
Surge	EN 61000-4-5	Criterion A 1 kV L-L, 2 kV L&N-E power
RF conducted interference	EN 61000-4-6	Criterion A 3 V/rms
Voltage dip/interruptions	EN 61000-4-11	Criterion A 0.5 cycle; 40 % variation
Emissions: Emissions	EN 55011	Class B

Notes:

- 1. Criterion A: Normal operation within specified limits.
- 2. Criterion B: Temporary loss of performance from which the unit selfrecovers
- 17. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire Torque: 4.5 inch-lbs (0.51 N-m) max.
- 18. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Panel gasket and mounting clip included
- 19. WEIGHT: 0.65 lbs. (0.24 Kg)

ACCESSORIES

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled by a DIP switch.

EXTERNAL CURRENT SHUNTS (APSCM)

To measure DC current signals greater than 2 ADC, a shunt must be used. The APSCM010 current shunt converts a maximum 10 ADC signal into 100.0 mV. The APSCM100 current shunt converts a maximum 100 ADC signal into 100.0 mV. The continuous current through the shunt is limited to 115% of the rating.

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

SETTING THE JUMPERS AND SWITCHES 2.0

The meter has an input jumper and switches, which must be checked and/or changed prior to applying power. To access the input jumper and switches, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Power Selection Switch

Caution: Insure the AC power selection switch is set for the proper voltage before powering the meter. The meter is shipped from the factory in the 230 VAC position.

Input Range Jumper

A jumper is used for selection of the voltage or current input range. Select the proper input range that will be high enough to avoid input signal overload. It is important that only one jumper position is used at a time. Avoid placing a jumper across two different input ranges.

PAXLI Jumper Selection

A DIP switch is located inside the meter. It is used for the selection of decimal points, backlight annunciator, and scaling. Selecting the "ON" position enables the function

SWITCH	FUNCTION
1	Decimal Point 1 (000.0)
2	Decimal Point 2 (00.00)
3	Decimal Point 3 (0.000)
4	Backlight Annunciator for Units Label
5	Enables the Scaling Pot

258

Ε

PAXLV Jumper Selection

3.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.

4. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000) TDK # ZCAT3035-1330A Steward #28B2029-0A0 Line Filters for input power cables: Schaffner # FN610-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07

Note: Reference manufacturer's instructions when installing a line filter.

- 5. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI.

Snubber: RLC#SNUB0000.

Corcom #1VR3

3.1 POWER WIRING

3.2 INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

4.0 SCALING THE METER

PAXLV

DIRECT VOLTMETER READOUT

When the application requires direct voltmeter readout, the Scale Switch should remain in the "OFF" position. The Input Range Jumper is set to the voltage range being applied. It is possible to select a range higher than being applied to get lower resolution. The Decimal Point switches are set to resolution of the selected Input Range Jumper.

SCALING VOLTMETER READOUT

In many industrial applications, a voltmeter is required to display a reading in terms of PSI, RPM, or some other unit of measure. The signal voltage being measured can be generated by a transducer that senses the variations and delivers a linear output voltage. To provide the desired readout at the specified voltage, the voltmeter must be scaled.

Place the Scale Switch in the "ON" position. This enables the Scale Potentiometer which is accessible from the back of the meter. (Enabling the Scale Potentiometer does NOT affect the calibration of the meter.) Place the Decimal Point Switches to the proper location. To properly set the Input Range Jumper, the Division Factor must be determined by first using the below formula. After the Division Factor is calculated, use the Division Factor Range Selection Chart to choose the proper Input Range Jumper setting. Apply the meter power and the voltage signal. Adjust the Scale Potentiometer to the desired value.

This scaling only effects the span. There is no offset scaling. This means that only zero voltage can display a value of zero.

DIVISION FACTOR FORMULA:

$$\frac{VT \times D.D.P.}{D.R.} = D.F$$

WHERE:

VT	=	Maximum Transducer Output
D.D.P	=	Display Decimal Point
D.F.	=	Division Factor

D.D.P.

0.000	=	1	The Display Decimal Point
00.00	=	10	(D.D.P.) is determined by
0.000	=	100	the desired decimal point
0000	=	1000	placement in the readout.

After the Division Factor for the application has been calculated, the proper voltage range jumper can be selected. Use the "Division Factor Range Selection Chart" to choose the proper jumper setting.

DIVISION FACTOR RANGE SELECTION CHART

D.F.	Use Input Position		
0.1 to 1.2	Pos 1: 0-1.999 VDC		
1.2 to 10.5	Pos 2: 0-19.99		
10.5 to 100.5	Pos 3: 0-199.9		
100.5 to 1300	Pos 4: 0-300		

Note: Only one voltage jumper should be selected. Install the jumper before the voltage signal is applied.

BLOCK DIAGRAM PAXLV

EXAMPLE: A relative humidity transducer delivers a 7.0 VDC voltage at a relative humidity of 75%.

D.F. =
$$\frac{VT \times D.D.P.}{D.R.} = \frac{7.0 \times 1000}{75} = 93.3$$

This Division Factor is between 10.5 and 100.5, therefore jumper position 3 (199.9 V) is selected. The Scaling Potentiometer is then adjusted for the desired readout at a known relative humidity.

www.redlion.net
PAXLI

DIRECT CURRENT METER READOUT

When the application requires direct current meter readout, the Scale Switch should remain in the "OFF" position. The Input Range Jumper is set to the current range being applied. It is possible to select a range higher than being applied to get lower resolution. The Decimal Point switches are set to resolution of the selected Input Range Jumper.

SCALING CURRENT METER READOUT

In many industrial applications, a current meter is required to display a reading in terms of PSI, RPM, or some other unit of measure. The signal voltage being measured can be generated by a transducer that senses the variations and delivers a linear output voltage. To provide the desired readout at the specified current, the current meter must be scaled.

Place the Scale Switch in the "ON" position. This enables the Scale Potentiometer which is accessible from the back of the meter. (Enabling the Scale Potentiometer does NOT affect the calibration of the meter.) Place the Decimal Point Switches to the proper location. The Input Range Jumper is set to the current range being applied. Apply the meter power and the current signal. Adjust the Scale Potentiometer to the desired value. Scaling to obtain a numerical readout higher than the normal value of the current can also be accomplished, in most cases, by selecting a lower current range. However, the maximum current for the range must not be exceeded. (See Specifications for maximum input currents.)

This scaling only effects the span. There is no offset scaling. This means that only zero amps can display a value of zero.

BLOCK DIAGRAM PAXLI

EXAMPLE: The Pax Current Meter has been connected to measure a circuit current to 120.0 mA maximum. However, in this application, the display is to indicate percent of load current with 120.0 mA equivalent to 100.0 percent. The scale potentiometer is adjusted to reduce the normal 120.0 mA signal input display reading of 120.0 to indicate the desired reading of 100.0 on the display. Scaling to obtain a numerical readout higher than the normal value of the current can also be accomplished in most cases by selecting a lower current range. However, the maximum current for the range must not be exceeded. *(See Specifications for maximum input currents.)*

5.0 TROUBLESHOOTING

PROBLEM	REMEDIES
NO DISPLAY	CHECK: Power switch and line voltage
INCORRECT DISPLAY	CHECK: Input jumper position CHECK: Scaling adjustment pot DIP switch position ADJUST: Scaling pot VERIFY: Input Signal
OVER-RANGE INDICATION	CHECK: Input jumper position VERIFY: Input signal

For further assistance, contact technical support at the appropriate company numbers listed.

6.0 CALIBRATION

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed by enabling the scale pot DIP switch. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter.

When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment.

Input Calibration

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better and an external meter with an accuracy of 0.005% or better.

Before starting, verify that the Input Range Jumper is set for the range to be calibrated. Also verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter.

- Then perform the following procedure: 1. Place jumper in 2 V range (PAXLV) or 2 mA range (PAXLI).
- 2. Set the DIP switch off to disable the scaling pot.
- 3. Apply half scale input signal.
- Adjust calibration potentiometer as necessary for the display to read 1000 (ignore decimal point).
- 5. Apply zero signal and ensure display reads zero.
- 6. Apply full scale signal and ensure display reads 1999.
- Note: Any individual range may be recalibrated (scaled) to 0.1% accuracy with appropriate calibration equipment.

1-717-767-6511

MODEL PAXLIT - PAX LITE 5 AMP AC CURRENT METER

- 5 AMP AC CURRENT INPUT*
- 3 1/2-DIGIT, 0.56" (14.2 mm) HIGH LED RED DISPLAY
- SELECTABLE DECIMAL POINT LOCATION
- BUILT-IN SCALING PROVISIONS
- OVER-RANGE INDICATION
- NEMA 4X/IP65 SEALED FRONT BEZEL
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- * Accessory Shunts Available For Higher Current Ranges.

GENERAL DESCRIPTION

PAXLIT 5 Amp AC Current Meter provides the capability of measuring large AC currents. The internal current shunt in the PAXLIT can measure up to 5 Amps AC current directly. Using an external current transformer, AC currents of up to 1,999 Amps can be measured and displayed.

The PAXLIT can be scaled, using the scaling potentiometer, to display between 200 and 1999 when measuring full scale current. Using the DIP switch selectable decimal points, the display can be customized for direct readout for practically any application.

The 3½-digit bi-polar display (minus sign displayed when current is negative) features a 0.56" high, 7-segment LEDs for easy reading. The meter is also available with custom units label capability. Using the PAX label kit (PAXLBK30), the selected label is installed behind the panel, keeping it safe from washdown or other environmental conditions. A DIP switch is used to control the backlight for the units label.

The meters have a NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, allowing the meter to provide a tough yet reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

DEFINITION OF TERMS

- **INSTALLATION CATEGORY** (overvoltage category) **I**, (CAT I): Signal level, special equipment or parts of equipment, telecommunication, electronic, etc. with smaller transient overvoltages than Installation Category (overvoltage category) II. (See IEC 664 & IEC 61010)
- INSTALLATION CATEGORY (overvoltage category) II, (CAT II): Local level, appliances, portable equipment, etc. with smaller transient overvoltages than Installation Category (overvoltage category) III. (See IEC 664 & IEC 61010)

CAUTION: Read complete instructions prior to installation and operation of the unit.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

TABLE OF CONTENTS

Ordering Information	. 2
General Meter Specifications	. 3
Accessories	. 3
Installing the Meter	.4
Setting the Switches	.4

Wiring the Meter5
Scaling the Meter5
Application6
Troubleshooting6
Calibration

ORDERING INFORMATION

Meter Part Numbers

Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
PAXLBK		Units Label Kit Accessory	PAXLBK30
Accessories CT	50:5 Amp Current Transformer	CT005050	
	CI	200:5 Amp Current Transformer	CT020050

263

GENERAL METER SPECIFICATIONS

- 1. DISPLAY: 3 1/2-digit, 0.56" (14.2 mm) high, 7-segment red LED. Decimal points inserted before 1st, 2nd, or 3rd least significant digits by DIP switch selection
- 2. POWER: 115/230 VAC, switch selectable. Allowable power line variation ±10%, 50/60 Hz, 6 VA. Isolation: 2300 Vrms for 1 min. between input and supply

Working Voltage: 300 V max., CAT II

- 3. SIGNAL INPUT: Range: 0 to 5 Amps AC @ 45 to 400 Hz Resolution: 2.5 mA
- Working Voltage: 300 V max., CAT II
- 4. ACCURACY: ±(0.5% of reading + 5 digits).
- 5. OVER-RANGE INDICATION: is indicated by blanking 3 least significant digits
- 6. MAX SHUNT CURRENT: 50 Amps for 1 sec.; 8 Amps continuous.
- Caution: In circuits where fault currents can exceed the maximum shunt current, a fast-blow fuse should be installed in series with the input signal. Otherwise, a slow blow 8 Amp fuse is recommended that will allow for start-up over current situations, while still protecting the instrument.

7. ENVIRONMENTAL CONDITIONS:

- Operating Temperature: 0° to 60 °C Storage Temperature: -40° to 80 °C
- Operating and Storage Humidity: 85% max. relative humidity (noncondensing)
- Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2g's.
- Shock According to IEC 68-2-27: Operational 30g's, 11 msec in 3 directions.
- Altitude: Up to 2000 meters
- 8. RESPONSE TIME TO STEP CHANGE INPUT: 1 sec. nominal
- 9. READING RATE: 2.5 readings/sec., nominal
- 10. CERTIFICATIONS AND COMPLIANCES: SAFETY
 - UL Recognized Component, File # E179259, UL61010A-1, CSA C22.2 No. 61010-1 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
 - UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95
 - LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50
 - IECEE CB Scheme Test Report # 04ME11209-20041018 Issued by Underwriters Laboratories, Inc.
 - IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
 - IP65 Enclosure rating (Face only), IEC 529

ELECTROMAGNETIC COMPATIBILITY

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

Immunity to Industrial Locations:

Electrostatic discharge	EN 61000-4-2	Criterion A
		4 kV contact discharge
		8 kV air discharge
Electromagnetic RF fields	EN 61000-4-3	Criterion B
		10 V/m
Fast transients (burst)	EN 61000-4-4	Criterion B
		2 kV power
		2 kV signal
Surge	EN 61000-4-5	Criterion A
		1 kV L-L,
		2 kV L&N-E power
RF conducted interference	EN 61000-4-6	Criterion A
		3 V/rms
Voltage dip/interruptions	EN 61000-4-11	Criterion A
		0.5 cycle; 40 % variation
Emissions:		-
Emissions	EN 55011	Class B

Notes.

- 1. Criterion A: Normal operation within specified limits.
- 2. Criterion B: Temporary loss of performance from which the unit selfrecovers
- 11. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire Torque: 4.5 inch-lbs (0.51 N-m) max.
- 12. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Panel gasket and mounting clip included.
- 13. WEIGHT: 0.65 lbs. (0.24 Kg)

ACCESSORIES

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled by a DIP switch.

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

2.0 SETTING THE SWITCHES

The meter has switches, which must be checked and/or changed prior to applying power. To access the switch, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Power Selection Switch

Caution: Insure the AC power selection switch is set for the proper voltage before powering the meter. The meter is shipped from the factory in the 230 VAC position.

Set-Up DIP Switches

A DIP switch is located inside the meter. It is used for the selection of decimal points, backlight annunciator, and scaling. Selecting the "ON" position enables the function.

SWITCH	FUNCTION
1	Decimal Point 1 (000.0)
2	Decimal Point 2 (00.00)
3	Decimal Point 3 (0.000)
4	Backlight Annunciator for Units Label
5	Enables the Scaling Pot

3.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations. Listed below are some EMC guidelines for successful installation in an industrial environment.

- The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 3.1 POWER WIRING

AC Power

Terminal 1: VAC Terminal 2: VAC

3.2 INPUT SIGNAL WIRING

Current Signal (self powered) Terminal 4: + Amps AC Terminal 3: - Amps AC

4. In extremely high EMI environments, the use of external EMI suppression

devices, such as ferrite suppression cores, is effective. Install them on Signal

and Control cables as close to the unit as possible. Loop the cable through the

core several times or use multiple cores on each cable for additional protection.

Install line filters on the power input cable to the unit to suppress power line

interference. Install them near the power entry point of the enclosure. The

Note: Reference manufacturer's instructions when installing a line filter.

5. Long cable runs are more susceptible to EMI pickup than short cable runs.

6. Switching of inductive loads produces high EMI. Use of snubbers across

following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables:

Fair-Rite # 0443167251 (RLC #FCOR0000)

Schaffner # FN610-1/07 (RLC #LFIL0000)

Therefore, keep cable runs as short as possible.

TDK # ZCAT3035-1330A

Schaffner # FN670-1.8/07

inductive loads suppresses EMI.

Snubber: RLC#SNUB0000.

Corcom #1VR3

Line Filters for input power cables:

Steward #28B2029-0A0

4.0 SCALING THE METER

FACTORY SCALING

The meter is calibrated from the factory for 5 Amps AC current input to show 1999. This scaling will be used when the Scale Switch is in the "OFF" position.

SCALING READOUT

Place the Scale Switch in the "ON" position. This enables the Scale Potentiometer which is accessible from the back of the meter. (Enabling the Scale Potentiometer does NOT affect the calibration of the meter.) Place the Decimal Point Switches to the proper location. Apply the meter power and the current signal. Adjust the Scale Potentiometer to the desired value.

This scaling only effects the span. There is no offset scaling. This means that only zero current can display a value of zero.

At 5 Amps AC current input, the display can be scaled from 1999 down to 200 by using the scaling potentiometer. For display values below 200, turn on the appropriate Decimal Point Switch and then adjust the potentiometer to achieve the desired display value. Example: A customer wants to display 50 Amps because he is using a 50:5 CT. In this case, he must turn DIP switch 1 on for a decimal point and DIP switch 5 on for scaling. Then apply the 5 Amp signal and turn the scaling pot until 50.0 is shown on the display.

5.0 APPLICATION

MOTOR CURRENT MEASUREMENT USING A CURRENT TRANSFORMER

The PAXLIT 5 Amp AC Current Meter is configured by simply connecting the "COMM." (Terminal 3) and the "5AMP" (Terminal 4) to the external current transformer. The current carrying wire to be sensed is passed through the center of the current transformer. The resolution of the display, in this case, is 0.1 Amp, therefore, "Switch #1" is selected.

The meter is now ready to be scaled. The installer has access to a calibrated portable digital current meter capable of measuring the motor current. Scaling will be accomplished by adjusting the scaling pot on the PAXLIT meter to agree with the portable digital current meter. The operator turns on the AC motor and lifts a large weight to load the motor. The installer then simply adjusts the scaling adjustment, located at the rear of the unit, until the display is equal to the value indicated on the portable current meter. The meter will now indicate the load current of the motor precisely.

CAUTION: It is recommended that the current transformer be internally protected or that a voltage clamping circuit be provided, preventing dangerous high voltage across the CT secondary windings in case of accidental opening of the secondary output leads when the primary is energized.

In order to prevent risk of electric shock ensure CT is installed according to local NEC regulations for installation of current instrument transformers.

6.0 TROUBLESHOOTING

PROBLEM	REMEDIES
NO DISPLAY	CHECK: Power switch and line voltage
INCORRECT DISPLAY	CHECK: Scaling adjustment pot DIP switch position ADJUST: Scaling pot VERIFY: Input Signal
OVER-RANGE INDICATION	VERIFY: Input signal

For further assistance, contact technical support at the appropriate company numbers listed.

7.0 CALIBRATION

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed by enabling the scale pot DIP switch. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter.

When recalibration is required (generally every two years), it should only be performed by qualified technicians using appropriate equipment.

Input Calibration

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.05% or better and an external meter with an accuracy of 0.005% or better.

Before starting, verfiy that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter.

- Then perform the following procedure:
- 1. Set the DIP switch off to disable the scaling pot.
- 2. Apply half scale input signal.
- 3. Adjust calibration potentiometer as necessary for the display to read 1000 (ignore decimal point)
- 4. Apply zero signal and ensure display reads zero.
- 5. Apply full scale signal and ensure display reads 1999.

267

MODEL PAXLHV - PAX LITE AC VOLTAGE MONITOR

- 3-DIGIT, 0.56" (14.2 mm) HIGH RED LED DISPLAY
- AUTO ZEROING CIRCUIT
- NEMA 4X/IP65 SEALED FRONT BEZEL
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- UP TO 600 VAC MAX

GENERAL DESCRIPTION

CAUTION: Read complete

instructions prior to installation and operation of the unit.

The Model PAXLHV is designed for AC voltage monitoring. The half-wave rectified input signal is calibrated to indicate the RMS value of a pure sinusoidal wave-form. The front bezel meets NEMA 4X/IP65 requirements when properly installed.

CAUTION: Risk of electric shock.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

DEFINITION OF TERMS

INSTALLATION CATEGORY (overvoltage category) I: Signal level, special equipment or parts of equipment, telecommunication, electronic, etc. with smaller transient overvoltages than Installation Category (overvoltage category) II.

INSTALLATION CATEGORY (overvoltage category) II:

Local level, appliances, portable equipment, etc. with smaller transient overvoltages than Installation Category (overvoltage category) III.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

TABLE OF CONTENTS

Ordering Information2	Installing the Meter4	ŧ
General Meter Specifications	Setting the Switches4	ŧ
Accessories	Wiring the Meter	5

ORDERING INFORMATION

Meter Part Numbers

Accessories Part Number

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
Accessories	PAXLBK	Units Label Kit Accessory	PAXLBK30

GENERAL METER SPECIFICATIONS

- 1. DISPLAY: 3-digit, 0.56" (14.2 mm) high character, 7-segment Red LED
- POWER: 115 or 230 VAC, switch selectable. Allowable power line variation ±10%, 50/60 Hz, 6 VA. Installation Category II, Pollution Degree 2. Isolation: 2300 Vrms for 1 min. to input
- Working Voltage: 300 V max., CAT II
- 3. ACCURACY: At 23°C, 85% R.H.; ±(0.1% of Reading + 2 digits)
- 4. INPUT IMPEDANCE: $1 M\Omega$
- 5. INPUT RANGE: 0 to 600 VAC max. @ 45 to 500 Hz. Installation Category I
- 6. RESOLUTION: 1 VAC
- 7. ENVIRONMENTAL CONDITIONS:
- **Operating Temperature Range**: 0° to 60°C
- Storage Temperature Range: -40° to 80°C
- **Operating and Storage Humidity**: 85% max. relative humidity (noncondensing)
- **Temperature Coefficient**: ±150 PPM/°C
- Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2 g's.
- Shock According to IEC 68-2-27: Operational 30 g's, 11 msec in 3 directions. Altitude: Up to 2000 meters
- 8. **READING RATE**: 400 msec., nominal
- 9. RESPONSE TIME: 1 sec. nominal for a step change input.
- 10. CERTIFICATIONS AND COMPLIANCES:

SAFETY

- UL Recognized Component, File #E179259, UL61010A-1, CSA C22.2 No. 61010-1 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories Inc.
- UL Listed, File #E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50
- IECEE CB Scheme Test Report #04ME11209-20041018
- Issued by Underwriters Laboratories, Inc.
- IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.IP65 Enclosure rating (Face only), IEC 529

ELECTROMAGNETIC COMPATIBILITY:

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

Immunity to Industrial Locations:

Electrostatic discharge	EN 61000-4-2	Criterion A
		4 kV contact discharge
		8 kV air discharge
Electromagnetic RF fields	EN 61000-4-3	Criterion B
		10 V/m
Fast transients (burst)	EN 61000-4-4	Criterion A
		2 kV power
		2 kV signal
Surge	EN 61000-4-5	Criterion A
-		1 kV L-L,
		2 kV L&N-E power
RF conducted interference	EN 61000-4-6	Criterion A
		3 V/rms
Voltage dip/interruptions	EN 61000-4-11	Criterion A
		0.5 cycle; 40 % variation
Emissions:		-
Emissions	EN 55011	Class B

Notes:

- 1. Criterion A: Normal operation within specified limits.
- 2. Criterion B: Temporary loss of performance from which the unit self-recovers.

 CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm)
 Wire Gage: 30-14 AWG copper wire

Torque: 4.5 inch-lbs (0.51 N-m) max.

- 12. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Panel Gasket and mounting clip included.
- 13. WEIGHT: 0.65 lbs. (0.24 Kg)

ACCESSORIES

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled by a DIP switch.

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

2.0 SETTING THE SWITCHES

The meter has a switch, which must be checked and/or changed prior to applying power. To access the switch, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Power Selection Switch

Caution: Insure the AC power selection switch is set for the proper voltage before powering-up the meter. The meter is shipped from the factory in the 230 VAC position.

Set-Up DIP Switches

s

A DIP switch is located inside the meter. It is used for the selection of decimal points and backlight annunciator. Selecting the "ON" position enables the function.

WITCH	FUNCTION
1	Decimal Point 1 (000.0)
2	Decimal Point 2 (00.00)
3	Decimal Point 3 (0.000)
4	Backlight Annunciator for Units Labe

Ε

3.0 WIRING THE METER

WIRING OVERVIEW

All conductors should meet voltage and current ratings for each terminal. Also, cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the unit be protected by a fuse or circuit breaker. As depicted in the drawing of the Model PAXLHV, all connections are made on the terminal block located at the rear of the unit.

BLOCK DIAGRAM

EMC INSTALLATION GUIDELINES

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Although this meter is designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. Cable length, routing and shield termination are very important and can mean the difference between a successful or a troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, that is properly connected to protective earth.
- 2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield only at the panel where the meter is mounted to earth ground (protective earth).
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.
 - c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.

- 4. Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
- 5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:
 - Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000) TDK # ZCAT3035-1330A Steward #28B2029-0A0 Line Filters for input power cables: Schaffner # FN610-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VB3 Corcom #1VR3

Note: Reference manufacturer's instructions when installing a line filter.

6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.

3.1 POWER WIRING

Primary AC power is connected to terminal 1 and 2 (Marked AC Power, located on the left-hand side of the terminal block). For best results, the AC power should be relatively "Clean" and within the specified ±10% variation limit. Drawing power from heavily loaded circuits or from circuits that also power loads that cycle on and off, should be avoided.

3.2 INPUT SIGNAL WIRING

Input connections are made on terminal 5 and 8. When powering the PAXLHV with the same voltage that is being measured, terminal 5 (COMM.) should be connected to neutral for the most stable reading on the display. If an unstable display results from measuring a voltage that is isolated from the supply voltage, reversing the supply voltage connections may correct this condition.

Voltage Input

Terminal 5: Common Terminal 8: 600 VAC

600V MAX. AC

MODEL PAXLA - PAX LITE DC VOLT/CURRENT/PROCESS METER

For Model No. PAXLA0U0 Only

GENERAL DESCRIPTION

The PAXLA is a versatile meter available as a DC volt, current, or process meter with scaling and dual Form C relay outputs. The meter is programmed through the front panel buttons and the use of jumpers. The RST Key will also function as a front panel display reset.

Once the front panel programming is complete, the buttons can be disabled by a user input setting. The meter has been specifically designed for harsh industrial environments. With a NEMA 4X/IP65 sealed bezel and extensive testing to meet CE requirements, the meter provides a tough yet reliable application solution.

SAFETY SUMMARY

All safety regulations, local codes and instructions that appear in this and corresponding literature, or on equipment, must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBER
	Volt/Current/Process Meter with Dual Relay Output	PAXLA000
PAXLA	UL Listed Volt/Current/Process Meter with Dual Relay Output	PAXLA0U0
PAXLBK	Unit Label Kit Accessory	PAXLBK10

- 5 DIGIT, 0.56" HIGH RED LED DISPLAY
- PROGRAMMABLE SCALING AND DECIMAL POINTS
- PROGRAMMABLE USER INPUT
- DUAL 5 AMP FORM C RELAY
- UNIVERSALLY POWERED
- NEMA 4X/IP65 SEALED FRONT BEZEL
- OPTIONAL CUSTOM UNIT OVERLAY W/ BACKLIGHT
 - MINIMUM AND MAXIMUM DISPLAY CAPTURE

SPECIFICATIONS

1. **DISPLAY**: 5 digit, 0.56" (14.2 mm) intensity adjustable Red LED (-19999 to 99999)

C F

- POWÉR REQUIREMENTS: AC POWER: 50 to 250 VAC 50/60 Hz, 12 VA Isolation: 2300 Vrms for 1 min. to all inputs and outputs
 - DC POWER: 21.6 to 250 VDC, 6 W
 - DC Out: +24 VDC @ 100 mA if input voltage is greater than 50 VAC/VDC +24 VDC @ 50 mA if input voltage is less than 50 VDC

INPUT RANGES: Jumper Selectable D.C. Voltages: 200 mV, 2 V, 20 V, 200 V, 10 V

INPUT RANGE	ACCURACY @ 23 °C LESS THAN 85% RH	INPUT IMPEDANCE	MAX INPUT SIGNAL	RESOLUTION	TEMP. COEFFICIENT
200 mV	0.1% of span	1.033 MΩ	75 VDC	10 μV	70 ppm /°C
2 V	0.1% of span	1.033 MΩ	75 VDC	0.1 mV	70 ppm /°C
20 V	0.1% of span	1.033 MΩ	250 VDC	1 mV	70 ppm /°C
200 V	0.1% of span	1.033 MΩ	250 VDC	10 mV	70 ppm /°C
10 V	0.1% of span	538 KΩ	75 V	1 mV	70 ppm /°C

D.C. Currents: 200 µA, 2 mA, 20 mA, 200 mA

INPUT RANGE	ACCURACY @ 23 °C LESS THAN 85% RH	INPUT IMPEDANCE	MAX INPUT SIGNAL	RESOLUTION	TEMP. COEFFICIENT
200 µA	0.1% of span	1.111 KΩ	15 mA	10 nA	70 ppm /°C
2 mA	0.1% of span	111 Ω	50 mA	0.1 μA	70 ppm /°C
20 mA	0.1% of span	11 Ω	150 mA	1 μΑ	70 ppm /°C
200 mA	0.1% of span	1 Ω	500 mA	10 μA	70 ppm /°C

D.C. Process: 4 to 20 mA, 1 to 5 VDC, 0/1 to 10 VDC

INPUT RANGE	SELECT RANGE
4 - 20 mA	Use the 20 mA range
1 - 5 VDC	Use the 10V range
1 - 10 VDC	Use the 10V range

4. OVERRANGE/UNDERRANGE INDICATION: Input Overrange Indication: "DLDL". Input Underrange Indication: "ULDL". Display Overrange/Underrange Indication: "....."/"-....."

- 5. A/D CONVERTER: 16 bit resolution
- 6. UPDATE RATES:
 - A/D conversion rate: 20 readings/sec. Display update: 500 msec min.

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

7. USER INPUT:
User Input: Software selectable pull-up (24.7 K Ω) or pull-down resistor
(20 K Ω) that determines active high or active low input logic.
Trigger levels: $V_{IL} = 1.0 \text{ V}$ max; $V_{IH} = 2.4 \text{ V}$ min; $V_{MAX} = 28 \text{ VDC}$
Response Time: 5 msec typ.; 100 msec debounce (activation and release)
8. MEMORY : Nonvolatile E ² PROM retains all programming parameters when
power is removed.
9. OUTPUT:
Type: Dual FORM-C relay
Isolation To Sensor & User Input Commons: 1400 Vrms for 1 min.
Working Voltage: 150 Vrms
Contact Rating: 5 amps @ 120/240 VAC or 28 VDC (resistive load), 1/8
H.P. @ 120 VAC (inductive load)
Life Expectancy: 100,000 minimum operations
Response Time:
Turn On Time: 4 msec max.
Turn Off Time: 4 msec max.
10. ENVIRONMENTAL CONDITIONS:
Operating temperature: 0 to 50 °C
Storage temperature: -40 to 70 °C
Operating and storage humidity: 0 to 85% max. RH (non-condensing)
Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z
direction for 1.5 hours, 2g's.
Shock According to IEC 68-2-27: Operational 30 g (10g relay), 11 msec in 3
directions.
Altitude: Up to 2,000 meters
11. CONNECTIONS: High compression cage-clamp terminal block
Wire Strip Length: 0.3" (7.5 mm)
Wire Gage: 30-14 AWG copper wire
Torque: 4.5 inch-lbs (0.51 N-m) max.

 CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/ case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.

13. CERTIFICATIONS AND COMPLIANCES: SAFETY

Type 4X Enclosure rating (Face only), UL50

IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.

IP65 Enclosure rating (Face only), IEC 529

IP20 Enclosure rating (Rear of unit), IEC 529

For Model No. PAXLA0U0 Only: UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95

LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards

ELECTROMAGNETIC COMPATIBILITY

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

Immunity to Industrial Locations:

Electrostatic discharge	EN 61000-4-2	Criterion A
		4 kV contact discharge
		8 kV air discharge
Electromagnetic RF fields	EN 61000-4-3	Criterion A
		10 V/m
Fast transients (burst)	EN 61000-4-4	Criterion B
		2 kV power
		1 kV signal
Surge	EN 61000-4-5	Criterion A
		1 kV L-L,
		2 kV L&N-E power
RF conducted interference	EN 61000-4-6	Criterion A
		3 V/rms
Voltage dip/interruptions	EN 61000-4-11	Criterion A
		0.5 cycle
Emissions:		-
Emissions	EN 55011	Class A

Notes:

1. Criterion A: Normal operation within specified limits.

2. Criterion B: Temporary loss of performance from which the unit selfrecovers.

14. WEIGHT: 10.4 oz. (295 g)

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

2.0 SETTING THE JUMPERS

INPUT RANGE JUMPER

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum signal input to avoid overloads.

To access the jumpers, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start on the other side latch.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

3.0 WIRING THE METER

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be properly connected to protective earth.
- 2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.
 - c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be ran in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
- 5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection.

Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC# FCOR0000) TDK # ZCAT3035-1330A

- Steward # 28B2029-0A0
- Line Filters for input power cables: Schaffner # FN610-1/07 (RLC# LFIL0000) Schaffner # FN670-1.8/07
- Corcom # 1 VR3
- Note: Reference manufacturer's instructions when installing a line filter.
- 6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC# SNUB0000.
 - Shubber. KLC# SNOB0000

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

3.1 POWER WIRING

Terminal 8: User Input Terminal 9: User Comm

ာိ႕ USER ၂၂ USER COM

Sinking Logic

3.3 SETPOINT (OUTPUT) WIRING

Ε

1

3.4 INPUT SIGNAL WIRING

CAUTION: Analog common is NOT isolated from user input common. In order to preserve the safety of the meter application, the Analog and DC power common must be suitably isolated from hazardous live earth referenced voltage; or input common must be at protective earth ground potential. If not, hazardous voltage may be present at the User Input and Input Common terminals. Appropriate considerations must then be given to the potential of the input common with respect to earth ground. Always connect the analog signal common to terminal 7.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

4.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

MAX - Maximum display capture value

MIN - Minimum display capture value

"SP1" - Below the display indicates setpoint 1 output activated. "SP2" - Below the display indicates setpoint 2 output activated.

Pressing the **SEL** button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

5.0 PROGRAMMING THE METER

PROGRAMMING MODE ENTRY (PAR BUTTON)

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing the **PAR** button. If it is not accessible, then it is locked by either a security code or a hardware lock.

MODULE ENTRY (SEL & PAR BUTTONS)

The Programming Menu is organized into four modules. These modules group together parameters that are related in function. The display will alternate between **Pro** and the present module. The **SEL** button is used to select the desired module. The displayed module is entered by pressing the **PAR** button.

MODULE MENU (PAR BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The **PAR** button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to **Pro RO**. Programming may continue by accessing additional modules.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The **SEL** and **RST** buttons are used to move through the selections/values for that parameter. Pressing the **PAR** button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, the value is displayed with one digit flashing (initially the right most digit). Pressing the **RST** button increments the digit by one or the user can hold the **RST** button and the digit will automatically scroll. The **SEL** button will select the next digit to the left. Pressing the **PAR** button will enter the value and move to the next parameter.

PROGRAMMING MODE EXIT (PAR BUTTON)

The Programming Mode is exited by pressing the **PAR** button with $Pra \Pi U$ displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

PROGRAMMING TIPS

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter's Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

Indicates	Program	Mode Alter	nating Display	
Parameter	USr	//		
	\$	ПО	Selection/Value	
Factory Settings are shown.				

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

P

INPUT RANGE RANGE RANGE প্ম r RNGE SELECTION SELECTION RESOLUTION RESOLUTION 200.8 200.00 μA 0,02R 20.000 mA 200. 0,002R 2.0000 mA 0,28 200.00 mA 0,2 .. 200.00 mV 20.. 20.000 V 2.0000 V 2... 200. 200.00 V 10 000 V 10.

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

Select the decimal point location for the Input, MIN and MAX displays. This selection also affects the dSP 1 and dSP2 parameters and setpoint values and offset value ...

0.00

DISPLAY OFFSET VALUE - 19999 to 19999

The display can be corrected with an offset value. This can be used to compensate for signal variations or sensor errors. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the effects of offset. The decimal point follows the dELPE selection.

FILTER SETTING

FILEr প্ম $\overline{\mathbb{A}}$

0 1 2 3

If the displayed value is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.

FILTER BAND

I to 199 display units

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the filter permanently engaged at the filter level selected above.

5 E Y L E 🕤 PEY YEY

If Input Values and corresponding Display Values are known, the Key-in (\mathbf{YEY}) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (RPLY) scaling style must be used.

RPLY

INPUT VALUE FOR SCALING POINT 1

0 to 29999

প্ম INP 1 ዮ 0.00

For Key-in (*PEY*) style, enter the first Input Value using the front panel buttons. (The Input Range selection sets the decimal location for the Input Value).

For Apply (*RPLY*) style, the meter shows the previously stored Input Value. To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 1

- 19999 to 99999

Enter the first Display Value by using the front panel buttons. This is the same for *PEY* and *RPLY* scaling styles. The decimal point follows the *dECPE* selection.

INPUT VALUE FOR SCALING POINT 2

0 to 29999

For Key-in (**FEY**) style, enter the known second Input Value using the front panel buttons

For Apply (*RPL Y*) style, the meter shows the previously stored Input Value for Scaling Point 2. To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 2

- 19999 to 99999

Enter the second Display Value by using the front panel buttons. This is the same for **VEY** and **RPLY** scaling styles. The decimal point follows the **dEEPE** selection.

General Notes on Scaling

- 1. When using the Apply (RPLY) scaling style, input values for scaling points must be confined to the range limits shown.
- 2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA can not equal 0 and 20.)
- 3. For input levels beyond the programmed Input Values, the meter extends the Display Value by calculating the slope from the two coordinate pairs (INP 1 / d5P1& INP2/d5P2).

USER INPUT FUNCTION

DISPLAY	MODE	DESCRIPTION
ПО	No Function	User Input disabled.
P-Loc	Program Mode Lock-out	See Programming Mode Access chart (Module 3).
2Er0	Zero Input (Edge triggered)	Zero the Input Display value causing Display Reading to be Offset.
rESEE	Reset (Edge triggered)	Resets the assigned value(s) to the current input value.
d-HLd	Display Hold	Holds the assigned display, but all other meter functions continue as long as activated (maintained action).
d-5EL	Display Select (Edge Triggered)	Advance once for each activation.
d-lEU	Display Intensity Level (Edge Triggered)	Increase intensity one level for each activation.
r 52 - 1	Setpoint 1 Reset	Resets setpoint 1 output.
r 5£ - 2	Setpoint 2 Reset	Resets setpoint 2 output.
r 5£ 12	Setpoint 1 and 2 Reset	Reset both setpoint 1 and 2 outputs.

USER INPUT ASSIGNMENT

Ľ -	₽5 ₽ ♠	н	H 1-L0
₿	d S P	L 0	dSP

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, or display hold is selected in the User Input Function menu.

USER INPUT ACTIVE LEVEL

U-Rct 1 0 H 1 LO

Select whether the user input is configured as active low or active high.

time helps to avoid false captures of sudden short spikes.

1-717-767-6511

°C (59 to 95 °F).

accuracy of the PAXLA.

recalibration every 1 to 2 years should be sufficient.

Calibration of the PAXLA involves a calibration which should only be performed by individuals experienced in calibrating electronic equipment. Allow 30 minute warm up before performing any calibration related procedure. The following procedures should be performed at an ambient temperature of 15 to 35

CAUTION: The accuracy of the calibration equipment will directly affect the

Ε

Current Calibration

- 1. Connect the negative lead of a precision DC current source with an accuracy of 0.01% or better to the COMM terminal. Leave the positive lead of the DC current source unconnected.
- 2. With the display at **CodE 40**, press the **PAR** button. Unit will display **CAL NO**
- 3. Press the RST button to select the range to be calibrated.
- 4. Press the PAR button. Display reads **D**.
- With the positive lead of the DC current source unconnected, press PAR. Display reads *LRLL* for about 8 seconds.
- 6. When the display reads the selected range, connect the positive lead of the DC

current source to the current input and apply full-scale input signal for the range. (Note: For 200 mA range, apply 100 mA as indicated on the display.) Press **PAR**. Display reads **LRLL** for about 8 seconds.

7. Repeat steps 3 through 6 for each input range to be calibrated. When display reads **CAL AB**, press the **PAR** button to exit calibration.

Voltage Calibration

- 1. Connect a precision DC voltage source with an accuracy of 0.01% or better to the volt input and COMM terminals of the PAXLA. Set the output of the voltage source to zero.
- 2. With the display at **LodE 48**, press the **PAR** button. Unit will display **LRL NO**.
- 3. Press the **RST** button to select the range to be calibrated.
- 4. Press the **PAR** button. Display reads **DD**.
- 5. With the voltage source set to zero (or a dead short applied to the input), press **PAR**. Display reads **LALL** for about 8 seconds.
- 6. When the display reads the selected range, apply full-scale input signal for the range. (Note: For 200V range, apply 100V as indicated on the display.) Press PAR. Display reads *LRLL* for about 8 seconds.
- 7. Repeat steps 3 through 6 for each input range to be calibrated. When display reads **[***Π***L** *Π***D**, press the **PAR** button to exit calibration

5.3 MODULE 3 - DISPLAY AND FRONT PANEL BUTTON PARAMETERS (3-d5P)

Į į

05

This parameter sets the display update time in seconds.

The ${\it YES}$ selection allows the ${\it SEL}$ button to toggle through the enabled displays.

2

seconds

This selection allows the RST button to reset the selected value(s).

ZERO DISPLAY WITH DISPLAY RESET

This parameter enables the **RST** button or user input to zero the input display value, causing the display reading to be offset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to **d5P** and the Input value must be displayed. If these conditions are not met, the display will not zero.

The **JE5** selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

ПП

YE 5

ΠΟ

The Units Label Kit Accessory contains a sheet of custom unit overlays which can be installed in to the meter's bezel display assembly. The backlight for these custom units is activated by this parameter.

DISPLAY INTENSITY LEVEL

to 3

Enter the desired Display Intensity Level (1-3). The display will actively dim or brighten as levels are changed.

Ε

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

PROGRAMMING SECURITY CODE

000 to 999

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (P-Lac) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the **LodE** prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the **LodE** prompt appears (see chart).

USER INPUT FUNCTION	USER INPUT STATE	SECURITY CODE	MODE WHEN "PAR" BUTTON IS PRESSED	FULL PROGRAMMING MODE ACCESS	
			0	Full Programming	Immediate Access
not P-Loc		1-99	Quick Programming	After Quick Programming with correct code entry at LodE prompt *	
		100-999	LødE prompt	With correct code entry at LodE prompt *	
	Active	0	Programming Lock	No Access	
P-Loc		1-99	Quick Programming	No Access	
		100-999	LodE prompt	With correct code entry at LodE prompt *	
	Not Active	0-999	Full Programming	Immediate Access	

* Entering Code 222 allows access regardless of security code.

5.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-5PE) PARAMETER MENU

Enter the setpoint (output) to be programmed. The *n* in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to **5P5EL**. Repeat steps for

ПП

SETPOINT SELECT

5P-1

57-2

SETPOINT ENABLE

SPSEL

YES ПО

each setpoint to be programmed. Select no exit the module.

Select 4E5 to enable Setpoint n and access the setup parameters. If na is selected, the unit returns to 5P5EL and Setpoint n is disabled.

SETPOINT ACTION

Н1-ЫL LO-ЫL Н1-ИЫ LO-ИЫ

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

- HI-bL = High Acting, with balanced hysteresis
- LO-bL = Low Acting, with balanced hysteresis
- HI-Ub = High Acting, with unbalanced hysteresis
- LO-Ub = Low Acting, with unbalanced hysteresis

SETPOINT VALUE

- 19999 to 99999

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

HYSTERESIS VALUE

to 59999

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

281

Ε

0.0 to 599.9 Sec

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OFF TIME DELAY

0.0 to 599.9 Sec

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OUTPUT RESET ACTION

Ruto LREEH

Ruto Enter the reset action of the output. See figure for details.

L-dLY

- R_{uba} = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The "on" output may be manually reset (off) immediately by the front panel RST button or user input. The output remains off until the trigger point is crossed again.
- LRECH = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input manual reset, or meter power cycle. When the user input or RST button is activated (momentary action), the corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)
- $L dL \hat{y}$ = Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input manual reset, or meter power cycle. When the user input or RST button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous L-dLY reset if it is not activated at power up.)

OUTPUT RESET WITH DISPLAY RESET

ПО

YE 5

This parameter enables the RST button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the RST button or User Input being used must be set to **d5P** and the Input value must be displayed. If these conditions are not met, the output will not reset.

When **YE5**, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset Action.

YE 5

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

MODEL DP5 – 1/8 DIN ANALOG INPUT PANEL METERS

- PROCESS, VOLTAGE, CURRENT, AND TEMPERATURE INPUTS
- 5-DIGIT 0.56" HIGH LED DISPLAY
- PROGRAMMABLE FUNCTION KEYS/USER INPUT
- 9 DIGIT TOTALIZER (INTEGRATOR) WITH BATCHING
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- NEMA 4X/IP65 SEALED FRONT BEZEL

GENERAL DESCRIPTION

The DP5 Panel Meters offer many features and performance capabilities to suit a wide range of industrial applications. These meters are available in three different models to handle various analog inputs, including DC Voltage/Current, Process, and Temperature Inputs. Refer to pages 4 and 5 for the details on the specific models.

The meters provide a MAX and MIN reading memory with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events.

The signal totalizer (integrator) can be used to compute a time-input product. This can be used to provide a readout of totalized flow, calculate service intervals of motors or pumps, etc. The totalizer can also accumulate batch weighing operations.

Once the meters have been initially configured, the parameter list may be locked out from further modification.

The meters have been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, the meter provides a tough yet reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

CAUTION: Risk of Danger. Read complete instructions prior to installation and operation of the unit.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

TABLE OF CONTENTS

Ordering Information	. 2
General Meter Specifications	. 3
Universal DC Input Panel Meter	. 4
Process Input Panel Meter	. 4
Thermocouple and RTD Input Meter	. 5
Accessories	. 5
Installing the Meter	. 6

Setting the Jumpers6
Wiring the Meter7
Reviewing the Front Buttons and Display9
Programming the Meter
Factory Service Operations17
Parameter Value Chart
Programming Overview

ORDERING INFORMATION

Meter Part Numbers

Accessories Part Number

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
Accessories	PAXLBK	Units Label Kit Accessory (Not required for DP5T)	PAXLBK10

GENERAL METER SPECIFICATIONS

1. DISPLAY : 5 digit, 0.56" (14.2 mm) red LED, (-19999 to 99999)
2. POWER:
AC Versions:
AC Power: 85 to 250 VAC, 50/60 HZ, 10 VA
Isolation: 2300 Vrms for 1 min. to all inputs.
DC versions:
DC Power: 11 to 36 VDC, 11 W
AC Power: 24 VAC, $\pm 10\%$, 50/60 Hz, 10 VA
Isolation: 500 vrms for 1 min. to all inputs (50 v working).
3. ANNUNCIATORS:
MAX - maximum readout selected
MIN - minimum readout selected
101 - totalizer readout selected, flashes when total overflows
Units Laber - optional units laber backlight
4. KEYPAD : 5 programmable function keys, 5 keys total
5. A/D CONVERTER: 10 DIL RESOLUTION 6. LIDDATE DATES:
0. UPDATE KATES.
A/D conversion rate. To reduings/sec.
(digital filter and internal zero correction disabled)
(digital filter disabled internal zero correction anabled)
Display update rate: 1 to 10 updates/see
Max /Min_capture delay time: 0 to 3275 sec
7 DISPLAV MESSACES:
"OLOL" Annears when measurement exceeds + signal range
"III III." - Appears when measurement exceeds - signal range
DPST: "OPEN" - Appears when open sensor is detected
DP5T: "SHrt" - Appears when shorted sensor is detected (<i>RTD only</i>)
" - Appears when display values exceed + display range
"- " - Appears when display values exceed - display range
8 INPUT CAPABILITIES: See specific product specifications pages 4-5
9 EXCITATION POWER: See specific product specifications, pages 4-5
10 LOW FREQUENCY NOISE REJECTION
Normal Mode: $\geq 60 \text{ dB} @ 50 \text{ or } 60 \text{ Hz} \pm 1\%$ digital filter off
Common Mode: >100 dB, DC to 120 Hz
11. USER INPUT: One software defined user input
Max. Continuous Input: 30 VDC
Isolation To Sensor Input Common: Not isolated. Do not tie commons together.
Response Time : 50 msec. max.
Logic State: Jumper selectable for sink/source logic

INPUT STATE	SINKING INPUTS 22 K Ω pull-up to +5 V	SOURCING INPUTS 22 KΩ pull-down
Active	$V_{IN} < 0.9 VDC$	V _{IN} > 3.6 VDC
Inactive	V _{IN} > 3.6 VDC	V _{IN} < 0.9 VDC

12. TOTALIZER:

Time Base: second, minute, hour, or day Time Accuracy: 0.01% typical Decimal Point: 0 to 0.0000 Scale Factor: 0.001 to 65.000 Low Signal Cut-out: -19,999 to 99,999

Total: 9 digits, display alternates between high order and low order readouts 13. MEMORY: Nonvolatile E²PROM retains all programmable parameters and display values.

14. ENVIRONMENTAL CO	ONDITIONS:
----------------------	------------

14. ENVIRONMENTAL CONDITIONS:
Operating Temperature Range: 0 to 50°C
Storage Temperature Range: -40 to 60°C
Operating and Storage Humidity: 0 to 85% max. RH non-condensing
Altitude: Up to 2000 meters
15. CERTIFICATIONS AND COMPLIANCES:
SAFETY
UL Recognized Component, File #E179259, UL61010-1, CSA C22.2
No. 61010-1
DP5T Only: File # E156876, UL873, CSA C22.2 No. 24
Recognized to U.S. and Canadian requirements under the Component
Recognition Program of Underwriters Laboratories, Inc.
UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95
LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards
Type 4X Enclosure rating (Face only), UL50
IECEE CB Scheme Test Certificate #US/8843A/UL
CB Scheme Test Report #04ME11209-20041018
Issued by Underwriters Laboratories, Inc.
IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment

- for measurement, control, and laboratory use, Part I
- IP65 Enclosure rating (Face only), IEC 529
- IP20 Enclosure rating (Rear of unit), IEC 529 ELECTROMAGNETIC COMPATIBILITY

Immunity to EN 50082-2

Electrostatic discharge	EN 61000 4 2	Level 2: 4 Ky contact
Electrostatic discharge	EN 01000-4-2	Level 2, 4 KV contact
		Level 3; 8 Kv air
Electromagnetic RF fields	EN 61000-4-3	Level 3; 10 V/m ⁻¹
		80 MHz - 1 GHz
Fast transients (burst)	EN 61000-4-4	Level 4; 2 Kv I/O
		Level 3; 2 Kv power
RF conducted interference	EN 61000-4-6	Level 3; 10 V/rms
		150 KHz - 80 MHz
Simulation of cordless telephones	ENV 50204	Level 3; 10 V/m
		900 MHz ±5 MHz
		200 Hz, 50% duty cycle
Emissions to EN 50081-2		
DE interformes	EN 55011	Englagura alaga A

RF interference EN 55011 Enclosure class A Power mains class A

Notes:

1. Self-recoverable loss of performance during EMI disturbance at 10 V/m: Measurement input signal may deviate during EMI disturbance. For operation without loss of performance:

Unit is mounted in a metal enclosure (Buckeye SM7013-0 or equivalent) I/O and power cables are routed in metal conduit connected to earth ground.

- Refer to EMC Installation Guidelines section of the bulletin for additional information.
- 16. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire Torque: 4.5 inch-lbs (0.51 N-m) max.
- 17. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.
- 18. WEIGHT: 7 oz. (200 g)

Ε

1-717-767-6511

MODEL DP5D - UNIVERSAL DC INPUT

- FOUR VOLTAGE RANGES (300 VDC Max)
- FIVE CURRENT RANGES (2A DC Max)
- 24 VDC TRANSMITTER POWER

DP5D SPECIFICATIONS

INPUT RANGES:

INPUT RANGE	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	IMPEDANCE/ COMPLIANCE	MAX CONTINUOUS OVERLOAD	RESOLUTION
$\pm 200 \ \mu \text{ADC}$	0.03% of reading +0.03 μA	0.12% of reading +0.04µA	1.11 Kohm	15 mA	10 nA
±2 mADC	0.03% of reading +0.3 μA	0.12% of reading +0.4 μA	111 ohm	50 mA	0.1 μA
±20 mADC	0.03% of reading +3µA	0.12% of reading +4 μA	11.1 ohm	150 mA	1 μΑ
±200 mADC	0.05% of reading +30 μA	0.15% of reading +40 μA	1.1 ohm	500 mA	10 μA
±2 ADC	0.5% of reading +0.3 mA	0.7% of reading +0.4 mA	0.1 ohm	3 A	0.1 mA
±200 mVDC	0.03% of reading +30 μV	0.12% of reading +40 μV	1.066 Mohm	100 V	10 μV
±2 VDC	0.03% of reading +0.3 mV	0.12% of reading +0.4 mV	1.066 Mohm	300 V	0.1 mV
±20 VDC	0.03% of reading +3 mV	0.12% of reading +4 mV	1.066 Mohm	300 V	1 mV
±300 VDC	0.05% of reading +30 mV	0.15% of reading +40 mV	1.066 Mohm	300 V	10 mV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85%RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

EXCITATION POWER:

Transmitter Power: 24 VDC, ±5%, regulated, 50 mA max.

- DUAL RANGE INPUT (20 mA or 10 VDC)
- 24 VDC TRANSMITTER POWER

DP5P SPECIFICATIONS

SENSOR INPUTS:

INPUT (RANGE)	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	IMPEDANCE/ COMPLIANCE	MAX CONTINUOUS OVERLOAD	DISPLAY RESOLUTION
20 mA (-2 to 26 mA)	0.03% of reading +2 μA	0.12% of reading +3 μA	20 ohm	150 mA	1 μΑ
10 VDC (-1 to 13 VDC)	0.03% of reading +2 mV	0.12% of reading +3 mV	500 Kohm	300 V	1 mV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

EXCITATION POWER:

Transmitter Power: 24 VDC, ±5%, regulated, 50 mA max.

www.redlion.net

MODEL DP5T - THERMOCOUPLE AND RTD INPUT

- THERMOCOUPLE AND RTD INPUTS
- CONFORMS TO ITS-90 STANDARDS
- TIME-TEMPERATURE INTEGRATOR

DP5T SPECIFICATIONS

READOUT:

Resolution: Variable: 0.1, 0.2, 0.5, or 1, 2, or 5 degree Scale: F or C Offset Range: -19,999 to 99,999 display units **THERMOCOUPLE INPUTS**:

Input Impedance: 20 M Ω

Lead Resistance Effect: 0.03µV/ohm Max. Continuous Overvoltage: 30 V

INPUT	RANGE	ACCURACY* ACCUF	ACCURACY*		WIRE COLOR	
TYPE	NANGE	(18 to 28°C)	(0 to 50°C)		ANSI	BS 1843
Т	-200 to 400°C -270 to -200°C	1.2°C **	2.1°C	ITS-90	(+) blue (-) red	(+) white (-) blue
E	-200 to 871°C -270 to -200°C	1.0°C **	2.4°C	ITS-90	(+) purple (-) red	(+) brown (-) blue
J	-200 to 760°C	1.1°C	2.3°C	ITS-90	(+) white (-) red	(+) yellow (-) blue
к	-200 to 1372°C -270 to -200°C	1.3°C **	3.4°C	ITS-90	(+) yellow (-) red	(+) brown (-) blue
R	-50 to 1768°C	1.9°C	4.0°C	ITS-90	no standard	(+) white (-) blue
S	-50 to 1768°C	1.9°C	4.0°C	ITS-90	no standard	(+) white (-) blue
В	100 to 300°C 300 to 1820°C	3.9°C 2.8°C	5.7°C 4.4°C	ITS-90	no standard	no standard
N	-200 to 1300°C -270 to -200°C	1.3°C **	3.1°C	ITS-90	(+) orange (-) red	(+) orange (-) blue
C (W5/W26)	0 to 2315°C	1.9°C	6.1°C	ASTM E988-90***	no standard	no standard

*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 15 to 75% RH environment; and Accuracy over a 0 to 50°C and 0 to 85% RH (non condensing) environment. Accuracy specified over the 0 to 50°C operating range includes meter tempco and ice point tracking effects. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

** The accuracy over the interval -270 to -200°C is a function of temperature, ranging from 1°C at -200°C and degrading to 7°C at -270°C. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

*** These curves have been corrected to ITS-90.

ACCESSORIES

UNITS LABEL KIT (PAXLBK) - Not required for DP5T

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled in the programming. Each DP5T meter is shipped with °F and °C overlay labels which can be installed into the meter's bezel display assembly.

RTD INPUTS:

Type: 3 or 4 wire, 2 wire can be compensated for lead wire resistance Excitation current: 100 ohm range: 165 µA 10 ohm range: 2.6 mA

Lead resistance: 100 ohm range: 10 ohm/lead max. 10 ohm range: 3 ohms/lead max.

Max. continuous overload: 30 V

-				
INPUT TYPE	RANGE	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	STANDARD
100 ohm Pt alpha = .00385	-200 to 850°C	0.4°C	1.6°C	IEC 751
100 ohm Pt alpha = .003919	-200 to 850°C	0.4°C	1.6°C	no official standard
120 ohm Nickel alpha = .00672	-80 to 260°C	0.2°C	0.5°C	no official standard
10 ohm Copper alpha = .00427	-100 to 260°C	0.4°C	0.9°C	no official standard

INPUT TYPE	RANGE	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)
Direct	-10 to 65mV	0.02% of reading	0.12% of reading
mV range	(1 μV res.)	+ 4µV	+ 5μV
Direct	0 to 400 Ω	0.02% of reading	0.12% of reading
100 ohm range	(10 MΩ res.)	+ 0.04 Ω	+ 0.05 Ω
Direct	0 to 25 Ω	0.04% of reading	0.20% of reading
10 ohm range	(1 MΩ res.)	+ 0.005 Ω	+ 0.007 Ω

1.0 INSTALLING THE METER

Installation

The DP5 meets NEMA 4X/IP65 requirements for indoor use when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

PANEL CUT-OUT

2.0 SETTING THE JUMPERS

The meter can have up to two jumpers that must be checked and / or changed prior to applying power. The two jumpers are: Input Range and User Input Logic. The following Jumper Selection Figures show an enlargement of the jumper area.

To access the jumpers, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

User Input Logic Jumper

Input Range Jumper

This jumper selects the logic state of the user input. If the user input is not used, it is not necessary to check or move this jumper.

DP5D Jumper Selection

inpu

One jumper is used for voltage or current input ranges. Select the proper input range high enough to avoid input signal overload. <u>Only one jumper is allowed in this area</u>. Do not have a jumper in both the voltage and current ranges at the same time. Avoid placing the jumper across two ranges.

JUMPER SELECTIONS

The \frown indicates factory setting

DP5P Jumper Selection

DP5T Jumper Selection

RTD Input Jumper

One jumper is used for RTD input ranges. Select the proper range to match the RTD probe being used. It is not necessary to remove this jumper when not using RTD probes.

3.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations.Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.

- c. Connect the shield to common of the unit and leave the other end of the shield unconnected and insulated from earth ground.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit of suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000) TDK # ZCAT3035-1330A Steward #28B2029-0A0

Line Filters for input power cables: Schaffner # FN610-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VR3

Note: Reference manufacturer's instructions when installing a line filter. 6. Long cable runs are more susceptible to EMI pickup than short cable runs.

- Therefore, keep cable runs as short as possible.
- 7. Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI.

Snubber: RLC#SNUB0000

1-717-767-6511

3.1 POWER WIRING

3.2 INPUT SIGNAL WIRING

DP5D INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Input and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common.

Potentiometer Signal (3 wire requiring excitation)

Terminal 3: Wiper Terminal 3: Low end of pot. Terminal 6: High end of pot. Input Range Jumper: 300 Volt Module 1 Input Range: 300 Volt Note: The Apply signal scaling style should be used because the signal will be in volts.

DP5P INPUT SIGNAL WIRING

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Input and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

3.3 USER INPUT WIRING

Before connecting the wires, the User Input Logic Jumper should be verified for proper position. If not using the User Input then skip this section.

Sinking Logic

Terminal 8: Terminal 7:

Connect external switching device between the User Input terminal and User Comm.

In this logic, the user input of the meter is internally pulled up to +5 V with 22 K resistance. The input is active when it is pulled low (<0 .9 V).

USER COMN	USER INPUT		
7	8 +°	,0 0	K

Sourcing Logic

Terminal 8: + VDC thru external switching device Terminal 7: -VDC thru external switching device

In this logic, the user input of the meter is internally pulled down to 0 V with 22 K resistance. The input is active when a voltage greater than 3.6 VDC is applied.

4.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

KEY DISPLAY MODE OPERATION

- DSP Index display through max/min/total/input readouts
- PAR Access parameter list
- F1▲ Function key 1; hold for 3 seconds for Second Function 1**
- F2▼ Function key 2; hold for 3 seconds for Second Function 2**
- **RST** Reset (Function key)**
- * Display Readout Legends may be locked out in Factory Settings.
- ** Factory setting for the F1, F2, and RST keys is NO mode.

PROGRAMMING MODE OPERATION

Quit programming and return to display mode Store selected parameter and index to next parameter Increment selected parameter value Decrement selected parameter value

Hold with F1 \blacktriangle , F2 \blacktriangledown to scroll value by x1000

Ε

1-717-767-6511

5.0 PROGRAMMING THE METER

DISPLAY MODE

The meter normally operates in the Display Mode. In this mode, the meter displays can be viewed consecutively by pressing the **DSP** key. The annunciators to the left of the display indicate which display is currently shown; Max Value (MAX), Min Value (MIN), or Totalizer Value (TOT). Each of these displays can be locked from view through programming. (See Module 3) The Input Display Value is shown with no annunciator.

PROGRAMMING MODE

Two programming modes are available.

- Full Programming Mode permits all parameters to be viewed and modified. Upon entering this mode, the front panel keys change to Programming Mode operations. This mode should not be entered while a process is running, since the meter functions and User Input response may not operate properly while in Full Programming Mode.
- Quick Programming Mode permits only certain parameters to be viewed and/ or modified. When entering this mode, the front panel keys change to Programming Mode operations, and all meter functions continue to operate properly. Quick Programming Mode is configured in Module 3. Throughout this document, Programming Mode (without Quick in front) always refers to "Full" Programming Mode.

PROGRAMMING TIPS

The Programming Menu is organized into nine modules (See above). These modules group together parameters that are related in function. It is recommended to begin programming with Module 1 and proceed through each module in sequence. If lost or confused while programming, press the **DSP** key to exit programming mode and start over. When programming is complete, it is recommended to record the meter settings on the Parameter Value Chart and lock-out parameter programming with a User Input or lock-out code. (See Modules 2 and 3 for lock-out details.)

FACTORY SETTINGS

Factory Settings may be completely restored in Module 9. This is a good starting point if encountering programming problems. Throughout the module description sections which follow, the factory setting for each parameter is shown below the parameter display. In addition, all factory settings are listed on the Parameter Value Chart following the programming section.

ALTERNATING SELECTION DISPLAY

In the module description sections which follow, the dual display with arrows appears for each programming parameter. This is used to illustrate the display alternating between the parameter (top display) and the parameter's Factory Setting (bottom display). In most cases, selections or value ranges for the parameter will be listed on the right.

STEP BY STEP PROGRAMMING INSTRUCTIONS:

PROGRAMMING MODE ENTRY (PAR KEY)

The Programming Mode is entered by pressing the **PAR** key. If this mode is not accessible, then meter programming is locked by either a security code or a hardware lock. (See Modules 2 and 3 for programming lock-out details.)

MODULE ENTRY (ARROW & PAR KEYS)

Upon entering the Programming Mode, the display alternates between P_{ro} and the present module (initially $\pi 0$). The arrow keys (F1 \blacktriangle and F2 \blacktriangledown) are used to select the desired module, which is then entered by pressing the **PAR** key.

PARAMETER (MODULE) MENU (PAR KEY)

Each module has a separate parameter menu. These menus are shown at the start of each module description section which follows. The **PAR** key is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro **AU**. From this point, programming may continue by selecting and entering additional modules. (See **MODULE ENTRY** above.)

PARAMETER SELECTION ENTRY (ARROW & PAR KEYS)

For each parameter, the display alternates between the parameter and the present selection or value for that parameter. For parameters which have a list of selections, the arrow keys (F1 \blacktriangle and F2 \checkmark) are used to sequence through the list until the desired selection is displayed. Pressing the **PAR** key stores and activates the displayed selection, and also advances the meter to the next parameter.

NUMERICAL VALUE ENTRY (ARROW, RST & PAR KEYS)

For parameters which require a numerical value entry, the arrow keys can be used to increment or decrement the display to the desired value. When an arrow key is pressed and held, the display automatically scrolls up or scrolls down. The longer the key is held, the faster the display scrolls.

The **RST** key can be used in combination with the arrow keys to enter large numerical values, when the **RST** key is pressed along with an arrow key, the display scrolls by 1000's. Pressing the **PAR** key stores and activates the displayed value, and also advances the meter to the next parameter.

PROGRAMMING MODE EXIT (DSP KEY or PAR KEY at Pro III)

The Programming Mode is exited by pressing the **DSP** key (from anywhere in the Programming Mode) or the **PAR** key (with **Pro nI** displayed). This will commit any stored parameter changes to memory and return the meter to the Display Mode. If a parameter was just changed, the **PAR** key should be pressed to store the change before pressing the **DSP** key. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Refer to the appropriate Input Range for the selected meter. Use only one Input Range, then proceed to Display Decimal Point.

DP5D INPUT RANGE

r RN6E 🕤	SELECTION	RANGE RESOLUTION	SELECTION	RANGE RESOLUTION
₩ ٦ חחי	200.JR	±200.00 μA	0,2 u	±200.00 mV
Ŷ 2000	0,002R	±2.0000 mA	2	±2.0000 V
	0,02R	±20.000 mA	20	±20.000 V
	0,2 R	±200.00 mA	300	±300.00 V
	28	±2.0000 A		

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

TEMPERATURE SCALE

of o[

Select the temperature scale. This selection applies for Input, MAX, MIN, and TOT displays. This does not change the user installed Custom Units Overlay display. If changed, those parameters that relate to the temperature scale should be checked.

Select the decimal point location for the Input, **MAX** and **MIN** displays. (The **TOT** display decimal point is a separate parameter.) This selection also affects *r aund*, *d5P 1* and *d5P2* parameters.

DP5P INPUT RANGE

r RN6E 🖘		SELECTION	RANGE RESOLUTION	
K	0028	0,02R	±20.000 mA	
7	0,0 6 / 1	10	±10.000 V	

Select the input range that corresponds to the external signal.

DP5T INPUT TYPE

SELECTION	TYPE	SELECTION	TYPE
£c-£	T TC	tc-c	C TC
Łc-E	E TC	PE 385	RTD platinum 385
Ec-1	J TC	P£ 392	RTD platinum 392
Łc-Y	K TC	л ₁ 672	RTD nickel 672
tc-r	R TC	E2427	RTD copper 10 Ω
Łc-5	S TC	ШLЕ	Direct mV range
£c-b	B TC	rE5-H	Direct ohms range high
fr-u	N TC	rE5-L	Direct ohms range low

Select the input type that corresponds to the input sensor. For RTD types, check the RTD Input Jumper for matching selection. For sensor verification and testing, use the direct readout modes.

Rounding selections other than one, cause the Input Display to 'round' to the nearest rounding increment selected (ie. rounding of '5' causes 122 to round to 120 and 123 to round to 125). Rounding starts at the least significant digit of the Input Display. Remaining parameter entries (scaling point values, etc.) are not automatically adjusted to this display rounding selection.

DP5T: TEMPERATURE DISPLAY OFFSET*

The temperature display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the affects of offset.

1-717-767-6511

P

FILTER SETTING*

0.0 to 25.0 seconds

The input filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of '0' disables filtering.

БАЦЯ (Д Крадика) По

FILTER BAND*

The digital filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the digital filter permanently engaged.

The remaining parameters in Module 1 do not apply to the DP5T.

S	CA	LIN	١G	ST	YL	Е

YEYkey-in data**RPLY**apply signal

If Input Values and corresponding Display Values are known, the Key-in (**PEY**) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (**RPLY**) scaling style must be used. After using the Apply (**RPLY**) scaling style, this parameter will default back to **PEY** but the scaling values will be shown from the previous applied method.

E

INPUT VALUE FOR SCALING POINT 1

INP 1 m % 0.00

- 19999 to 99999

For Key-in (PE **y**), enter the known first Input Value by using the arrow keys. (The Input Range selection sets up the decimal location for the Input Value). For Apply (*RPL* **y**), apply the input signal to the meter, adjust the signal source externally until the desired Input Value appears. In either method, press the **PAR** key to enter the value being displayed. The **DSP** key can be pressed without changing the previously stored *INP* **t** value in the *RPL* **y** style.

Note: **RPLY** style - Pressing the **RST** key will advance the display to the next scaling display point without storing the input value.

DISPLAY VALUE FOR SCALING POINT 1

- 19999 to 99999

Enter the first coordinating Display Value by using the arrow keys. This is the same for *VEY* and *RPLY* scaling styles. The decimal point follows the *dECPE* selection.

* Factory Setting can be used without affecting basic start-up.

- 19999 to 99999

For Key-in (PEY), enter the known second Input Value by using the arrow keys. For Apply (RPLY), adjust the signal source externally until the next desired Input Value appears.

DISPLAY VALUE FOR SCALING POINT 2

- 19999 to 99999

Enter the second coordinating Display Value by using the arrow keys. This is the same for *PEY* and *RPLY* scaling styles.

General Notes on Scaling

- 1. Input Values for scaling points should be confined to the limits of the Input Range.
- 2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA can not equal 0 and 10.)
 - This is referred to as read out jumps (vertical scaled segments).
- 3. The same Display Value can correspond to more than one Input Value. (Example: 0 mA and 20 mA can equal 10.)

This is referred to as readout dead zones (horizontal scaled segments).

- 4. The maximum scaled Display Value spread between range maximum and minimum is limited to 65,535. For example using +20 mA range the maximum +20 mA can be scaled to is 32,767 with 0 mA being 0 and Display Rounding of 1. (Decimal points are ignored.) The other half of 65,535 is for the lower half of the range 0 to -20 mA even if it is not used. With Display Rounding of 2, +20 mA can be scaled for (32,767 x 2 =) 65,535 but with even Input Display values shown.
- 5. For input levels beyond the first programmed Input Value, the meter extends the Display Value by calculating the slope from the first two coordinate pairs ($i\Pi P i / dSP i \& i\Pi P 2 / dSP 2$). If $i\Pi P i = 4$ mA and dSP i = 0, then 0 mA would be some negative Display Value. The calculations stop at the limits of the Input Range.
- 6. For input levels beyond the last programmed Input Value, the meter extends the Display Value by calculating the slope from the two sequential coordinate pairs. The calculations stop at the limits of the Input Range.

The user input is programmable to perform specific meter control functions. While in the Display Mode or Program Mode, the function is executed the instant the user input transitions to the active state.

The front panel function keys are also individually programmable to perform specific meter control functions. While in the Display Mode, the primary function is executed the instant the key is pressed. Holding the function key for three seconds executes a secondary function. It is possible to program a secondary function without a primary function.

In most cases, if the user input and/or one of the function keys is programmed for the same function, the maintained (level trigger) actions will be performed while the user input or at least one of the function keys are activated. The momentary (edge trigger) actions will be performed every time the user input or function keys transition to the active state.

Note: In the following explanations, not all selections are available for both the user input and front panel function keys. Alternating displays are shown with each selection. Those selections showing both displays are available for both. If a display is not shown, it is not available for that selection. USr - 1 will represent the user input. F 1 will represent all five function keys.

NO FUNCTION

No function is performed if activated. This is the factory setting for the user input and all function keys. No function can be selected without affecting basic start-up.

PROGRAMMING MODE LOCK-OUT

Programming Mode is locked-out, as long as activated (maintained action). A security code can be configured to allow programming access during lock-out.

ZERO (TARE) DISPLAY

F 1 m V r EL

The Zero (Tare) Display provides a way to zero the Input Display value at various input levels, causing future Display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), **rESEE** flashes and the Display is set to zero. At the same time, the Display value (that was on the display before the Zero Display) is subtracted from the Display Offset Value and is automatically stored as the new Display Offset Value (**DFFSE**). If another Zero (tare) Display is performed, the display will again change to zero and the Display reading will shift accordingly.

RELATIVE/ABSOLUTE DISPLAY

This function will switch the Input Display between Relative and Absolute. The Relative is a net value that includes the Display Offset Value. The Input Display will normally show the Relative unless switched by this function. Regardless of the display selected, all meter functions continue to operate based on relative values. The Absolute is a gross value (based on Module 1 **DSP** and **INP** entries) without the Display Offset Value. The Absolute display is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input display switches back to Relative display. **Rb5** (absolute) or *r***f**L (relative) is momentarily displayed at transition to indicate which display is active.

HOLD DISPLAY

The shown display is held but all other meter functions continue as long as activated (maintained action).

HOLD ALL FUNCTIONS

The meter disables processing the input and holds all display contents as long as activated (maintained action).

SYNCHRONIZE METER READING

The meter suspends all functions as long as activated (maintained action). When the user input is released, the meter synchronizes the restart of the A/D with other processes or timing events.

STORE BATCH READING IN TOTALIZER

The Input Display value is one time added (batched) to the Totalizer at transition to activate (momentary action). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. When this function is selected, the normal operation of the Totalizer is overridden.

SELECT TOTALIZER DISPLAY

The Totalizer display is selected as long as activated (maintained action). When the user input is released, the Input Display is returned. The **DSP** key overrides the active user input. The Totalizer continues to function independent of being displayed.

1-717-767-6511

Е

RESET TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer then continues to operate as it is configured. This selection functions independent of the selected display.

RESET AND ENABLE TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

ENABLE TOTALIZER

The Totalizer continues to operate as long as activated (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

Ε

SELECT MAXIMUM DISPLAY

The Maximum display is selected as long as activated (maintained action). When the user input is released, the Input Display returns. The DSP key overrides the active user input. The Maximum continues to function independent of being displayed.

RESET MAXIMUM

When activated (momentary action), rESEL flashes and the Maximum resets to the present Input Display value. The Maximum function then continues from that value. This selection functions independent of the selected display.

	F 1 🕤	
Ø	r – H 1	

RESET, SELECT, ENABLE MAXIMUM DISPLAY

When activated (momentary action), the Maximum value is set to the present Input Display value. Maximum continues from that value while active (maintained action). When the user input is released, Maximum detection stops and holds its

value. This selection functions independent of the selected display. The DSP key overrides the active user input display but not the Maximum function.

SELECT MINIMUM DISPLAY

The Minimum display is selected as long as activated (maintained action). When the user input is released, the Input Display is returned. The DSP key overrides the active user input. The Minimum continues to function independent of being displayed.

RESET MINIMUM

When activated (momentary action), rESEL flashes and the Minimum reading is set to the present Input Display value. The Minimum function then continues from that value. This selection functions independent of the selected display.

RESET, SELECT, ENABLE MINIMUM DISPLAY

When activated (momentary action), the Minimum value is set to the present Input Display value. Minimum continues from that value while active (maintained action). When the user input is released, Minimum detection stops and holds its value. This selection functions independent of the selected display. The DSP

key overrides the active user input display but not the Minimum function.

RESET MAXIMUM AND MINIMUM

When activated (momentary action), rESEE flashes and the Maximum and Minimum readings are set to the present Input Display value. The Maximum and Minimum function then continues from that value. This selection functions independent of the selected display.

These displays can be programmed for LOC or rEd. When programmed for LOC, the display will not be shown when the **DSP** key is pressed regardless of Program Lock-out status. It is suggested to lock-out the display if it is not needed. The associated function will continue to operate even if its display is locked-out.

* Factory Setting can be used without affecting basic start-up.

would not have to be configured for Program Lock-out. However, this lock-out is overridden by an inactive user input configured for Program Lock-out.
5.4 MODULE 4 - SECONDARY FUNCTION PARAMETERS (4-5EE)

OFF

0.00

P

MAX CAPTURE DELAY TIME*

0.1 to 3275.0 sec.

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

This parameter determines the rate of display update. When set to 10 updates/second, the internal re-zero compensation is disabled, allowing for the fastest possible output response.

UNITS LABEL BACKLIGHT*

OFF

The Units Label Kit Accessory contains a sheet of custom unit overlays which can be installed in to the meter's bezel display assembly. The backlight for these custom units is activated by this parameter.

ПΠ

DISPLAY OFFSET VALUE*

This parameter does not apply for the DP5T.

🛱 - 19999 to 19999

Unless a Zero Display was performed or an offset from Module 1 scaling is desired, this parameter can be skipped. The Display Offset Value is the difference from the Absolute (gross) Display value to the Relative (net) Display value for the same input level. The meter will automatically update this Display Offset Value after each Zero Display. The Display Offset Value can be directly keyed-in to intentionally add or remove display offset. See Relative / Absolute Display and Zero Display explanations in Module 2.

This parameter turns the internal ice point compensation on or off. Normally, the ice point compensation is on. If using external compensation, set this parameter to off. In this case, use copper leads from the external compensation point to the meter.

* Factory Setting can be used without affecting basic start-up.

297

5.5 MODULE 5 - TOTALIZER (INTEGRATOR) PARAMETERS (5-EDE)

The totalizer accumulates (integrates) the Input Display value using one of two modes. The first is using a time base. This can be used to compute a timetemperature product. The second is through a user input or function key programmed for Batch (one time add on demand). This can be used to provide a readout of temperature integration, useful in curing and sterilization applications. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

TOTALIZER DECIMAL POINT*

For most applications, this matches the Input Display Decimal Point (*dELPk*). If a different location is desired, refer to Totalizer Scale Factor.

TOTALIZER TIME BASE

This is the time base used in Totalizer accumulations. If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

Ε

TOTALIZER SCALE FACTOR*

0.00 I to 65.000

For most applications, the Totalizer reflects the same decimal point location and engineering units as the Input Display. In these cases, the Totalizer Scale Factor is 1.000. The Totalizer Scale Factor can be used to scale the Totalizer to a different value than the Input Display. Common possibilities are:

1. Changing decimal point location (example tenths to whole)

- 2. Changing engineering units (example inches to meters)
- 3. Changing both decimal point location and engineering units.
- 4. Average over a controlled time frame.

Details on calculating the scale factor are shown later.

If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

Locuł 🕅 🗞 -19999

TOTALIZER LOW CUT VALUE*

A low cut value disables Totalizer when the Input Display value falls below the value programmed.

TOTALIZER POWER UP RESET*

P-UP &

Do not reset buffer

The Totalizer can be reset to zero on each meter power-up by setting this parameter to reset.

* Factory Setting can be used without affecting basic start-up.

298

TOTALIZER HIGH ORDER DISPLAY

When the total exceeds 5 digits, the front panel annunciator **TOT** flashes. In this case, the meter continues to totalize up to a 9 digit value. The high order 4 digits and the low order 5 digits of the total are displayed alternately. The letter "h" denotes the high order display.

TOTALIZER BATCHING

The Totalizer Time Base and scale factor are overridden when a user input or function key is programmed for store batch (bRt). In this mode, when the user input or function key is activated, the Input Display reading is one time added to the Totalizer (batch). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. This is useful in weighing operations, when the value to be added is not based on time but after a filling event.

TOTALIZER USING TIME BASE

Totalizer accumulates as defined by:

Input Display x Totalizer Scale Factor Totalizer Time Base

Where:

Input Display - the present input reading Totalizer Scale Factor - 0.001 to 65.000 Totalizer Time Base - (the division factor of **LbR5E**)

Example: The input reading is at an average of 10.0°C per hour. The Totalizer is used to verify this average reading in a controlled time frame of 4 hours. Because the Input Display and Totalizer are both in tenths of °C, the Totalizer Scale Factor is 1. However, the Totalizer Time Base is hours (3600) divided by the 4 hours in the controlled time frame to yield a Totalizer Scale Factor of 0.250. By placing these values in the equation, the Totalizer will accumulate every second as follows:

 $10.0 \ge 0.250 = 0.00069$ accumulates each second

3600

This results in:

0.04167 accumulates each minute 2.5 accumulates each hour

10.0 reached at the end of 4 hours

TOTALIZER SCALE FACTOR CALCULATION EXAMPLES

 When changing the Totalizer Decimal Point (*dELPL*) location from the Input Display Decimal Point (*dELPL*), the required Totalizer Scale Factor is multiplied by a power of ten.

-

(x = Totalizer display is round by tens or hundreds)

- 2. When changing the Totalizer engineering units, the Totalizer Scale Factor is the known conversion multiplier from Input Display units to Totalizer units. Example: If Input Display is feet and the Totalizer needs to be in yards, the conversion multiplier from feet to yards is 0.333. Enter 0.333 as the Totalizer scale factor.
- 3. When changing both the Totalizer engineering units and Totalizer Decimal Point the two calculations are multiplied together. Example: Input Display = feet in tenths (0.0) with Totalizer = whole yards (0), the scale factor would be 0.033.
- 4. To obtain an average reading within a controlled time frame, the selected Totalizer Time Base is divided by the given time period expressed in the same timing units.
 - Example: Average temperature per hour in a 4 hour period, the scale factor would be 0.250. To achieve a controlled time frame, connect an external timer to a user input programmed for *rtat2*. The timer will control the start (reset) and the stopping (hold) of the totalizer.
- Courtesy of Steven Engineering, Inc. (800) 258-9200 sales@steveneng.com www.stevenengineering.com

Service Code

66

E o d E 🖄

RESTORE FACTORY DEFAULTS

Use the arrow keys to display **Lode 55** and press **PAR**. The meter will display *r***55E** and then return to **Lode 50**. Press **DSP** key to return to Display Mode. This will overwrite all user settings with the factory settings.

CALIBRATION

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed in Module 1. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter.

When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment. Calibration does not change any user programmed parameters. However, it may affect the accuracy of the input signal values previously stored using the Apply (**RPLY**) Scaling Style.

Calibration may be aborted by disconnecting power to the meter before exiting Module 9. In this case, the existing calibration settings remain in effect.

DP5D - Input Calibration

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better.

Before starting, verify that the Input Ranger Jumper is set for the range to be calibrated. Also verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. *na* and **PAR** can be chosen to exit the calibration mode without any changes taking place.

Then perform the following procedure:

- 1. Use the arrow keys to display **Lode 4B** and press **PAR**.
- 2. Choose the range to be calibrated by using the arrow keys and press PAR.
- 3. When the zero range limit appears on the display, apply the appropriate:
- Voltage ranges: dead short applied
- Current ranges: open circuit
- 4. Press **PAR** and **...** will appear on the display for about 10 seconds.
- 5. When the top range limit appears on the display, apply the appropriate:
- Voltage ranges: top range value applied (The 300 V range is the exception. It is calibrated with a 100 V signal.)
- Current ranges: top range value
- 6. Press **PAR** and **····** will appear on the display for about 10 seconds.
- 7. When no appears, press PAR twice.
- 8. If the meter is not field scaled, then the input display should match the value of the input signal.
- 9. Repeat the above procedure for each input range to be calibrated.

DP5P - Input Calibration

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better.

Before starting, verify that the precision signal source is connected to the correct terminals and ready. Allow a 30 minute warm-up period before calibrating the meter. n_0 and **PAR** can be chosen to exit the calibration mode without any changes taking place.

Then perform the following procedure:

- 1. Use the arrow keys to display **Lode** 48 and press PAR.
- Choose the range to be calibrated by using the arrow keys and press PAR.
 When the zero range limit appears on the display, apply the appropriate:
 - Voltage range: dead short applied
 - Current range: open circuit
- 4. Press **PAR** and **····** will appear on the display for about 10 seconds.
- 5. When the top range limit appears on the display, apply the appropriate:
 - Voltage range: 10 VDC
 - Current range: 20 mADC
- 6. Press **PAR** and **····** will appear on the display for about 10 seconds.
- 7. When **no** appears, press **PAR** twice.
- 8. If the meter is not field scaled, then the input display should match the value of the input signal.
- 9. Repeat the above procedure for each input range to be calibrated.

DP5T - Input Calibration

Warning: Calibration of this meter requires precision instrumentation operated by qualified technicians. It is recommended that a calibration service calibrates the meter.

Before selecting any of the calibration procedures, the input to the meter must be at 0 mV or 0 ohms. Set the digital filer in Module 1 to 1 second. Allow a 30 minute warm-up period before calibrating the meter. The **na** and **PAR** can be chosen to exit calibration mode without any changes taking place.

10 OHM RTD Range Calibration

- 1. Set the Input Range Jumper to 10 ohm.
- Use the arrow keys to display Lode 48 and press PAR. Then choose r. 10 and press PAR.
- 3. At **1** r, apply a direct short to input terminals 3, 4 and 5 using a three wire link. Wait 10 seconds, then press **PAR**.
- 4. At **15** *r*, apply a precision resistance of 15 ohms (with an accuracy of 0.01% or better) using a three wire link, to input terminals 3, 4 and 5. Wait 10 seconds, then press **PAR**.
- 5. Connect the RTD, return to the Display Mode and verify the input reading (with 0 Display Offset) is correct. If not correct repeat calibration.

100 OHM RTD Range Calibration

- 1. Set the Input Range Jumper to 100 ohm.
- 2. Use the arrow keys to display **LodE 4B** and press **PAR**. Then choose **r 100** and press **PAR**.
- 3. At **1** *r*, apply a direct short to input terminals 3, 4 and 5 using a three wire link. Wait 10 seconds, then press **PAR**.
- 4. At **300** *r*, apply a precision resistance of 300 ohms (with an accuracy of 0.01% or better) using a three wire link, to terminals 3, 4 and 5. Wait 10 seconds, press **PAR**.
- Connect the RTD, return to the Display Mode and verify the input reading (with 0 Display Offset) is correct. If not correct repeat calibration.

1-717-767-6511

THERMOCOUPLE Range Calibration

- 1. Use the arrow keys to display *LodE* 48 and press **PAR**. Then choose *LL* and press **PAR**.
- 2. At **UD u**, apply a dead short or set calibrator to zero to input terminals 4 and 5. Wait 10 seconds, then press **PAR**.
- 3. At **500** *u*, apply 50.000 mV input signal (with an accuracy of 0.01% or better) to input terminals 4 and 5. Wait 10 seconds, then press **PAR**.
- 4. Return to the Display Mode.
- 5. Continue with Ice Point Calibration.

ICE POINT Calibration

- 1. The ambient temperature must be within 20°C to 30°C.
- 2. Connect a thermocouple (types T, E, J, K, or N only) with an accuracy of 1°C or better to the meter.
- 3. Verify the readout Display Offset is 0, Temperature Scale is °C, Display Resolution is 0.0, and the Input Range is set for the connected thermocouple.
- 4. Place the thermocouple in close thermal contact to a reference thermometer probe. (Use a reference thermometer with an accuracy of 0.25°C or better.) The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (A calibration bath could be used in place of the thermometer.)
- 5. In the Normal Display mode, compare the readouts.
- 6. If a difference exists then continue with the calibration.
- 7. Enter Module 9, use the arrow keys to display *LodE* 48 and press **PAR**. Then choose *ILE* and press **PAR**.
- 8. Calculate a new Ice Point value using: existing Ice Point value + (reference temperature Display Mode reading). All values are based on °C.
- 9. Enter the new Ice Point value.
- 10. Return to the Display Mode and verify the input reading (with 0 Display Offset) is correct. If not correct repeat steps 8 through 10.

TROUBLESHOOTING

PROBLEM	REMEDIES
NO DISPLAY	CHECK: Power level, power connections
PROGRAM LOCKED-OUT	CHECK: Active (lock-out) user input ENTER: Security code requested
MAX, MIN, TOT LOCKED-OUT	CHECK: Module 3 programming
INCORRECT INPUT DISPLAY VALUE	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level, Module 4 Display Offset is zero, press DSP for Input Display PERFORM: Module 9 Calibration (If the above does not correct the problem.)
"OLOL" in DISPLAY (SIGNAL HIGH)	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level
"ULUL" in DISPLAY (SIGNAL LOW)	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level
JITTERY DISPLAY	INCREASE: Module 1 filtering, rounding, input range CHECK: Wiring is per EMC installation guidelines
ERROR CODE (Err 1-4)	PRESS: Reset KEY (If cannot clear contact factory.)

For further assistance, contact technical support at the appropriate company numbers listed.

MODEL PAX – 1/8 DIN ANALOG INPUT PANEL METERS

- PROCESS, VOLTAGE, CURRENT, TEMPERATURE, AND STRAIN GAGE INPUTS
- 5-DIGIT 0.56" RED SUNLIGHT READABLE DISPLAY
- VARIABLE INTENSITY DISPLAY
- 16 POINT SCALING FOR NON-LINEAR PROCESSES
- PROGRAMMABLE FUNCTION KEYS/USER INPUTS
- 9 DIGIT TOTALIZER (INTEGRATOR) WITH BATCHING
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- FOUR SETPOINT ALARM OUTPUTS (W/OPTION CARD)
- COMMUNICATION AND BUS CAPABILITIES (W/OPTION CARD)
- RETRANSMITTED ANALOG OUTPUT (W/OPTION CARD)
- CRIMSON[®] PROGRAMMING SOFTWARE
- NEMA 4X/IP65 SEALED FRONT BEZEL

GENERAL DESCRIPTION

The PAX[®] Analog Panel Meters offer many features and performance capabilities to suit a wide range of industrial applications. Available in five different models to handle various analog inputs, including DC Voltage/Current, AC Voltage/Current, Process, Temperature, and Strain Gage Inputs. Refer to pages 4 through 6 for the details on the specific models. The optional plug-in output cards allow the opportunity to configure the meter for present applications, while providing easy upgrades for future needs.

The meters employ a bright 0.56" LED display. The unit is available with a red sunlight readable or a standard green LED. The intensity of display can be adjusted from dark room applications up to sunlight readable, making it ideal for viewing in bright light applications.

The meters provide a MAX and MIN reading memory with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events.

The signal totalizer (integrator) can be used to compute a time-input product. This can be used to provide a readout of totalized flow, calculate service intervals of motors or pumps, etc. The totalizer can also accumulate batch weighing operations.

The meters have four setpoint outputs, implemented on Plug-in option cards. The Plug-in cards provide dual FORM-C relays (5A), quad FORM-A (3A), or either quad sinking or quad sourcing open collector logic outputs. The setpoint alarms can be configured to suit a variety of control and alarm requirements.

Communication and Bus Capabilities are also available as option cards. These include RS232, RS485, Modbus, DeviceNet, and Profibus-DP. Readout values and setpoint alarm values can be controlled through the bus. Additionally, the meters have a feature that allows a remote computer to directly control the outputs of the meter. With an RS232 or RS485 card installed, it is possible to configure the meter using a Windows[®] based program. The configuration data can be saved to a file for later recall.

A linear DC output signal is available as an optional Plug-in card. The card provides either 20 mA or 10 V signals. The output can be scaled independent of the input range and can track either the input, totalizer, max or min readings.

Once the meters have been initially configured, the parameter list may be locked out from further modification in its entirety or only the setpoint values can be made accessible.

The meters have been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, the meter provides a tough yet reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

1-717-767-6511

TABLE OF CONTENTS

Ordering Information	2
General Meter Specifications	3
Universal DC Input Panel Meter	4
Process Input Panel Meter	4
AC True RMS Voltage and Current Meter	5
Strain Gage Input Panel Meter	5
Thermocouple and RTD Input Meter	6
Optional Plug-In Cards	7
Installing the Meter	8

Setting the Jumpers8
Installing Plug-In Cards
Wiring the Meter 11
Reviewing the Front Buttons and Display14
Programming the Meter
Factory Service Operations29
Parameter Value Chart
Programming Overview

ORDERING INFORMATION

Meter Part Numbers

* PAXH is only available with 85-250 VAC power supply.

Option Card and Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
		Dual Setpoint Relay Output Card	PAXCDS10
	DAYODS	Quad Setpoint Relay Output Card	PAXCDS20
	PAACDS	Quad Setpoint Sinking Open Collector Output Card	PAXCDS30
		Quad Setpoint Sourcing Open Collector Output Card	PAXCDS40
		RS485 Serial Communications Card with Terminal Block	PAXCDC10
		Extended RS485 Serial Communications Card with Dual RJ11 Connector	PAXCDC1C
Optional Blug In		RS232 Serial Communications Card with Terminal Block	PAXCDC20
Cards	PAXCDC	Extended RS232 Serial Communications Card with 9 Pin D Connector	PAXCDC2C
		DeviceNet Communications Card	PAXCDC30
		Modbus Communications Card	PAXCDC40
		Extended Modbus Communications Card with Dual RJ11 Connector	PAXCDC4C
		Profibus-DP Communications Card	PAXCDC50
	PAXCDL	Analog Output Card	PAXCDL10
	PAXUSB	PAX USB Programming Card (Not included in PAX product UL E179259 file)	PAXUSB00
	CBLUSB	USB Programming Cable Type A-Mini B	CBLUSB01
Accessories	ICM8	Ethernet Gateway	ICM80000
Accessories	PAXLBK	Units Label Kit Accessory (Not required for PAXT)	PAXLBK10
	SFCRD*	Crimson PC Configuration Software for Windows 98, ME, 2000 and XP	SFCRD200

* Crimson® software is available for free download from http://www.redlion.net/

www.redlion.net

General Meter Specifications

1. Dist Entre 5 digit, 0.55 (11.2 min) for sumght foundate of sumdate green
LEDs, (-19999 to 99999) 2 POWER
AC Versions:
AC Power: 85 to 250 VAC, 50/60 Hz, 15 VA Isolation: 2300 Vrms for 1 min. to all inputs and outputs
DC Versions (Not available on PAXH):
DC Power: 11 to 36 VDC, 11 W (domta apparting temperature to 40° C if appreting <15 VDC and three
plug-in option cards are installed)
AC Power: 24 VAC, \pm 10%, 50/60 Hz, 15 VA
3. ANNUNCIATORS:
MAX - maximum readout selected
MIN - minimum readout selected TOT - totalizer readout selected flashes when total overflows
SP1 - setpoint alarm 1 is active
SP2 - setpoint alarm 2 is active
SP4 - setpoint alarm 4 is active
Units Label - optional units label backlight
4. KEYPAD : 3 programmable function keys, 5 keys total 5. A/D CONVERTER : 16 bit resolution
6. UPDATE RATES:
A/D conversion rate: 20 readings/sec. Step response: 200 msec, may, to within 99% of final readout value.
(digital filter and internal zero correction disabled)
700 msec. max. (digital filter disabled, internal zero correction enabled)
disabled)
Display update rate: 1 to 20 updates/sec.
Setpoint output on/off delay time: 0 to 3275 sec.
Max./Min. capture delay time: 0 to 3275 sec.
7. DISPLAY MESSAGES: "OLOL" Appears when measurement exceeds + signal range
"ULUL" - Appears when measurement exceeds - signal range
PAXT: "SHrt" - Appears when shorted sensor is detected. (RTD only)
"" - Appears when display values exceed + display range.
"" - Appears when display values exceed - display range.
"E" - Appears when Totalizer exceeds 9 digits. "h" - Denotes the high order display of the Totalizer
8. INPUT CAPABILITIES: See specific product specifications, pages 4-6
9. EXCITATION POWER: See specific product specifications, pages 4-6
Normal Mode: $> 60 \text{ dB}$ @ 50 or 60 Hz ±1%, digital filter off
Common Mode: >100 dB, DC to 120 Hz
11 USED INDUTS: Three programmable user inputs
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC
 USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH)
 11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V
 11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max.
 11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V Active V _{IN} < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V Active $V_{IN} < 0.9 VDC$ Inactive $V_{IN} > 3.6 VDC$ VIN < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V Active V _{IN} < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V Active V _{IN} < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active $V_{IN} < 0.9$ VDC Inactive $V_{IN} > 3.6$ VDC VIN < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active $V_{IN} > 3.6$ VDC Inactive $V_{IN} > 3.6$ VDC VIN < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active $V_{IN} < 0.9 VDC$ $V_{IN} > 3.6 VDC$ Inactive $V_{IN} > 3.6 VDC$ $V_{IN} < 0.9 VDC$ 12. TOTALIZER: Function: Time Base: second, minute, hour, or day Batch: Can accumulate (gate) input display from a user input Time Accuracy: 0.01% typical Decimal Point: 0 to 0.0000 Scale Factor: 0.001 to 65.000 Low Signal Cut-out: -19.999 to 99.999 Summa Scale Factor: 0.001 to 65.000
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V SOURCING INPUTS Active V _{IN} < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active V _{IN} < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active $V_{IN} > 3.6$ VDC Inactive $V_{IN} > 3.6$ VDC VIN < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active $V_{IN} < 0.9 VDC$ $V_{IN} > 3.6 VDC$ Inactive $V_{IN} > 3.6 VDC$ $V_{IN} < 0.9 VDC$ 12. TOTALIZER: Function: Time Base: second, minute, hour, or day Batch: Can accumulate (gate) input display from a user input Time Accuracy: 0.01% typical Decimal Point: 0 to 0.0000 Scale Factor: 0.001 to 65.000 Low Signal Cut-out: -19,999 to 99,999 Total: 9 digits, display alternates between high order and low order readouts 13. CUSTOM LINEARIZATION: Data Point Pairs: Selectable from 2 to 16 Display Range: -19,999 to 99,999 Decimal Point: 0 to 0.0000 Dot 1000 Decimal Point: 0 to 0.0000 Dot 1000 Decimal Point: 0 to 0.0000 Dot 1000 Data Point Pairs: Selectable from 2 to 16 Display Range: -19,999 to 99,999 Decimal
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V SOURCING INPUTS Active V _{IN} < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active VIN < 0.9 VDC
11. USER INPUTS: Three programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. (Not PAXH) PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min. Working Voltage: 125 V Response Time: 50 msec. max. Logic State: Jumper selectable for sink/source logic INPUT STATE SINKING INPUTS SOURCING INPUTS 22 KΩ pull-up to +5 V 22 KΩ pull-down Active $V_{IN} < 0.9$ VDC $V_{IN} > 3.6$ VDC Inactive $V_{IN} > 3.6$ VDC $V_{IN} < 0.9$ VDC 12. TOTALIZER: Function: Time Base: second, minute, hour, or day Batch: Can accumulate (gate) input display from a user input Time Accuracy: 0.01% typical Decimal Point: 0 to 0.0000 Scale Factor: 0.001 to 65.000 Low Signal Cut-out: -19,999 to 99,999 Total: 9 digits, display alternates between high order and low order readouts 13. CUSTOM LINEARIZATION: Data Point Pairs: Selectable from 2 to 16 Display Range: -19,999 to 99,999 Decimal Point: 0 to 0.0000 PAXT: Ice Point Compensation: user value (0.00 to 650.00 μV/°C) 14. MEMORY: Nonvolatile E ² PROM retains all programmable parameters and display values. 15. ENVIRONMENTAL CONDITIONS: Operating Temperature Range: 0 to 50°C (0 to 45°C with all three plug-in

cards installed) Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2 g. Shock According to IEC 68-2-27: Operational 25 g (10 g relay), 11 msec in 3 directions. Storage Temperature Range: -40 to 60°C Operating and Storage Humidity: 0 to 85% max. RH non-condensing Altitude: Up to 2000 meters 16. CERTIFICATIONS AND COMPLIANCES: SAFETY UL Recognized Component, File #E179259, UL61010A-1, CSA C22.2 No. 61010-1 PAXT Only: File # E156876, UL873, CSA C22.2 No. 24 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc. UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50 IECEE CB Scheme Test Report #04ME11209-20041018 Issued by Underwriters Laboratories, Inc. IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part I IP65 Enclosure rating (Face only), IEC 529 IP20 Enclosure rating (Rear of unit), IEC 529 ELECTROMAGNETIC COMPATIBILITY Emissions and Immunity to EN 61326:2006: Electrical Equipment for Measurement, Control and Laboratory use. **Immunity to Industrial Locations:** Electrostatic discharge EN 61000-4-2 Criterion A 4 kV contact discharge 8 kV air discharge Electromagnetic RF fields EN 61000-4-3 Criterion A⁴ 10 V/m (80 MHz to 1 GHz) 3 V/m (1.4 GHz to 2 GHz) 1 V/m (2 GHz to 2.7 GHz) Fast transients (burst) EN 61000-4-4 Criterion B 2 kV power 1 kV I/O signal 2 kV I/O signal connected to power Surge EN 61000-4-5 Criterion A 1 kV L to L, 2 kV L to G power $1 \, kV$ signal RF conducted interference EN 61000-4-6 Criterion A 3 Vrms Power freq magnetic fields EN 61000-4-8 Criterion A 30 A/m EN 61000-4-11 AC power Voltage dip Criterion A 0% during 1 cycle 40% during 10/12 cycle 70% during 25/30 cycle Short interruptions Criterion C 0% during 250/300 cycles Emissions: EN 55011 Class A Emissions Notes: 1. Criterion A: Normal operation within specified limits. 2. Criterion B: Temporary loss of performance from which the unit selfrecovers 3. Criterion C: Temporary loss of function where system reset occurs. 4. Self-recoverable loss of performance during EMI disturbance at 10 V/m: Measurement input and/or analog output signal may deviate during EMI disturbance. For operation without loss of performance: Unit is mounted in a metal enclosure (Buckeye SM7013-0 or equivalent) I/O and power cables are routed in metal conduit connected to earth ground Refer to EMC Installation Guidelines section of the bulletin for additional information 17. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire

- Torque: 4.5 inch-lbs (0.51 N-m) max.
- 18. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.
- 19. WEIGHT: 10.4 oz. (295 g)

Ε

1-717-767-6511

MODEL PAXD - UNIVERSAL DC INPUT

- FOUR VOLTAGE RANGES (300 VDC Max)
- FIVE CURRENT RANGES (2A DC Max)
- THREE RESISTANCE RANGES (10K Ohm Max)
- SELECTABLE 24 V, 2 V, 1.75 mA EXCITATION

PAXD SPECIFICATIONS

INPUT RANGES:

INPUT RANGE	ACCURACY* (18 to 28°C)	ACCURACY* IMPEDANCE/ (0 to 50°C) COMPLIANCE		MAX CONTINUOUS OVERLOAD	RESOLUTION
±200 μADC	0.03% of reading +0.03 μA	0.12% of reading +0.04µA	1.11 Kohm	15 mA	10 nA
±2 mADC	0.03% of reading +0.3 μA	0.12% of reading +0.4 μA	111 ohm	50 mA	0.1 μA
$\pm 20 \text{ mADC}$	0.03% of reading +3μA	0.12% of reading +4 μA	11.1 ohm	150 mA	1 μA
±200 mADC	0.05% of reading +30 μA	0.15% of reading +40 μA	1.1 ohm	500 mA	10 μA
±2 ADC	0.5% of reading +0.3 mA	0.7% of reading +0.4 mA	0.1 ohm	3 A	0.1 mA
±200 mVDC	0.03% of reading +30 μV	0.12% of reading +40 μV	1.066 Mohm	100 V	10 μV
±2 VDC	0.03% of reading +0.3 mV	0.12% of reading +0.4 mV	1.066 Mohm	300 V	0.1 mV
±20 VDC	0.03% of reading +3 mV	0.12% of reading +4 mV	1.066 Mohm	300 V	1 mV
±300 VDC	0.05% of reading +30 mV	0.15% of reading +40 mV	1.066 Mohm	300 V	10 mV
100 ohm	0.05% of reading +0.03 ohm	0.2% of reading +0.04 ohm	0.175 V	30 V	0.01 ohm
1000 ohm	0.05% of reading +0.3 ohm	0.2% of reading +0.4 ohm	1.75 V	30 V	0.1 ohm
10 Kohm	0.05% of reading +1 ohm	0.2% of reading +1.5 ohm	17.5 V	30 V	1 ohm

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

EXCITATION POWER:

Transmitter Power: 24 VDC, ±5%, regulated, 50 mA max. Reference Voltage: 2 VDC, ±2% Compliance: 1 kohm load min. (2 mA max.)

Temperature coefficient: 40 ppm/°C max. Reference Current: 1.75 mADC, ± 2% Compliance: 10 kohm load max. Temperature coefficient: 40 ppm/°C max.

MODEL PAXP - PROCESS INPUT

- DUAL RANGE INPUT (20 mA or 10 VDC)
- 24 VDC TRANSMITTER POWER

PAXP SPECIFICATIONS

SENSOR INPUTS:

INPUT (RANGE)	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	IMPEDANCE/ COMPLIANCE	MAX CONTINUOUS OVERLOAD	DISPLAY RESOLUTION
20 mA (-2 to 26 mA)	0.03% of reading +2 μA	0.12% of reading +3 μA	20 ohm	150 mA	1 μA
10 VDC (-1 to 13 VDC)	0.03% of reading +2 mV	0.12% of reading +3 mV	500 Kohm	300 V	1 mV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85%RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

EXCITATION POWER:

Transmitter Power: 24 VDC, ±5%, regulated, 50 mA max.

MODEL PAXH - AC TRUE RMS VOLT AND CURRENT

- FOUR VOLTAGE RANGES (300 VAC Max)
- FIVE CURRENT RANGES (5 A Max)
- ACCEPTS AC OR DC COUPLED INPUTS
- THREE WAY ISOLATION: POWER, INPUT AND OUTPUTS

PAXH SPECIFICATIONS

INPUT RANGES:

Isolation To Option Card Commons and User Input Commons: 125 Vrms Isolation To AC Power Terminals: 250 Vrms

INPUT RANGE	ACCURACY*	IMPEDANCE (60 Hz)	MAX CONTINUOUS OVERLOAD	MAX DC BLOCKING	RESOLUTION
200 mV	0.1% of reading +0.4 mV	686 Kohm	30 V	±10 V	0.01 mV
2 V	0.1% of reading +2 mV	686 Kohm	30 V	±50 V	0.1 mV
20 V	0.1% of reading +20 mV	686 Kohm	300 V	±300 V	1 mV
300 V	0.2% of reading +0.3 V	686 Kohm	300 V	±300 V***	0.1 V
200 μA	0.1% of reading +0.4 μA	1.11 Kohm	15 mA	±15 mA	0.01 μA
2 mA	0.1% of reading +2 μA	111 ohm	50 mA	±50 mA	0.1 μA
20 mA	0.1% of reading +20 μA	11.1 ohm	150 mA	±150 mA	1 μΑ
200 mA	0.1% of reading +0.2 mA	1.1 ohm	500 mA	±500 mA	10 μA
5 A	0.5% of reading +5 mA	0.02 ohm	7 A**	±7 A***	1 mA

- *Conditions for accuracy specification:
 - 20 minutes warmup
 - 18-28°C temperature range, 10-75% RH non-condensing
 - 50 Hz 400 Hz sine wave input with 1.414 crest factor
 - 1% to 100% of range
 - For conditions outside the above listed:
 - Temperature from 0-18 and 28-50°C: Add 0.1% reading + 20 counts error Crest factors:
 - 1-3: Add 0.2% reading + 10 counts error
 - 3-5: Add 1% reading
 - DC component: Add 0.5% reading + 10 counts
 - 20-50 Hz and 400-10 KHz: Add 1% reading + 20 counts error
- ** Non-repetitive surge rating: 15 A for 5 seconds
- *** Inputs are direct coupled to the input divider and shunts. Input signals with high DC component levels may reduce the usable range.

MAX CREST FACTOR (Vp/VRMS): 5 @ Full Scale Input INPUT COUPLING: AC or AC and DC INPUT CAPACITANCE: 10 pF COMMON MODE VOLTAGE: 125 VAC working COMMON MODE REJECTION: (DC to 60 Hz) 100 dB

MODEL PAXS - STRAIN GAGE INPUT

- E
- LOAD CELL, PRESSURE AND TORQUE BRIDGE INPUTS
- DUAL RANGE INPUT: ±24 mV OR ±240 mV
- SELECTABLE 5 VDC OR 10 VDC BRIDGE EXCITATION
- PROGRAMMABLE AUTO-ZERO TRACKING

PAXS SPECIFICATIONS

SENSOR INPUTS:

INPUT RANGE	ACCURACY* (18 to 28 °C)	ACCURACY* (0 to 50 °C)	IMPEDANCE	MAX CONTINUOUS OVERLOAD	RESOLUTION
±24 mVDC	0.02% of reading +3 μV	0.07% of reading +4 μV	100 Mohm	30 V	1 μV
±240 mVDC	0.02% of reading +30 μV	0.07% of reading +40 μV	100 Mohm	30 V	10 μV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28 °C and 10 to 75% RH environment; and accuracy over a 0 to 50 °C and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to 50 °C range includes the temperature coefficient effect of the meter.

CONNECTION TYPE: 4-wire bridge (differential) 2-wire (single-ended) COMMON MODE RANGE (w.r.t. input common): 0 to +5 VDC Rejection: 80 dB (DC to 120 Hz) BRIDGE EXCITATION : Jumper Selectable: 5 VDC @ 65 mA max., ±2% 10 VDC @ 125 mA max., ±2%

Temperature coefficient (ratio metric): 20 ppm/°C max.

MODEL PAXT - THERMOCOUPLE AND RTD INPUT

- THERMOCOUPLE AND RTD INPUTS
- CONFORMS TO ITS-90 STANDARDS
- CUSTOM SCALING FOR NON-STANDARD PROBES
- TIME-TEMPERATURE INTEGRATOR

PAXT SPECIFICATIONS

READOUT:

Resolution: Variable: 0.1, 0.2, 0.5, or 1, 2, or 5 degrees Scale: F or C Offset Range: -19,999 to 99,999 display units **THERMOCOUPLE INPUTS**:

Input Impedance: 20 MΩ

Lead Resistance Effect: 0.03μ V/ohm Max. Continuous Overvoltage: 30 V

INPUT	RANGE	ACCURACY* ACCURACY*		STANDARD	WIRE COLOR	
TYPE	NANGE	(18 to 28 °C)	(0 to 50 °C)		ANSI	BS 1843
Т	-200 to 400°C -270 to -200°C	1.2°C **	2.1°C	ITS-90	(+) blue (-) red	(+) white (-) blue
E	-200 to 871°C -270 to -200°C	1.0°C **	2.4°C	ITS-90	(+) purple (-) red	(+) brown (-) blue
J	-200 to 760°C	1.1°C	2.3°C	ITS-90	(+) white (-) red	(+) yellow (-) blue
К	-200 to 1372°C -270 to -200°C	1.3°C **	3.4°C	ITS-90	(+) yellow (-) red	(+) brown (-) blue
R	-50 to 1768°C	1.9°C	4.0°C	ITS-90	no standard	(+) white (-) blue
S	-50 to 1768°C	1.9°C	4.0°C	ITS-90	no standard	(+) white (-) blue
В	100 to 300°C 300 to 1820°C	3.9°C 2.8°C	5.7°C 4.4°C	ITS-90	no standard	no standard
Ν	-200 to 1300°C -270 to -200°C	1.3°C **	3.1°C	ITS-90	(+) orange (-) red	(+) orange (-) blue
C (W5/W26)	0 to 2315°C	1.9°C	6.1°C	ASTM E988-90***	no standard	no standard

Ε

*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28 °C and 15 to 75% RH environment; and Accuracy over a 0 to 50 °C and 0 to 85% RH (non condensing) environment. Accuracy specified over the 0 to 50 °C operating range includes meter tempco and ice point tracking effects. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

** The accuracy over the interval -270 to -200 °C is a function of temperature, ranging from 1 °C at -200 °C and degrading to 7 °C at -270 °C. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

*** These curves have been corrected to ITS-90.

ACCESSORIES

UNITS LABEL KIT (PAXLBK) - Not required for PAXT

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled in the programming.

Each PAXT meter is shipped with °F and °C overlay labels which can be installed into the meter's bezel display assembly.

EXTERNAL CURRENT SHUNTS (APSCM)

To measure DC current signals greater than 2 ADC, a shunt must be used. The APSCM010 current shunt converts a maximum 10 ADC signal into 100.0 mV. The APSCM100 current shunt converts a maximum 100 ADC signal into 100.0 mV. The continuous current through the shunt is limited to 115% of the rating.

RTD INPUTS:

Type: 3 or 4 wire, 2 wire can be compensated for lead wire resistance Excitation current: 100 ohm range: 165 μ A 10 ohm range: 2.6 mA Lead resistance: 100 ohm range: 10 ohm/lead max.

10 ohm range: 3 ohms/lead max.

Max. continuous overload: 30 V

INPUT TYPE	RANGE	ACCURACY* (18 to 28 °C)	ACCURACY* (0 to 50 °C)	STANDARD
100 ohm Pt alpha = .00385	-200 to 850°C	0.4°C	1.6°C	IEC 751
100 ohm Pt alpha = .003919	-200 to 850°C	0.4°C	1.6°C	no official standard
120 ohm Nickel alpha = .00672	-80 to 260°C	0.2°C	0.5°C	no official standard
10 ohm Copper alpha = .00427	-100 to 260°C	0.4°C	0.9°C	no official standard

CUSTOM RANGE: Up to 16 data point pairs

Input range: -10 to 65 mV

0 to 400 ohms, high range

0 to 25 ohms, low range Display range: -19999 to 99999

Display lange. 17777 to 77777				
INPUT TYPE	RANGE	ACCURACY* (18 to 28 °C)	ACCURACY* (0 to 50 °C)	
Custom	-10 to 65mV	0.02% of reading	0.12% of reading	
mV range	(1 μV res.)	+ 4µV	+ 5μV	
Custom	0 to 400 Ω	0.02% of reading	0.12% of reading	
100 ohm range	(10 MΩ res.)	+ 0.04 Ω	+ 0.05 Ω	
Custom	0 to 25 Ω	0.04% of reading	0.20% of reading	
10 ohm range	(1 MΩ res.)	+ 0.005 Ω	+ 0.007 Ω	

PROGRAMMING SOFTWARE

The Crimson software is a Windows based program that allows configuration of the PAX meter from a PC. Crimson offers standard drop-down menu commands, that make it easy to program the meter. The meter's program can then be saved in a PC file for future use. A PAX serial plug-in card or PAX USB programming card is required to program the meter using the software. Crimson can be downloaded at www.redlion.net.

OPTIONAL PLUG-IN OUTPUT CARDS

Adding Option Cards

The PAX and MPAX series meters can be fitted with up to three optional plugin cards. The details for each plug-in card can be reviewed in the specification section below. Only one card from each function type can be installed at one time. The function types include Setpoint Alarms (PAXCDS), Communications (PAXCDC), and Analog Output (PAXCDL). The plug-in cards can be installed initially or at a later date.

PAXH Isolation Specifications For All Option Cards

Isolation To Sensor Commons: 1400 Vrms for 1 min.

Working Voltage: 125 V

Isolation to User Input Commons: 500 Vrms for 1 min. Working Voltage 50 V

COMMUNICATION CARDS (PAXCDC)

A variety of communication protocols are available for the PAX and MPAX series. Only one of these cards can be installed at a time. When programming the unit via Crimson, a Windows[®] based program, the RS232, RS485, or USB Cards must be used.

PAXCDC10 - RS485 Serial (Terminal)	PAXCDC30 - DeviceNet
PAXCDC1C - RS485 Serial (Connector)	PAXCDC40 - Modbus (Terminal)
PAXCDC20 - RS232 Serial (Terminal)	PAXCDC4C - Modbus (Connector)
PAXCDC2C - RS232 Serial (Connector)	PAXCDC50 - Profibus-DP
PAXUSB00 - USB (Mini B)	

SERIAL COMMUNICATIONS CARD

Type: RS485 or RS232

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Data: 7/8 bits

Baud: 300 to 19,200

Parity: No, Odd or Even

Bus Address: Selectable 0 to 99, Max. 32 meters per line (RS485) **Transmit Delay**: Selectable for 2 to 50 msec or 50 to 100 msec (RS485)

DEVICENETTM CARD

Compatibility: Group 2 Server Only, not UCMM capable

Baud Rates: 125 Kbaud, 250 Kbaud, and 500 Kbaud

Bus Interface: Phillips 82C250 or equivalent with MIS wiring protection per DeviceNet[™] Volume I Section 10.2.2.

Node Isolation: Bus powered, isolated node

Host Isolation: 500 Vrms for 1 minute (50 V working) between DeviceNet[™] and meter input common.

MODBUS CARD

Type: RS485; RTU and ASCII MODBUS modes

Isolation To Sensor & User Input Commons: 500 Vrms for 1 minute. Working Voltage: 50 V. Not isolated from all other commons.

Baud Rates: 300 to 38400. **Data**: 7/8 bits

Data: //8 Dits

Parity: No, Odd, or Even **Addresses**: 1 to 247.

Transmit Delay: Programmable; See Transmit Delay explanation.

PROFIBUS-DP CARD

Fieldbus Type: Profibus-DP as per EN 50170, implemented with Siemens SPC3 ASIC

Conformance: PNO Certified Profibus-DP Slave Device

Baud Rates: Automatic baud rate detection in the range 9.6 Kbaud to 12 Mbaud **Station Address**: 0 to 125, set by rotary switches.

Connection: 9-pin Female D-Sub connector

Network Isolation: 500 Vrms for 1 minute (50 V working) between Profibus network and sensor and user input commons. Not isolated from all other commons.

PAXUSB PROGRAMMING CARD

Type: USB Virtual Comms Port

Connection: Type mini B

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Baud Rate: 300 to 19.2k

Unit Address: 0 to 99; only 1 meter can be configured at a time

WARNING: Disconnect all power to the unit before installing Plug-in cards.

SETPOINT CARDS (PAXCDS)

The PAX and MPAX series has 4 available setpoint alarm output plug-in cards. Only one of these cards can be installed at a time. (Logic state of the outputs can be reversed in the programming.) These plug-in cards include:

PAXCDS10 - Dual Relay, FORM-C, Normally open & closed PAXCDS20 - Quad Relay, FORM-A, Normally open only PAXCDS30 - Isolated quad sinking NPN open collector PAXCDS40 - Isolated quad sourcing PNP open collector

DUAL RELAY CARD

Type: Two FORM-C relays

Isolation To Sensor & User Input Commons: 2000 Vrms for 1 min. Working Voltage: 240 Vrms

Contact Rating:

One Relay Energized: 5 amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @120 VAC, inductive load.

Total current with both relays energized not to exceed 5 amps

Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD RELAY CARD

Type: Four FORM-A relays

Isolation To Sensor & User Input Commons: 2300 Vrms for 1 min. Working Voltage: 250 Vrms

Contact Rating:

One Relay Energized: 3 amps @ 240 VAC or 30 VDC (resistive load), 1/10 HP @120 VAC, inductive load.

Total current with all four relays energized not to exceed 4 amps

Life Expectancy: 100K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD SINKING OPEN COLLECTOR CARD

Type: Four isolated sinking NPN transistors.Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.Working Voltage: 50 V.Not Isolated from all other commons.Rating: 100 mA max @ $V_{SAT} = 0.7$ V max. $V_{MAX} = 30$ V

QUAD SOURCING OPEN COLLECTOR CARD

Type: Four isolated sourcing PNP transistors.
Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.
Rating: Internal supply: 24 VDC ± 10%, 30 mA max. total External supply: 30 VDC max., 100 mA max. each output

ALL FOUR SETPOINT CARDS

Response Time: 200 msec. max. to within 99% of final readout value (digital filter and internal zero correction disabled)

700 msec. max. (digital filter disabled, internal zero correction enabled)

LINEAR DC OUTPUT (PAXCDL)

Either a 0(4)-20 mA or 0-10 V retransmitted linear DC output is available from the analog output plug-in card. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing the scaling point positions.

PAXCDL10 - Retransmitted Analog Output Card

ANALOG OUTPUT CARD

Types: 0 to 20 mA, 4 to 20 mA or 0 to 10 VDC

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.

Working Voltage: 50 V. Not Isolated from all other commons. Accuracy: 0.17% of FS (18 to 28 °C); 0.4% of FS (0 to 50 °C)

Accuracy: 0.17% 01FS (18 to 28 °C); 0.4% 01FS (0 to 5 **Resolution**: 1/3500

Compliance: 10 VDC: 10 K Ω load min., 20 mA: 500 Ω load max.

Powered: Self-powered (Active)

Update time: 200 msec. max. to within 99% of final output value (digital filter and internal zero correction disabled)

700 msec. max. (digital filter disabled, internal zero correction enabled)

1-717-767-6511

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

2.0 SETTING THE JUMPERS

The meter can have up to four jumpers that must be checked and / or changed prior to applying power. The following Jumper Selection Figures show an enlargement of the jumper area.

To access the jumpers, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Input Range Jumper

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum input to avoid overloads. The selection is different for each meter. See the Jumper Selection Figure for appropriate meter.

Excitation Output Jumper

If your meter has excitation, this jumper is used to select the excitation range for the application. If excitation is not being used, it is not necessary to check or move this jumper.

PAXD Jumper Selection

Input Range Jumper

One jumper is used for voltage/ohms or current input ranges. Select the proper input range high enough to avoid input signal overload. Only one jumper is allowed in this area. Do not have a jumper in both the voltage and current ranges at the same time. Avoid placing the jumper across two ranges.

Main Circuit Board ШЦ шш JUMPER JUMPER LOCATION LOCATION EXCITATION ↓ CURRENT VOLT/ :: USER INPUT OHM

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

User Input Logic Jumper

This jumper selects the logic state of all the user inputs. If the user inputs are not used, it is not necessary to check or move this jumper.

PAXH:

Signal Jumper

This jumper is used to select the signal type. For current signals, the jumper is installed. For voltage signals, remove the jumper from the board. (For 2 V inputs, this removed jumper can be used in the "2 V only" location.)

Couple Jumper

This jumper is used for AC / DC couple. If AC couple, then the jumper is removed from the board. If DC couple is used, then the jumper is installed.

308

www.redlion.net

PAXP Jumper Selection

PAXH Jumper Selection

CAUTION: To maintain the electrical safety of the meter, remove unneeded jumpers completely from the meter. Do not move the jumpers to positions other than those specified.

Signal Jumper

One jumper is used for the input signal type. For current signals, the jumper is installed. For voltage signals, remove the jumper from the board. (For 2 V inputs, this removed jumper can be used in the "2 V only" location.)

Couple Jumper

One jumper is used for AC / DC couple. If AC couple is used, then the jumper is removed from the board. If DC couple is used, then the jumper is installed.

PAXS Jumper Selection

Bridge Excitation

One jumper is used to select bridge excitation to allow use of the higher sensitivity 24 mV input range. Use the 5 V excitation with high output (3 mV/V) bridges. The 5 V excitation also reduces bridge power compared to 10 V excitation.

A maximum of four 350 ohm load cells can be driven by the internal bridge excitation voltage.

Input Range Jumper

For most inputs, one jumper is used to select the input range. However, for the following ranges, set the jumpers as stated:

- 5 A: Remove all jumpers from the input range.
- 2 V: Install one jumper in ".2/2V" position and one jumper in "2 V only".
- All Other Ranges: One jumper in the selected range only.

Do not have a jumper in both the voltage and current ranges at the same time. Avoid placing a jumper across two ranges.

1-717-767-6511

PAXT Jumper Selection

3.0 INSTALLING PLUG-IN CARDS

The plug-in cards are separately purchased optional cards that perform specific functions. These cards plug into the main circuit board of the meter. The plug-in cards have many unique functions when used with the PAX.

CAUTION: The plug-in card and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

To Install:

1. With the meter removed from the case, locate the plug-in card connector for the card type to be installed. The types are keyed by position with different main circuit board connector locations. When installing the card, hold the meter by the rear terminals and not by the front display board.

If installing the Quad sourcing Plug-in Card (PAXCDS40), set the jumper for internal or external supply operation before continuing.

- 2. Install the plug-in card by aligning the card terminals with the slot bay in the rear cover. Be sure the connector is fully engaged and the tab on the plug-in card rests in the alignment slot on the display board.
- 3. Slide the meter base back into the case. Be sure the rear cover latches fully into the case.
- 4. Apply the plug-in card label to the bottom side of the meter in the designated area. Do Not Cover the vents on the top surface of the meter. The surface of the case must be clean for the label to adhere properly.

Ε

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations.Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. With use of the lower input ranges or signal sources with high source impedance, the use of shielded cable may be necessary. This helps to guard against stray AC pick-up. Attach the shield to the input common of the meter. Line voltage monitoring and 5A CT applications do not usually require shielding.
- 3. To minimize potential noise problems, power the meter from the same power branch, or at least the same phase voltage as that of the signal source.
- 4.1 POWER WIRING

- 4. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- 5. Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 6. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000)

TDK # ZCAT3035-1330A

Steward #28B2029-0A0

Line Filters for input power cables: Schaffner # FN610-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VR3

- Note: Reference manufacturer's instructions when installing a line filter.
- Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC#SNUB0000.

4.2 INPUT SIGNAL WIRING

PAXD INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper and Excitation Jumper should be verified for proper position.

С С

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

E

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

PAXP INPUT SIGNAL WIRING

ЕΖ

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

PAXH INPUT SIGNAL WIRING

Before connecting signal wires, the Signal, Input Range and Couple Jumpers should be verified for proper position.

1. Where possible, connect the neutral side of the signal (including current shunts) to the input common of the meter. If the input signal is sourced from an active circuit, connect the lower impedance (usually circuit common) to the input signal common of the meter.

2. For phase-to-phase line monitoring where a neutral does not exist, or for any other signal input in which the isolation voltage rating is exceeded, an isolating potential transformer must be used to isolate the input voltage from earth. With the transformer, the input common of the meter can then be earth referenced for safety.

3. When measuring line currents, the use of a current transformer is recommended. If using external current shunts, insert the shunt in the neutral return line. If the isolation voltage rating is exceeded, the use of an isolating current transformer is necessary.

PAXS INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

DEADLOAD COMPENSATION

In some cases, the combined deadload and liveload output may exceed the range of the 24 mV input. To use this range, the output of the bridge can be offset a small amount by applying a fixed resistor across one arm of the bridge. This shifts the electrical output of the bridge downward to within the operating range of the meter. A 100 K ohm fixed resistor shifts the bridge output approximately -10 mV (350 ohm bridge, 10 V excitation).

Connect the resistor between +SIG and -SIG. Use a metal film resistor with a low temperature coefficient of resistance.

PAXT INPUT SIGNAL WIRING

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

4.3 USER INPUT WIRING

Before connecting the wires, the User Input Logic Jumper should be verified for proper position. If not using User Inputs, then skip this section. Only the appropriate User Input terminal has to be wired.

Sinking Logic

Terminal 8-10: Terminal 7: Connect external switching device between appropriate User Input terminal and User Comm.

In this logic, the user inputs of the meter are internally pulled up to +5 V with 22 K resistance. The input is active when it is pulled low (<0.9 V).

Sourcing Logic

Terminal 8-10: + VDC thru external switching device Terminal 7: -VDC thru external switching device

BRIDGE COMPLETION RESISTORS

temperature coefficient of resistance.

For single strain gage applications, bridge completion resistors must be

Load cells and pressure transducers are normally implemented as full

employed externally to the meter. Only use metal film resistors with a low

resistance bridges and do not require bridge completion resistors.

In this logic, the user inputs of the meter are internally pulled down to 0 V with 22 K resistance. The input is active when a voltage greater than 3.6 VDC is applied.

Ε

PAXH ONLY

4.4 SETPOINT (ALARMS) WIRING 4.5 SERIAL COMMUNICATION WIRING

4.6 ANALOG OUTPUT WIRING

See appropriate plug-in card bulletin for details.

5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

KEY DISPLAY MODE OPERATION

- DSP Index display through max/min/total/input readouts
- PAR Access parameter list
- F1▲ Function key 1; hold for 3 seconds for Second Function 1**
- F2▼ Function key 2; hold for 3 seconds for Second Function 2**
- **RST** Reset (Function key)**
- * Display Readout Legends may be locked out in Factory Settings.
- ** Factory setting for the F1, F2, and RST keys is NO mode.

PROGRAMMING MODE OPERATION

Quit programming and return to display mode Store selected parameter and index to next parameter Increment selected parameter value Decrement selected parameter value Hold with F1▲, F2▼ to scroll value by x1000

6.0 PROGRAMMING THE METER

DISPLAY MODE

The meter normally operates in the Display Mode. In this mode, the meter displays can be viewed consecutively by pressing the **DSP** key. The annunciators to the left of the display indicate which display is currently shown; Max Value (MAX), Min Value (MIN), or Totalizer Value (TOT). Each of these displays can be locked from view through programming. (See Module 3) The Input Display Value is shown with no annunciator.

PROGRAMMING MODE

Two programming modes are available.

- **Full Programming Mode** permits all parameters to be viewed and modified. Upon entering this mode, the front panel keys change to Programming Mode operations. This mode should not be entered while a process is running, since the meter functions and User Input response may not operate properly while in Full Programming Mode.
- Quick Programming Mode permits only certain parameters to be viewed and/ or modified. When entering this mode, the front panel keys change to Programming Mode operations, and all meter functions continue to operate properly. Quick Programming Mode is configured in Module 3. The Display Intensity Level "d-LEu" parameter is available in the Quick Programming Mode only when the security code is non-zero. For a description, see Module 9—Factory Service Operations. Throughout this document, Programming Mode (without Quick in front) always refers to "Full" Programming Mode.

PROGRAMMING TIPS

The Programming Menu is organized into nine modules (See above). These modules group together parameters that are related in function. It is recommended to begin programming with Module 1 and proceed through each module in sequence. Note that Modules 6 through 8 are only accessible when the appropriate plug-in option card is installed. If lost or confused while programming, press the **DSP** key to exit programming mode and start over. When programming is complete, it is recommended to record the meter settings on the Parameter Value Chart and lock-out parameter programming with a User Input or lock-out code. (See Modules 2 and 3 for lock-out details.)

FACTORY SETTINGS

Factory Settings may be completely restored in Module 9. This is a good starting point if encountering programming problems. Throughout the module description sections which follow, the factory setting for each parameter is shown below the parameter display. In addition, all factory settings are listed on the Parameter Value Chart following the programming section.

ALTERNATING SELECTION DISPLAY

In the module description sections which follow, the dual display with arrows appears for each programming parameter. This is used to illustrate the display alternating between the parameter (top display) and the parameter's Factory Setting (bottom display). In most cases, selections or value ranges for the parameter will be listed on the right.

STEP BY STEP PROGRAMMING INSTRUCTIONS:

PROGRAMMING MODE ENTRY (PAR KEY)

The Programming Mode is entered by pressing the **PAR** key. If this mode is not accessible, then meter programming is locked by either a security code or a hardware lock. (See Modules 2 and 3 for programming lock-out details.)

MODULE ENTRY (ARROW & PAR KEYS)

Upon entering the Programming Mode, the display alternates between Pra and the present module (initially πB). The arrow keys (F1 \blacktriangle and F2 \blacktriangledown) are used to select the desired module, which is then entered by pressing the **PAR** key.

PARAMETER (MODULE) MENU (PAR KEY)

Each module has a separate parameter menu. These menus are shown at the start of each module description section which follows. The **PAR** key is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to P_{ro} n_0 . From this point, programming may continue by selecting and entering additional modules. (See **MODULE ENTRY** above.)

PARAMETER SELECTION ENTRY (ARROW & PAR KEYS)

For each parameter, the display alternates between the parameter and the present selection or value for that parameter. For parameters which have a list of selections, the arrow keys (F1 \blacktriangle and F2 \checkmark) are used to sequence through the list until the desired selection is displayed. Pressing the PAR key stores and activates the displayed selection, and also advances the meter to the next parameter.

NUMERICAL VALUE ENTRY (ARROW, RST & PAR KEYS)

For parameters which require a numerical value entry, the arrow keys can be used to increment or decrement the display to the desired value. When an arrow key is pressed and held, the display automatically scrolls up or scrolls down. The longer the key is held, the faster the display scrolls.

The **RST** key can be used in combination with the arrow keys to enter large numerical values. When the **RST** key is pressed along with an arrow key, the display scrolls by 1000's. Pressing the **PAR** key stores and activates the displayed value, and also advances the meter to the next parameter.

PROGRAMMING MODE EXIT (DSP KEY or PAR KEY at Pro III)

The Programming Mode is exited by pressing the **DSP** key (from anywhere in the Programming Mode) or the **PAR** key (with *Pro ntl* displayed). This will commit any stored parameter changes to memory and return the meter to the Display Mode. If a parameter was just changed, the **PAR** key should be pressed to store the change before pressing the **DSP** key. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

1-717-767-6511

Refer to the appropriate Input Range for the selected meter. Use only one Input Range, then proceed to Display Decimal Point.

PAXD INPUT RANGE						
г ЯЛБЕ 🖘	SELECTION	RANGE RESOLUTION	SELECTION	RANGE RESOLUTION		
₩ 300 .	200. R	±200.00 μA	2	±2.0000 V		
v 2000	0,002R	±2.0000 mA	20	±20.000 V		
	0,02R	±20.000 mA	300	±300.00 V		
	0,2R	±200.00 mA	1000	100.00 ohm		
	28	±2.0000 A	10000	1000.0 ohm		
	0,2	±200.00 mV	1040	10000 ohm		

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

PAXP INPUT RANGE

r A	ПБЕ	ናኪ	SELECTION	RANGE RESOLUTION
1] 0	0,02R	20.000 mA
$\mathbf{\nabla}$	U,U L	. / /	ίΠ.,	10.000 V

Select the input range that corresponds to the external signal.

PAXH INPUT RANGE

<u>г ЯЛБЕ</u> 🕤	SELECTION	RANGE RESOLUTION	SELECTION	RANGE RESOLUTION
	0,2 u	200.00 mV	0,002R	2.0000 mA
אכ 🗢	2	2.0000 V	0,02R	20.000 mA
	20.	20.000 V	0,2R	200.00 mA
	300.	300.0 V	58	5.000 A
	2008	200.00 µA		

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

PAXH INPUT COUPLE

The input signal can be either AC coupled (rejecting the DC components of the signal) or DC coupled (measures both the AC and DC components of the signal). The coupling jumper and the setting of this parameter must match.

PAXS INPUT RANGE

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

PAXT INPUT TYPE

Ł YPE 🕤	SELECTION	TYPE	SELECTION	TYPE
M. M.	£c-£	T TC	£6-6	C TC
A EC.1	Ec-E	E TC	PE 385	RTD platinum 385
	Fe-7	J TC	PE 392	RTD platinum 392
	Ec-Y	K TC	Л ,Б 72	RTD nickel 672
	te-r	R TC	[1427	RTD copper 10 Ω
	Łc-5	S TC	[5-Ec	Custom TC
	£c-b	B TC	[5-rH	Custom RTD High
	fr-u	N TC	[5-rl	Custom RTD Low

Select the input type that corresponds to the input sensor. For RTD types, check the RTD Input Jumper for matching selection. For custom types, the Temperature Scale parameter is not available, the Display Decimal Point is expanded, and Custom Sensor Scaling must be completed.

PAXT TEMPERATURE SCALE

of o[

Select the temperature scale. This selection applies for Input, MAX, MIN, and TOT displays. This does not change the user installed Custom Units Overlay display. If changed, those parameters that relate to the temperature scale should be checked. This selection is not available for custom sensor types.

Select the decimal point location for the Input, **MAX** and **MIN** displays. (The **TOT** display decimal point is a separate parameter.) This selection also affects *raund*, *d5P1* and *d5P2* parameters and setpoint values.

Rounding selections other than one, cause the Input Display to 'round' to the nearest rounding increment selected (ie. rounding of '5' causes 122 to round to 120 and 123 to round to 125). Rounding starts at the least significant digit of the Input Display. Remaining parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection.

PAXT: TEMPERATURE DISPLAY OFFSET*

- 19999 to 99999

The temperature display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the affects of offset.

FILTER SETTING*

0,0 to 25,0 seconds

The input filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of '0' disables filtering.

FILTER BAND*

0.0 to 25.0 display units

The digital filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units. A band setting of '0' keeps the digital filter permanently engaged.

For the PAXT, the following parameters only apply to Custom Sensor Scaling.

PAXT: ICE POINT SLOPE

This parameter sets the slope value for ice point compensation for the Custom TC range ($[5-\epsilon_c)$ only. The fixed thermocouple ranges are automatically compensated by the meter and do not require this setting. To calculate this slope, use μ V data obtained from thermocouple manufacturers' tables for two points between 0°C and 50°C. Place this corresponding μ V and °C information into the equation:

slope = $(\mu V_2 - \mu V_1)/({}^{\circ}C_2 - {}^{\circ}C_1)$.

Due to the nonlinear output of thermocouples, the compensation may show a small offset error at room temperatures. This can be compensated by the offset parameter. A value of 0 disables internal compensation when the thermocouple is externally compensated.

* Factory Setting can be used without affecting basic start-up.

2 to 15

Linear - Scaling Points (2)

For linear processes, only 2 scaling points are necessary. It is recommended that the 2 scaling points be at opposite ends of the input signal being applied. The points do not have to be the signal limits. Display scaling will be linear between and continue past the entered points up to the limits of the Input Signal Jumper position. Each scaling point has a coordinate-pair of Input Value ($t\Pi P$) and an associated desired Display Value (dSP).

Nonlinear - Scaling Points (Greater than 2)

For non-linear processes, up to 16 scaling points may be used to provide a piece-wise linear approximation. (The greater the number of scaling points used, the greater the conformity accuracy.) The Input Display will be linear between scaling points that are sequential in program order. Each scaling point has a coordinate-pair of Input Value ($l\pi P$) and an associated desired Display Value (d5P). Data from tables or equations, or empirical data could be used to derive the required number of segments and data values for the coordinate pairs. In the SFPAX software, several linearization equations are available.

SCALING STYLE

This parameter does not apply for the PAXT. Scaling values for the PAXT must be keyed-in.

If Input Values and corresponding Display Values are known, the Key-in (*PEY*) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (*RPLY*) scaling style must be used. After using the Apply (*RPLY*) scaling style, this parameter will default back to *PEY* but the scaling values will be shown from the previous applied method.

INPUT VALUE FOR SCALING POINT 1

- 19999 to 99999

For Key-in (PEJ), enter the known first Input Value by using the arrow keys. The Input Range selection sets up the decimal location for the Input Value. With 0.02A Input Range, 4mA would be entered as 4.000. For Apply (*RPLJ*), apply the input signal to the meter, adjust the signal source externally until the desired Input Value appears. In either method, press the **PAR** key to enter the value being displayed.

Note: **RPLY** style - Pressing the **RST** key will advance the display to the next scaling display point without storing the input value.

DISPLAY VALUE FOR SCALING POINT 1

- 19999 to 99999

Enter the first coordinating Display Value by using the arrow keys. This is the same for *PEY* and *RPLY* scaling styles. The decimal point follows the *dELPL* selection.

INPUT VALUE FOR SCALING POINT 2

- 19999 to 99999

For Key-in (PEY), enter the known second Input Value by using the arrow keys. For Apply (RPLY), adjust the signal source externally until the next desired Input Value appears. (Follow the same procedure if using more than 2 scaling points.)

DISPLAY VALUE FOR SCALING POINT 2

- 19999 to 99999

Enter the second coordinating Display Value by using the arrow keys. This is the same for *PEY* and *RPLY* scaling styles. (Follow the same procedure if using more than 2 scaling points.)

General Notes on Scaling

- Input Values for scaling points should be confined to the limits of the Input Range Jumper position.
- 2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA can not equal 0 and 10.)

This is referred to as read out jumps (vertical scaled segments).

3. The same Display Value can correspond to more than one Input Value. (Example: 0 mA and 20 mA can equal 10.)

- 4. The maximum scaled Display Value spread between range maximum and minimum is limited to 65,535. For example using +20 mA range the maximum +20 mA can be scaled to is 32,767 with 0 mA being 0 and Display Rounding of 1. (Decimal points are ignored.) The other half of 65,535 is for the lower half of the range 0 to -20 mA even if it is not used. With Display Rounding of 2, +20 mA can be scaled for 65,535 (32,767 x 2) but with even Input Display values shown.
- 6. For input levels beyond the last programmed Input Value, the meter extends the Display Value by calculating the slope from the last two sequential coordinate pairs. If three coordinate pair scaling points were entered, then the Display Value calculation would be between INP2 / d5P2 & INP3 / d5P3. The calculations stop at the limits of the Input Range Jumper position.

6.2 MODULE 2 - USER INPUT AND FRONT PANEL FUNCTION KEY PARAMETERS (2-FILE)

The three user inputs are individually programmable to perform specific meter control functions. While in the Display Mode or Program Mode, the function is executed the instant the user input transitions to the active state.

The front panel function keys are also individually programmable to perform specific meter control functions. While in the Display Mode, the primary function is executed the instant the key is pressed. Holding the function key for three seconds executes a secondary function. It is possible to program a secondary function without a primary function.

In most cases, if more than one user input and/or function key is programmed for the same function, the maintained (level trigger) actions will be performed while at least one of those user inputs or function keys are activated. The momentary (edge trigger) actions will be performed every time any of those user inputs or function keys transition to the active state.

Note: In the following explanations, not all selections are available for both user inputs and front panel function keys. Alternating displays are shown with each selection. Those selections showing both displays are available for both. If a display is not shown, it is not available for that selection. USr - 1 will represent all three user inputs. F 1 will represent all five function keys.

NO FUNCTION

ΠE

No function is performed if activated. This is the factory setting for all user inputs and function keys. No function can be selected without affecting basic start-up.

PROGRAMMING MODE LOCK-OUT

Programming Mode is locked-out, as long as activated (maintained action). A security code can be configured to allow programming access during lock-out.

ZERO (TARE) DISPLAY

rEL

The Zero (Tare) Display provides a way to zero the Input Display value at various input levels, causing future Display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), *rE5EE* flashes and the Display is set to zero. At the same time, the Display value (that was on the display before the Zero Display) is subtracted from the Display Offset Value and is automatically stored as the new Display Offset Value (*lBFF5E*). If another Zero (tare) Display is performed, the display will again change to zero and the Display reading will shift accordingly.

RELATIVE/ABSOLUTE DISPLAY

This function will switch the Input Display between Relative and Absolute. The Relative is a net value that includes the Display Offset Value. The Input Display will normally show the Relative unless switched by this function. Regardless of the display selected, all meter functions continue to operate based on relative values. The Absolute is a gross value (based on Module 1 **DSP** and **INP** entries) without the Display Offset Value. The Absolute display is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input display switches back to Relative display. **Rb5** (absolute) or rEL (relative) is momentarily displayed at transition to indicate which display is active.

This is referred to as readout dead zones (horizontal scaled segments).

HOLD DISPLAY

The shown display is held but all other meter functions continue as long as activated (maintained action).

HOLD ALL FUNCTIONS

The meter disables processing the input, holds all display contents, and locks the state of all outputs as long as activated (maintained action). The serial port continues data transfer.

SYNCHRONIZE METER READING

The meter suspends all functions as long as activated (maintained action). When the user input is released, the meter synchronizes the restart of the A/D with other processes or timing events.

STORE BATCH READING IN TOTALIZER

仑 **b**RE

The Input Display value is one time added (batched) to the Totalizer at transition to activate (momentary action). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. When this function is selected, the normal operation of the Totalizer is overridden.

USr - 1

SELECT TOTALIZER DISPLAY

The Totalizer display is selected as long as activated (maintained action). When the user input is released, the Input Display is returned. The DSP key overrides the active user input. The Totalizer continues to function including associated outputs independent of being displayed.

RESET TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer then continues to operate as it is configured. This selection functions independent of the selected display.

RESET AND ENABLE TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

ENABLE TOTALIZER

The Totalizer continues to operate as long as activated (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

SELECT MAXIMUM DISPLAY

The Maximum display is selected as long as activated (maintained action). When the user input is released, the Input Display returns. The DSP key overrides the active user input. The Maximum continues to function independent of being displayed.

RESET MAXIMUM

When activated (momentary action), rESEL flashes and the Maximum resets to the present Input Display value. The Maximum function then continues from that value. This selection functions independent of the selected display.

RESET, SELECT, ENABLE MAXIMUM DISPLAY

When activated (momentary action), the Maximum value is set to the present Input Display value. Maximum continues from that value while active (maintained action). When the user input is released, Maximum detection stops and holds its value. This selection functions independent of the selected display. The DSP key overrides the active user input display but not the Maximum function.

SELECT MINIMUM DISPLAY

The Minimum display is selected as long as activated (maintained action). When the user input is released, the Input Display is returned. The **DSP** key overrides the active user input. The Minimum continues to function independent of being displayed.

RESET MINIMUM

When activated (momentary action), rESEL flashes and the Minimum reading is set to the present Input Display value. The Minimum function then continues from that value. This selection functions independent of the selected display.

RESET, SELECT, ENABLE MINIMUM DISPLAY

When activated (momentary action), the Minimum value is set to the present Input Display value. Minimum continues from that value while active (maintained action). When the user input is released, Minimum detection stops and holds its value. This selection functions independent of the selected display. The DSP key overrides the active user input display but not the Minimum function.

RESET MAXIMUM AND MINIMUM

	-	
USr - 1 m		F 1 🕤
♥ r - HL	₽\$[r-HL

When activated (momentary action), rESEL flashes and the Maximum and Minimum readings are set to the present Input Display value. The Maximum and Minimum function then continues from that value. This selection functions independent of the selected display.

CHANGE DISPLAY INTENSITY LEVEL

When activated (momentary action), the display intensity changes to the next intensity level (of 4). The four levels correspond to Display Intensity Level (d-LEu) settings of 0, 3, 8, and 15. The intensity level, when changed via the User Input/ Function Key, is not retained at power-down, unless Quick Programming or Full Programming mode is entered and exited. The meter will power-up at the last saved intensity level.

SETPOINT SELECTIONS

The following selections are accessible only with the Setpoint plug-in card installed. Refer to Module 6 for an explanation of their operation.

PRINT REQUEST

The meter issues a block print through the serial port when activated. The data transmitted during a print request is programmed in Module 7. If the user input is still active after the transmission is complete (about 100 msec), an additional transmission occurs. As long as the user input is held active, continuous transmissions occur

6.3 MODULE 3 - DISPLAY AND PROGRAM LOCK-OUT PARAMETERS (3-LOC) 3-100 PARAMETER MENU Pro PAR 58-1 59-2 58-3 5P-4 LŨ ŁŨŁ X (EodE Max Display Min Display Total Display Security Setpoint 1

Access

Setpoint 2

Access

Setpoint 3

Access

Module 3 is the programming for Display lock-out and "Full" and "Quick" Program lock-out.

Lock-out

Lock-out

Lock-out

When in the Display Mode, the available displays can be read consecutively by repeatedly pressing the DSP key. An annunciator indicates the display being shown. These displays can be locked from being visible. It is recommended that the display be set to LOC when the corresponding function is not used.

SELECTION	DESCRIPTION
rEd	Visible in Display Mode
LOC	Not visible in Display Mode

"Full" Programming Mode permits all parameters to be viewed and modified. This Programming Mode can be locked with a security code and/or user input. When locked and the PAR key is pressed, the meter enters a Quick Programming Mode. In this mode, the setpoint values can still be read and/or changed per the selections below. The Display Intensity Level (d-LEU) parameter also appears whenever Quick Programming Mode is enabled and the security code is greater than zero.

SELECTION	DESCRIPTION
r E d	Visible but not changeable in Quick Programming Mode
ЕЛЬ	Visible and changeable in Quick Programming Mode
LOC	Not visible in Quick Programming Mode

Factory Setting can be used without affecting basic start-up.

MAXIMUM DISPLAY LOCK-OUT* **MINIMUM DISPLAY LOCK-OUT* TOTALIZER DISPLAY LOCK-OUT***

Code

Setpoint 4

Access

These displays can be programmed for LOC or rEd. When programmed for LOC, the display will not be shown when the DSP key is pressed regardless of Program Lock-out status. It is suggested to lock-out the display if it is not needed. The associated function will continue to operate even if its display is locked-out.

SP-1 SP-2 SP-3 SP-4 SETPOINT ACCESS*

The setpoint displays can be programmed for LOC, rEd or ERE (See the following table). Accessible only with the Setpoint plug-in card installed.

PROGRAM MODE SECURITY CODE*

0

0 to 250

By entering any non-zero value, the prompt **LodE 2** will appear when trying to access the Program Mode. Access will only be allowed after entering a matching security code or universal code of 222. With this lock-out, a user input would not have to be configured for Program Lock-out. However, this lock-out is overridden by an inactive user input configured for Program Lock-out.

PROGRAMMING MODE ACCESS

SECURITY CODE	USER INPUT CONFIGURED	USER INPUT STATE	WHEN PAR KEY IS PRESSED	"FULL" PROGRAMMING MODE ACCESS
0	not PLOC		"Full" Programming	Immediate access.
>0	not PLOC		Quick Programming w/Display Intensity	After Quick Programming with correct code # at [Ide prompt
>0	PLOC	Active	Quick Programming w/Display Intensity	After Quick Programming with correct code # at [Ide prompt
>0	PLOC	Not Active	"Full" Programming	Immediate access.
0	PLOC	Active	Quick Programming	No access
0	PLOC	Not Active	"Full" Programming	Immediate access.

Throughout this document, Programming Mode (without Quick in front) always refers to "Full" Programming (all meter parameters are accessible).

www.redlion.net

6.4 MODULE 4 - SECONDARY FUNCTION PARAMETERS (4-5EE)

MAX CAPTURE DELAY TIME*

0,0 to 3275,0 sec.

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN CAPTURE DELAY TIME*

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

0.0 to 3275.0 sec.

This parameter determines the rate of display update. When set to 20 updates/second, the internal re-zero compensation is disabled, allowing for the fastest possible output response.

0 to 250 sec.

PAXS: AUTO-ZERO BAND

R	l - Р 🕁	1 to 4095
\mathcal{P}	20.0	

The meter can be programmed to automatically compensate for zero drift. Drift may be caused by changes in the transducers or electronics, or accumulation of material on weight systems.

Auto-zero tracking operates when the readout remains within the tracking band for a period of time equal to the tracking delay time. When these conditions are met, the meter re-zeroes the readout. After the re-zero operation, the meter resets and continues to auto-zero track.

The auto-zero tracking band should be set large enough to track normal zero drift, but small enough to not interfere with small process inputs.

For filling operations, the fill rate must exceed the auto-zero tracking rate. This avoids false tracking at the start of the filling operation.

Fill Rate \geq tracking band tracking time

Auto-zero tracking is disabled by setting the auto-zero tracking parameter = 0.

UNITS LABEL BACKLIGHT*

OFF

The Units Label Kit Accessory contains a sheet of custom unit overlays which can be installed in to the meter's bezel display assembly. The backlight for these custom units is activated by this parameter.

DISPLAY OFFSET VALUE*

This parameter does not apply for the PAXT.

Unless a Zero Display was performed or an offset from Module 1 scaling is desired, this parameter can be skipped. The Display Offset Value is the difference from the Absolute (gross) Display value to the Relative (net) Display value for the same input level. The meter will automatically update this Display Offset Value after each Zero Display. The Display Offset Value can be directly keyed-in to intentionally add or remove display offset. See Relative / Absolute Display and Zero Display explanations in Module 2.

This parameter turns the internal ice point compensation on or off. Normally, the ice point compensation is on. If using external compensation, set this parameter to off. In this case, use copper leads from the external compensation point to the meter. If using Custom TC range, the ice point compensation can be adjusted by a value in Module 1 when this is yes.

* Factory Setting can be used without affecting basic start-up.

6.5 MODULE 5 - TOTALIZER (INTEGRATOR) PARAMETERS (5-EDE)

The totalizer accumulates (integrates) the Input Display value using one of two modes. The first is using a time base. This can be used to compute a timetemperature product. The second is through a user input or function key programmed for Batch (one time add on demand). This can be used to provide a readout of temperature integration, useful in curing and sterilization applications. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

TOTALIZER DECIMAL POINT*

For most applications, this matches the Input Display Decimal Point (dELPk). If a different location is desired, refer to Totalizer Scale Factor.

TOTALIZER TIME BASE

This is the time base used in Totalizer accumulations. If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER SCALE FACTOR*

For most applications, the Totalizer reflects the same decimal point location and engineering units as the Input Display. In these cases, the Totalizer Scale Factor is 1.000. The Totalizer Scale Factor can be used to scale the Totalizer to a different value than the Input Display. Common possibilities are:

1. Changing decimal point location (example tenths to whole)

0.00 / to 65.000

2. Average over a controlled time frame.

Details on calculating the scale factor are shown later.

If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

Locut & & -19999

TOTALIZER LOW CUT VALUE*

- (9999 to 99999

A low cut value disables Totalizer when the Input Display value falls below the value programmed.

TOTALIZER POWER UP RESET*

eset buffer

P	'- <i>'IP</i> 🕤	ПО	Do not reset
\mathcal{P}	ПО	r 5E	Reset buffer

The Totalizer can be reset to zero on each meter power-up by setting this parameter to reset.

* Factory Setting can be used without affecting basic start-up.

TOTALIZER HIGH ORDER DISPLAY

When the total exceeds 5 digits, the front panel annunciator **TOT** flashes. In this case, the meter continues to totalize up to a 9 digit value. The high order 4 digits and the low order 5 digits of the total are displayed alternately. The letter "h" denotes the high order display. When the total exceeds a 9 digit value, the Totalizer will show "E . . ." and will stop.

TOTALIZER BATCHING

The Totalizer Time Base and scale factor are overridden when a user input or function key is programmed for store batch (bRt). In this mode, when the user input or function key is activated, the Input Display reading is one time added to the Totalizer (batch). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. This is useful in weighing operations, when the value to be added is not based on time but after a filling event.

TOTALIZER USING TIME BASE

Totalizer accumulates as defined by:

Input Display x Totalizer Scale Factor Totalizer Time Base

Where:

Input Display - the present input reading Totalizer Scale Factor - 0.001 to 65.000 Totalizer Time Base - (the division factor of **LbR5E**)

Example: The input reading is at a constant rate of 10.0 gallons per minute. The Totalizer is used to determine how many gallons in tenths has flowed. Because the Input Display and Totalizer are both in tenths of gallons, the Totalizer Scale Factor is 1. With gallons per minute, the Totalizer Time Base is minutes (60). By placing these values in the equation, the Totalizer will accumulate every second as follows:

 $10.0 \ge 1.000 = 0.1667$ gallon accumulates each second

60 This results in: 10.0 gallons accumulates each minute 600.0 gallons accumulates each hour

TOTALIZER SCALE FACTOR CALCULATION EXAMPLES

1. When changing the Totalizer Decimal Point (**dELPL**) location from the Input Display Decimal Point (**dELPL**), the required Totalizer Scale Factor is multiplied by a power of ten. Example:

Input (de	(EP E) = ()	Input $(dECPE) = 0.0$			nput (dEE	(PE) = 0.0
Totalizer dEEPE	Scale Factor		Totalizer	Scale Factor		Totalizer dECPE	Scale Factor
0.0	10		0.00	10		0.000	10
0	1		0.0	1		0.00	1
x10	0.1		0	0.1		0.0	0.1
x100	0.01		x10	0.01		0	0.01
x1000	0.001		x100	0.001		x10	0.001

(x = Totalizer display is round by tens or hundreds)

2. To obtain an average reading within a controlled time frame, the selected Totalizer Time Base is divided by the given time period expressed in the same timing units.

Example: Average temperature per hour in a 4 hour period, the scale factor would be 0.250. To achieve a controlled time frame, connect an external timer to a user input programmed for *rtat2*. The timer will control the start (reset) and the stopping (hold) of the totalizer.

www.redlion.net

abla - A setpoint card must be installed in order to access this module.

Depending on the card installed, there will be two or four setpoint outputs available. For maximum input frequency, unused Setpoints should be configured for **DFF** action.

The setpoint assignment and the setpoint action determine certain setpoint feature availability.

SETPOINT SELECT

Setpoint Alarm Figures

Enter the setpoint (alarm output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to **5P5EL ND**. Repeat step for each setpoint to be programmed. The **ND** chosen at **5P5EL** will return to **PND ND**. The number of setpoints available is setpoint output card dependent.

SETPOINT ACTION

RcŁ	- n 🖒	OF F	ЯЬ-Ж (R6-L0	RU-H I	RU-L0
\$	OFF	9E - H 1	dE-10	ьяла	totlo	FOFH 1

Enter the action for the selected setpoint (alarm output). See Setpoint Alarm Figures for a visual detail of each action.

- **DFF** = Setpoint always off, (returns to SPSEL NO)
- Rb-Ht = Absolute high, with balanced hysteresis
- Rb LG = Absolute low, with balanced hysteresis
- RU-HI = Absolute high, with unbalanced hysteresis
- **RU-LO** = Absolute low, with unbalanced hysteresis
- dE-H = Deviation high, with unbalanced hysteresis *
- dE-LO = Deviation low, with unbalanced hysteresis *
- **bRnd** = Outside band, with unbalanced hysteresis *
- Lotto = Lower Totalizer absolute high, unbalance hysteresis**
- **LOLH** = Upper Totalizer absolute high, unbalance hysteresis**

* Deviation and band action setpoints are relative to the value of setpoint 1. It is not possible to configure setpoint 1 as deviation or band actions. It is possible to use setpoint 1 for an absolute action, while its value is being used for deviation or band.

** The lower Totalizer action koklo allows setpoints to function off of the lower 5 digits of the Totalizer. The upper Totalizer action kokHI allows setpoints to function off of the upper 4 digits of the Totalizer. To obtain absolute low alarms for the Totalizer, program the koklo or kokHI output logic as reverse.

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

323

Ε

SETPOINT VALUE

- 19999 to 99999

Enter desired setpoint alarm value. These setpoint values can also be entered in the Display Mode during Program Lock-out when the setpoint is programmed as Ent in Parameter Module 3. When a setpoint is programmed as deviation or band acting, the associated output tracks 5Pt as it is changed. The value entered is the offset, or difference from 5Pt.

HYSTERESIS VALUE

۲ı	15-n	প্ম
\mathcal{O}	0.	82

t to **55000**

Enter desired hysteresis value. See Setpoint Alarm Figures for visual explanation of how setpoint alarm actions (balance and unbalance) are affected by the hysteresis. When the setpoint is a control output, usually balance hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

Enter the time value in seconds that the alarm is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is rE_u , this becomes off time delay. Any time accumulated at power-off resets during power-up.

Ε

OFF TIME DELAY

0.0 to 3275.0 sec.

Enter the time value in seconds that the alarm is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is $r E_u$, this becomes on time delay. Any time accumulated at power-off resets during power-up.

OUTPUT LOGIC

nor rEu

Enter the output logic of the alarm output. The *nar* logic leaves the output operation as normal. The *rEu* logic reverses the output logic. In *rEu*, the alarm states in the Setpoint Alarm Figures are reversed.

RESET ACTION

Ruto

LREE 1

LREC2

Enter the reset action of the alarm output.

 $R_{ubc} =$ Automatic action; This action allows the alarm output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Alarm Figures. The "on" alarm may be manually reset (off) immediately by a front panel function key or user input. The alarm remains reset off until the trigger point is crossed again.

LREL I = Latch with immediate reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or

maintained), the corresponding "on" alarm output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

LREC2 = Latch with delay reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the meter delays the event until the corresponding "on" alarm output crosses the trigger off point. (Previously latched alarms are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous Latch 2 reset if it is not activated at power up.)

STANDBY OPERATION

When **JE5**, the alarm is disabled (after a power up) until the trigger point is crossed. Once the alarm is on, the alarm operates normally per the Setpoint Action and Reset Mode.

SETPOINT ANNUNCIATORS

The **UFF** mode disables display setpoint annunciators. The **nor** mode displays the corresponding setpoint annunciators of "on" alarm outputs. The **rEu** mode displays the corresponding setpoint annunciators of "off" alarms outputs. The **FLR5H** mode flashes the corresponding setpoint annunciators of "on" alarm outputs.

Enter the probe burn-out action. In the event of a temperature probe failure, the alarm output can be programmed to go on or off.

Alternate Setpoints

An Alternate list of setpoint values can be stored and recalled as needed. The Alternate list allows an additional set of setpoint values. (The setpoint numbers nor rear terminal numbers will change in the Alternate list.) The Alternate list can only be activated through a function key or user input programmed for **L** 15**L** in Module 2. When the Alternate list is selected, the Main list is stored and becomes inactive. When changing between Main and Alternate, the alarm state of Auto Reset Action alarms will always follow their new value. Latched "on" alarms will always stay latched during the function key or user input transition does the display indicate which list is being used.

www.redlion.net

6.7 MODULE 7 - SERIAL COMMUNICATIONS PARAMETERS (7-5-L) PARAMETER MENU Pro 7-5-L PAXS PAXS PAR ONLY ONLY 18 F 8 PRr Rddr Rbru OPŁ 6ro55 ERrE ПР X IL D SPRE ЪЯШЬ Łoł Baud Data Parity Meter Abbreviated Print Gross Tare Print Input Print Total Print Max Print Setpoint Values Rate Bit Bit Address Printing Options Value Value & Min Values

¢,

 ∇ - A communication card must be installed in order to access this module.

Set the baud rate to match that of other serial communications equipment. Normally, the baud rate is set to the highest value that all of the serial communications equipment is capable of transmitting.

Select either 7 or 8 bit data word lengths. Set the word length to match that of other serial communication equipment. Since the meter receives and transmits 7-bit ASCII encoded data, 7 bit word length is sufficient to request and receive data from the meter.

Set the parity bit to match that of the other serial communications equipment used. The meter ignores the parity when receiving data, and sets the parity bit for outgoing data. If no parity is selected with 7-bit word length the meter transmits and receives data with 2 stop bits. (For example: 10 bit frame with mark parity)

Enter the serial node address. With a single unit on a bus, an address is not needed and a value of zero can be used (RS232 applications). Otherwise, with multiple bussed units, a unique address number must be assigned to each meter. The node address applies specifically to RS485 applications.

ABBREVIATED PRINTING

ПО

Rbru 🖘 yes b YES

Select abbreviated transmissions (numeric only) or full field transmission. When the data from the meter is sent directly to a terminal for display, the extra characters that are sent identify the nature of the meter parameter displayed. In this case, select ΠI . When the data from the meter goes to a computer, it may be desirable to suppress the node address and mnemonic when transmitting. In this case, set this parameter to $\Psi E S$.

PRINT OPTIONS

YE5 - Enters the sub-menu to select those meter parameters to appear in the block print. For each parameter in the sub-menu select **YE5** for the parameter to appear with the block print, and **nu** to disable the parameter. *Setpoints 1-4 are setpoint plug-in card dependent.

Point of the other point P		p	
Gross Value (PAXS Only)	6ro55	YE 5	ПО
Tare Value (PAXS Only)	ŁĦrE	УE 5	ПО
Input Value	INP	УE 5	ПО
Max and Min Values	h IL 🛛	УE 5	ПО
Total Value	Fof	УE 5	ПО
Setpoint values*	SPNŁ	ЧE 5	ПО

Sending Commands and Data

When sending commands to the meter, a string containing at least one command character must be constructed. A command string consists of a command character, a value identifier, numerical data (if writing data to the meter) followed by a the command terminator character * or \$.

Command Chart

Command	Description	Notes
N	Node Address Specifier	Address a specific meter. Must be followed by one or two digit node address. Not required when node address = 0.
т	Transmit Value (read)	Read a register from the meter. Must be followed by register ID character.
V	Value change (write)	Write to register of the meter. Must be followed by register ID character and numeric data.
R	Reset	Reset a register or output. Must be followed by register ID character
Р	Block Print Request (read)	Initiates a block print output. Registers are defined in programming.

Command String Construction

The command string must be constructed in a specific sequence. The meter does not respond with an error message to illegal commands. The following procedure details construction of a command string:

- The first 2 or 3 characters consist of the Node Address Specifier (N) followed by a 1 or 2 character node address number. The node address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
- 2. After the optional address specifier, the next character is the command character.
- 3. The next character is the register ID. This identifies the register that the command affects. The P command does not require a register ID character. It prints according to the selections made in print options.
- 4. If constructing a value change command (writing data), the numeric data is sent next.
- 5. All command strings must be terminated with the string termination characters * or \$. The meter does not begin processing the command string until this character is received. See timing diagram figure for differences of * and \$ terminating characters.

Receiving Data

Data is transmitted by the meter in response to either a transmit command (T), a print block command (P) or User Function print request. The response from the meter is either a full field transmission or an abbreviated transmission. In this case, the response contains only the numeric field. The meter response mode is established in programming.

Full Field Transmission

Byte Description

- 1, 2 2 byte Node Address field [00-99]
- 3 <SP> (Space)
- 4-6 3 byte Register Mnemonic field
- 7-18 12 byte data field; 10 bytes for number, one byte for sign, one byte for decimal point (The T command may be a different byte length)
- 19 <CR> carriage return
- 20 <LF> line feed
- 21 <SP>* (Space)
- 22 <CR>* carriage return
- 23 <LF>* line feed
- * These characters only appear in the last line of a block print.

The first two characters transmitted are the node address, unless the node address assigned =0, in which case spaces are substituted. A space follows the node address field. The next three characters are the register ID (Serial Mnemonic).

The numeric data is transmitted next. The numeric field is 12 characters long (to accommodate the 10 digit totalizer), with the decimal point position floating within the data field. Negative value have a leading minus sign. The data field is right justified with leading spaces.

Register Identification Chart

ID	Value Description	Register ID	Applicable Commands/Comments					
А	Input	INP	T, P, R	(Reset command [Ver2.5+] zeros the input ["REL" or Tare])				
В	Total	тот	T, P, R	(Reset command resets total to zero)				
С	Max Input	MAX	T, P, R	(Reset command resets MAX to current reading)				
D	Min Input	MIN	T, P, R	(Reset command resets MIN to current reading)				
Е	Setpoint 1	SP1	T, P, V, R	(Reset command resets the setpoint output)				
F	Setpoint 2	SP2	T, P, V, R	(Reset command resets the setpoint output)				
G	Setpoint 3	SP3	T, P, V, R	(Reset command resets the setpoint output)				
Н	Setpoint 4	SP4	T, P, V, R	(Reset command resets the setpoint output)				
I	Analog Output Register	AOR	T, V	(Applies to manual mode)				
J	Control Status Register	CSR	T, V					
L	Absolute (gross) input display value	ABS GRS †	T, P					
Q	Offset/Tare (PAXS)	OFS TAR †	T, P, V	(Ver 2.5+)				

+ -Register ID for the PAXS.

Command String Examples:

- 1. Node address = 17, Write 350 to Setpoint 1, response delay of 2 msec min String: N17VE350\$
- 2. Node address = 5, Read Input value, response delay of 50 msec min String: N5TA*
- 3. Node address = 0, Reset Setpoint 4 output, response delay of 50 msec min String: RH*

Sending Numeric Data

Numeric data sent to the meter must be limited to 5 digits (-19,999 to 99,999). If more than 5 digits are sent, the meter accepts the last 5. Leading zeros are ignored. Negative numbers must have a minus sign. The meter ignores any decimal point and conforms the number to the scaled resolution. (For example: the meter's scaled decimal point position = 0.0 and 25 is written to a register. The value of the register is now 2.5 In this case, write a value = 25.0).

Note: Since the meter does not issue a reply to value change commands, follow with a transmit value command for readback verification.

The end of the response string is terminated with a carriage return $\langle CR \rangle$ and $\langle LF \rangle$. When block print is finished, an extra $\langle SP \rangle \langle CR \rangle \langle LF \rangle$ is used to provide separation between the blocks.

Abbreviated Transmission

- Byte Description
- 1-12 12 byte data field, 10 bytes for number, one byte for sign,
- one byte for decimal point
 <CR> carriage return
- 13 <CR> carriage r
- 14 <LF> line feed
- 15 <SP>* (Space)
- 16 <CR>* carriage return
- 17 <LF>* line feed

* These characters only appear in the last line of a block print.

The abbreviated response suppresses the node address and register ID, leaving only the numeric part of the response.

Meter Response Examples:

- 1. Node address = 17, full field response, Input = 875 17 INP 875 <CR><LF>
- 2. Node address = 0, full field response, Setpoint 2 = -250.5 SP2 -250.5<CR><LF>
- 3. Node address = 0, abbreviated response, Setpoint 2 = 250, last line of block print

250<CR><LF><SP><CR><LF>

326

www.redlion.net

SERIAL COMMANDS FOR PAX SOFTWARE

3

(CSR) Control Status Register

The Control Status Register is used to both directly control the meter's outputs (setpoints and analog output), and interrogate the state of the setpoint outputs. The register is bit mapped with each bit position within the register assigned to a particular control function. The control function are invoked by writing to each bit position. The bit position definitions are:

bit 0: Setpoint 1 Output Status	
0 = output off	
1 = output on	
bit 1: Setpoint 2 Output Status	
0 = output off	
1 = output on	
bit 2: Setpoint 3 Output Status	
0 = output off	
1 = output on	
bit 3: Setpoint 4 Output Status	
0 = output off	
1 = output on	
bit 4: Manual Mode	
0 = automatic mode	
1 = manual mode	
bit 5: Always stays 0, even if 1 is sent.	
bit 6: Sensor Status (PAXT only)	
0 = sensor normal	
1 = sensor fail	
bit 7: Always stays 0, even if 1 is sent.	

Although the register is bit mapped starting with bit 7, HEX <> characters are sent in the command string. Bits 7 and 5 always stay a zero, even if a "1" is sent. This allows ASCII characters to be used with terminals that may not have extended character capabilities.

Writing a "1" to bit 4 of CSR selects manual mode. In this mode, the setpoint outputs are defined by the values written to the bits b0, b1, b2, b3; and the analog output is defined by the value written to the AOR. Internal control of these outputs is then overridden.

In automatic mode, the setpoint outputs can only be reset off. Writing to the setpoint output bits of the CSR has the same effect as a Reset command (R). The contents of the CSR may be read to interrogate the state of the setpoint outputs and to check the status of the temperature sensor (PAXT only).

Examples:

1. Set manual mode, turn all setpoints off:

		7	6	5	4	3	2	1	0:1	bit location	
VJ<30>* or VJ0*	ASCII 0 =	0	0	1	1	0	0	0	0	or <30>	
V is command write, J i	s CSR and *	is	teri	nin	ato	r.					

2. Turn SP1, SP3 outputs on and SP2, SP4 outputs off:

VJ<35>* or VJ5*	ASCII 5 = (7 0	6 0	5 1	4 1	3 0	2 1	1 0	0:bit location 1 or <35>
. Select Automatic mode:									
		7	6	5	4	3	2	1	0:bit location
VJ<40>* or VJ@*	ASCII @ =	0	1	0	0	0	0	0	0 or <40>

Note: Avoid writing values <0A> (LF), <0D> (CR), <24> (\$) and <2E> (*) to the CSR. These values are interpreted by the meter as end of command control codes and will prematurely end the write operation.

(AOR) Analog Output Register

The Analog Output Register controls the analog output of the meter. The manual mode must first be engaged by setting bit 4 of the Control Status Register. The range of values of this register is 0 to 4095, which corresponds to 0 mA, 0 V and 20 mA, 10 V; respectively. The table lists correspondence of the output signal with the register value.

De siste a Malera	Output Signal*						
Register value	I (mA)	V (V)					
0	0.000	0.000					
1	0.005	0.0025					
2047	10.000	5.000					
4094	19.995	9.9975					
4095	20.000	10.000					

*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (20 mA or 10 V).

Writing to this register while the meter is in the manual mode causes the output signal to update immediately. While in the automatic mode, this register may be written to, but the output will not update until the meter is placed in manual mode.

Examples:

- 1. Set output to full scale: VI4095*
- 2. Set output to zero scale: VI0*

Ε

Command Response Time

The meter can only receive data or transmit data at any one time (half-duplex operation). The meter ignores commands while transmitting data, but instead uses RXD as a busy signal. When sending commands and data to the meter, a delay must be imposed before sending another command. This allows enough time for the meter to process the command and prepare for the next command.

At the start of the time interval t_1 , the computer program prints or writes the string to the com port, thus initiating a transmission. During t_1 , the command characters are under transmission and at the end of this period, the command terminating character (*) is received by the meter. The time duration of t_1 is dependent on the number of characters and baud rate of the channel.

$t_1 = (10 * \# of characters) / baud rate$

At the start of time interval t_2 , the meter starts the interpretation of the command and when complete, performs the command function. This time interval t_2 varies from 2 msec to 50 msec. If no response from the meter is expected, the meter is ready to accept another command.

If the meter is to reply with data, the time interval t_2 is controlled by the use of the command terminating character. The standard command line terminating character is '*'. This terminating character results in a response time window of 50 msec minimum and 100 msec maximum. This allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with '\$' results in a response time window (t_2) of 2 msec minimum and 50 msec maximum. The faster response time of this terminating character requires that sending drivers release within 2 msec after the terminating character is received.

At the beginning of time interval t₃, the meter responds with the first character of the reply. As with t₁, the time duration of t₃ is dependent on the number of characters and baud rate of the channel. t₃ = (10 * # of characters) / baud rate. At the end of t₃, the meter is ready to receive the next command.

The maximum serial throughput of the meter is limited to the sum of the times t_1 , t_2 and t_3 .

1-717-767-6511

Communication Format

Data is transferred from the meter through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character.

The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

LOGIC	INTERFACE STATE	RS232*	RS485*				
1	mark (idle)	TXD,RXD; -3 to -15 V	a-b < -200 mV				
0	space (active)	a-b > +200 mV					
* Voltage levels at the Receiver							

Data is transmitted one byte at a time with a variable idle period between characters (0 to ∞). Each ASCII character is "framed" with a beginning start bit, an optional error detection parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the meter.

Start bit and Data bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted. Since the sending and receiving devices operate at the same transmission speed (baud rate), the data is read without timing errors.

Parity bit

After the data bits, the parity bit is sent. The transmitter sets the parity bit to a zero or a one, so that the total number of ones contained in the transmission (including the parity bit) is either even or odd. This bit is used by the receiver to detect errors that may occur to an odd number of bits in the transmission. However, a single parity bit cannot detect errors that may occur to an even number of bits. Given this limitation, the parity bit is often ignored by the receiving device. The PAX meter ignores the parity bit of incoming data and sets the parity bit to odd, even or none (mark parity) for outgoing data.

Stop bit

The last character transmitted is the stop bit. The stop bit provides a single bit period pause to allow the receiver to prepare to re-synchronize to the start of a new transmission (start bit of next byte). The receiver then continuously looks for the occurrence of the start bit.

Ε

 ∇ - An analog output card must be installed in order to access this module.

Ł	YPE	প্মি
\mathcal{P}	4-	20

ANALOG TYPE

SELECTION	RANGE
0-20	0 to 20 mA
4-20	4 to 20 mA
0-10	0 to 10 V

Enter the analog output type. For 0-20 mA or 4-20 mA use terminals 18 and 19. For 0-10 V use terminals 16 and 17. Only one range can be used at a time.

R5 I∏ ↔ ♥ I∩P

ANALOG ASSIGNMENT

INP HI LO EDE

Enter the source for the analog output to retransmit: $I \cap P$ = Display Input Value H I = Maximum Display Input Value L D = Minimum Display Input Value

tot = Totalize Display Value

ANALOG LOW SCALE VALUE

ЯЛ - L 0 ↔ ♥ 0,00

- 19999 to 99999

Enter the Display Value that corresponds to 0 mA (0-20 mA) , 4 mA (4-20 mA) or 0 VDC (0-10 VDC).

ANALOG HIGH SCALE VALUE

- 19999 to 99999

Enter the Display Value that corresponds to 20 mA (0-20 mA) , 20 mA (4-20 mA) or 10 VDC (0-10 VDC).

ANALOG UPDATE TIME

0.0 to **10.0**

Enter the analog output update rate in seconds. A value of 0.0 allows the meter to update the analog output at a rate of 20/sec.

PROBE BURN-OUT ACTION (PAXT ONLY)

LO

Ь	חיח	5
\checkmark		L 🛛

- H I 🖓

100.00

udt 🖓

0.0

Enter the probe burn-out action. In the event of a temperature probe failure, the analog output can be programmed for low or high scale.

H !

www.redlion.net

6.9 MODULE 9 - FACTORY SERVICE OPERATIONS (9-FE5)

d-LEu 🖘 🕸 🖪

DISPLAY INTENSITY LEVEL

Enter the desired Display Intensity Level (0-15) by using the arrow keys. The display will actively dim or brighten as the levels are changed. This parameter also appears in Quick Programming Mode when enabled.

RESTORE FACTORY DEFAULTS

E o d E 🗠

48

Use the arrow keys to display **LodE 55** and press **PAR**. The meter will display *r* **E5E** and then return to **LodE 50**. Press **DSP** key to return to Display Mode. This will overwrite all user settings with the factory settings.

CALIBRATION

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed in Module 1. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter.

When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment. Calibration does not change any user programmed parameters. However, it may affect the accuracy of the input signal values previously stored using the Apply (**RPLY**) Scaling Style.

Calibration may be aborted by disconnecting power to the meter before exiting Module 9. In this case, the existing calibration settings remain in effect.

PAXD - Input Calibration

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better and an external meter with an accuracy of 0.005% or better. Resistance inputs require a resistance substitution device with an accuracy of 0.01% or better.

Before starting, verify that the Input Ranger Jumper is set for the range to be calibrated. Also verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. *no* and **PAR** can be chosen to exit the calibration mode without any changes taking place.

- Then perform the following procedure:
- 1. Use the arrow keys to display **Lode 4B** and press **PAR**.
- 2. Choose the range to be calibrated by using the arrow keys and press PAR.
- 3. When the zero range limit appears on the display, apply the appropriate:
- Voltage ranges: dead short applied
- Current ranges: open circuit
- Resistance ranges: dead short with current source connected
- 4. Press **PAR** and **····** will appear on the display for about 10 seconds.
- 5. When the top range limit appears on the display, apply the appropriate:
- Voltage ranges: top range value applied (The 300 V range is the exception. It is calibrated with a 100 V signal.)
- Current ranges: top range value
- Resistance ranges: top range value (The ohms calibration requires connection of the internal current source through a resistance substitution device and the proper voltage range selection.)
- 6. Press **PAR** and **····** will appear on the display for about 10 seconds.
- 7. When no appears, press PAR twice.
- 8. If the meter is not field scaled, then the input display should match the value of the input signal.
- 9. Repeat the above procedure for each input range to be calibrated.

PAXP - Input Calibration

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better and an external meter with an accuracy of 0.005% or better.

Before starting, verify that the precision signal source is connected to the correct terminals and ready. Allow a 30 minute warm-up period before calibrating the meter. n_0 and **PAR** can be chosen to exit the calibration mode without any changes taking place.

Then perform the following procedure:

- 1. Use the arrow keys to display **Lode** 48 and press **PAR**.
- Choose the range to be calibrated by using the arrow keys and press PAR. (*na* and PAR can be chosen to exit the calibration mode without any changes taking place.)
- 3. When the zero range limit appears on the display, apply the appropriate: Voltage range: dead short applied
 - Current range: open circuit
- 4. Press **PAR** and •••• will appear on the display for about 10 seconds.
- 5. When the top range limit appears on the display, apply the appropriate:
- Voltage range: 10 VDC
- Current range: 20 mADC
- 6. Press **PAR** and ••••• will appear on the display for about 10 seconds.
- 7. When no appears, press PAR twice.
- 8. If the meter is not field scaled, then the input display should match the value of the input signal.
- 9. Repeat the above procedure for each input range to be calibrated.

PAXH - Input Calibration

WARNING: In the PAXH, DC signals are used to calibrate the AC ranges. Calibration of the PAXH requires a DC voltmeter with an accuracy of 0.025% and a precision DC signal source capable of:

- 1. +1% of full scale, DC
- 2. -1% of full scale, DC
- 3. +100% of full scale, DC; (300 V range = +100 V calibration)
- 4. -100% of full scale, DC; (300 V range = -100 V calibration)

Before starting, verify the Input Range and Signal Jumpers are set for the range to be calibrated and the Couple jumper is installed for DC. Also verify the DC signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. **no** and **PAR** can be chosen to exit the calibration mode without any changes taking place.

- Then perform the following procedure:
- 1. Press the arrow keys to display **CodE 4B** and press **PAR**.
- 2. The meter displays *LRL*. Use the arrow keys to select the range that matches the Signal Jumper setting. Press **PAR**.
- 3. Apply the signal matching the meter prompt.
- 4. Press **PAR** and **....** will appear on the display, wait for next prompt.
- 5. Repeat steps 3 and 4 for the remaining three prompts.
- 6. When *no* appears, press **PAR** twice.
- 7. If the meter is scaled to show input signal, the Input Display should match the value of the input signal in the Display Mode.
- Repeat the above procedure for each range to be calibrated or to recalibrate the same range. It is only necessary to calibrate the input ranges being used.
- 9. When all desired calibrations are completed, remove the external signal source and restore original configuration and jumper settings. If AC is being measured, continue with AC Couple Offset Calibration.

1-717-767-6511

AC Couple Offset Calibration - PAXH

- It is recommended that Input Calibration be performed first.
- 1. With meter power removed, set the Input Range Jumper for 20 V, the Couple Jumper for DC, and set the Signal Jumper for voltage by removing the jumper.
- 2. Connect a wire (short) between Volt (terminal 6) and COMM (terminal 4).
- 3. Apply meter power.
- 4. In Module 1, program as follows: Range: 20u; Couple: dl; Decimal Point:
 0; Round: 4; Filter: 05; Band: 20; Points: 2; Style: *PEY*; INP1: 0000; DSP1:
 0; INP2: 20000; DSP2: 20000
- 5. In Module 4, program as follows: Hi-t: 00; Lo-t: 32711
- 6. Press **PAR** then **DSP** to exit programming and view the Input Display.
- 7. The readout displays the DC coupled zero input, record the value.
- 8. Remove the meter power and set the Couple Jumper to AC by removing the jumper.
- 9. Maintaining the short between terminals 4 and 6, reapply the meter power.
- 10. Keeping all programming the same, view the Input Display.
- 11. The readout now displays the AC coupled zero input, record the value.
- 12. In Module 9, Use the arrow keys to display **Lode 48** and press **PAR**.
- 13. Press the down arrow key twice to **RL-DF** and press **PAR**.
- 14. Calculate the offset **DFF5** using the following formula:
- **UFF5t** = AC coupled reading (step 11) DC coupled reading (step 7) 15. Use the arrow keys to enter the calculated **UFF5t**.
- 16. Press **PAR** three times, to exit programming.
- 17. Remove the meter power and remove the short from terminals 4 and 6.
- 18. Restore the original jumper and configuration settings.

PAXS - Input Calibration

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better and an external meter with an accuracy of 0.005% or better.

Before starting, connect -SIG (terminal 4) to COMM (terminal 5). This allows a single ended signal to be used for calibration. Connect the calibration signal to +SIG (terminal 3) and -SIG (terminal 4). Verify the Input Range jumper is in the desired position. Allow a 30 minute warm-up period before calibrating the meter. *no* and **PAR** can be chosen to exit the calibration mode without any changes taking place. Perform the following procedure:

1. Press the arrow keys to display **[Ude 48** and press **PAR**.

- 2. Choose the range to be calibrated by using the arrow keys and press PAR.
- 3. When the zero range limit appears on the display, apply 0 mV between +SIG and -SIG.
- 4. Press **PAR** and ---- will appear, wait for next prompt.
- 5. When the top range limit appears on the display, apply the corresponding +SIG and -SIG voltage (20 mV or 200 mV).
- 6. Press **PAR** and ---- will appear, on the display for about 10 seconds.
- 7. When **no** appears, press **PAR** twice to exit programming.
- Repeat the above procedure for each range to be calibrated or to recalibrate the same range. It is only necessary to calibrate the input ranges being used.
 When all desired anihyperiods are completed any set of the COND.
- When all desired calibrations are completed, remove -SIG to COMM connection and external signal source.
 Destruction calibration of the second state of the secon
- 10. Restore original configuration and jumper settings.

PAXT - Input Calibration

Warning: Calibration of this meter requires precision instrumentation operated by qualified technicians. It is recommended that a calibration service calibrates the meter.

Before selecting any of the calibration procedures, the input to the meter must be at 0 mV or 0 ohms. Set the digital filer in Module 1 to 1 second. Allow a 30 minute warm-up period before calibrating the meter. The **no** and **PAR** can be chosen to exit calibration mode without any changes taking place.

10 OHM RTD Range Calibration

1. Set the Input Range Jumper to 10 ohm.

- 2. Use the arrow keys to display **LadE 4B** and press **PAR**. Then choose **r . 1D** and press **PAR**.
- 3. At \mathbf{f} \mathbf{r} , apply a direct short to input terminals 3, 4 and 5 using a three wire link. Wait 10 seconds, then press **PAR**.
- 4. At **15** *r*, apply a precision resistance of 15 ohms (with an accuracy of 0.01% or better) using a three wire link, to input terminals 3, 4 and 5. Wait 10 seconds, then press **PAR**.
- 5. Connect the RTD, return to the Display Mode and verify the input reading (with 0 Display Offset) is correct. If not correct repeat calibration.

100 OHM RTD Range Calibration

- 1. Set the Input Range Jumper to 100 ohm.
- 2. Use the arrow keys to display **Lode 48** and press **PAR**. Then choose **r 100** and press **PAR**.
- 3. At **l r**, apply a direct short to input terminals 3, 4 and 5 using a three wire link. Wait 10 seconds, then press **PAR**.
- 4. At **300** *r*, apply a precision resistance of 300 ohms (with an accuracy of 0.01% or better) using a three wire link, to terminals 3, 4 and 5. Wait 10 seconds, press **PAR**.
- 5. Connect the RTD, return to the Display Mode and verify the input reading (with 0 Display Offset) is correct. If not correct repeat calibration.

THERMOCOUPLE Range Calibration

- 1. Use the arrow keys to display **LodE 4B** and press **PAR**. Then choose **LL** and press **PAR**.
- 2. At **DJ u**, apply a dead short or set calibrator to zero to input terminals 4 and 5. Wait 10 seconds, then press **PAR**.
- 3. At **50**, **u**, apply 50.000 mV input signal (with an accuracy of 0.01% or better) to input terminals 4 and 5. Wait 10 seconds, then press **PAR**.
- 4. Return to the Display Mode.
- 5. Continue with Ice Point Calibration.

ICE POINT Calibration

- 1. Remove all option cards or invalid results will occur.
- 2. The ambient temperature must be within 20°C to 30°C.
- 3. Connect a thermocouple (types T, E, J, K, or N only) with an accuracy of 1°C or better to the meter.
- 4. Verify the readout Display Offset is 0, Temperature Scale is °C, Display Resolution is 0.0, and the Input Range is set for the connected thermocouple.
- 5. Place the thermocouple in close thermal contact to a reference thermometer probe. (Use a reference thermometer with an accuracy of 0.25°C or better.) The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (A calibration bath could be used in place of the thermometer.)
- 6. In the Normal Display mode, compare the readouts.
- 7. If a difference exists then continue with the calibration.
- 8. Enter Module 9, use the arrow keys to display **Lode 48** and press **PAR**. Then choose **ILE** and press **PAR**.
- 9. Calculate a new Ice Point value using: existing Ice Point value + (reference temperature Display Mode reading). All values are based on °C.
- 10. Enter the new Ice Point value.
- 11. Return to the Display Mode and verify the input reading (with 0 Display Offset) is correct. If not correct repeat steps 8 through 10.

ANALOG OUTPUT CARD CALIBRATION

Before starting, verify that the precision voltmeter (voltage output) or current meter (current output) is connected and ready. Perform the following procedure:

- 1. Use the arrow keys to display **Lode 4B** and press **PAR**.
- 2. Use the arrow keys to choose **DUL** and press **PAR**.
- 3. Using the chart below, step through the five selections to be calibrated. At each prompt, use the PAX arrow keys to adjust the external meter display to match the selection being calibrated. When the external reading matches, or if this range is not being calibrated, press **PAR**.

SELECTION	EXTERNAL METER	ACTION
0 <u>.0</u> _ R	0.00	Adjust if necessary, press PAR
4,0 _ R	4.00	Adjust if necessary, press PAR
20,0 _ R	20.00	Adjust if necessary, press PAR
0,0	0.00	Adjust if necessary, press PAR
10,0 u	10.00	Adjust if necessary, press PAR

4. When **#**I appears remove the external meters and press **PAR** twice.

www.redlion.net

TROUBLESHOOTING

PROBLEM	REMEDIES
NO DISPLAY	CHECK: Power level, power connections
PROGRAM LOCKED-OUT	CHECK: Active (lock-out) user input ENTER: Security code requested
MAX, MIN, TOT LOCKED-OUT	CHECK: Module 3 programming
INCORRECT INPUT DISPLAY VALUE	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level, Module 4 Display Offset is zero, press DSP for Input Display PERFORM: Module 9 Calibration (If the above does not correct the problem.)
"OLOL" in DISPLAY (SIGNAL HIGH)	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level
"ULUL" in DISPLAY (SIGNAL LOW)	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level
JITTERY DISPLAY	INCREASE: Module 1 filtering, rounding, input range CHECK: Wiring is per EMC installation guidelines
MODULES or PARAMETERS NOT ACCESSIBLE	CHECK: Corresponding plug-in card installation
ERROR CODE (Err 1-4)	PRESS: Reset KEY (If cannot clear contact factory.)
DISPLAY ZERO'S AT LEVELS BELOW 1% OF RANGE	PROGRAM: Module 4 as Hi-t: 0.0 LO-t: 3271.1 (to disable zero chop feature)

For further assistance, contact technical support at the appropriate company numbers listed.

MODEL PAX2A – 1/8 DIN ANALOG PANEL METER

- UNIVERSAL PROCESS, VOLTAGE, CURRENT, RESISTANCE AND TEMPERATURE INPUTS
- UNIVERSAL AC/DC POWER SUPPLY
- 6 / 9 DIGIT DUAL LINE/TRI-COLOR DISPLAY WITH 0.71" & 0.35" DIGITS
- PROGRAMMABLE UNITS DISPLAY
- VARIABLE CONTRAST AND INTENSITY DISPLAY
- UP TO 160 SAMPLES PER SECOND CONVERSION RATE
- BUILT-IN USB PROGRAMMING PORT ENABLING UNIT CONFIGURATION WITH CRIMSON PROGRAMMING SOFTWARE
- NEMA 4X/IP65 SEALED FRONT BEZEL

DESCRIPTION

The PAX2A Analog Panel Meter offers many features and performance capabilities to suit a wide range of industrial applications. The PAX2A has a universal input to handle various input signals including DC Voltage/Current, Process, Resistance and Temperature. The optional plug-in output cards allow the opportunity to configure the meter for present applications, while providing easy upgrades for future needs. The PAX2A employs a dual line, tri-color display with a large 0.71", tri-color 6 digit top display line and a 0.35", 9 digit green bottom display line.

The meter provides a MAX and MIN reading memory with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events.

The signal totalizer (integrator) can be used to compute a time-input product. This can be used to provide a readout of totalized flow or calculate service intervals of motors, pumps, etc. The meter has up to four setpoint outputs, implemented on plug-in option cards. The plug-in cards provide dual FORM-C relays, quad FORM-A, or either quad sinking or quad sourcing open collector logic outputs. The setpoint alarms can be configured to suit a variety of control and alarm requirements.

Communication and bus capabilities are also available as option cards. These include RS232, RS485, DeviceNet, and Profibus-DP. The PAX2A can be programmed to utilize ModBus protocol. With ModBus, the user has access to most configuration parameters. Readout values and setpoint alarm values can be controlled through the bus. Additionally, the meter has a feature that allows a remote computer to directly control the outputs of the meter.

The PAX2A includes a built-in USB programming port. With a Windows[®] based program, made available by Red Lion Controls, configuration data can be downloaded to the PAX2A without the need of any additional option cards.

A linear DC output signal is available as an optional plug-in card. The card provides either 20 mA or 10 V signals. The output can be scaled independent of the input range and can track either the input, totalizer, max or min readings.

The meter has been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects and CE requirements, the meter provides a tough reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.

www.redlion.net

332
TABLE OF CONTENTS

Ordering Information2)
General Meter Specifications	3
Optional Plug-In Cards5	5
Installing the Meter6	3
Setting the Jumpers6	3
Installing the Plug-In Cards7	7
Wiring the Meter7	7
Reviewing the Front Buttons and Display9)

PAX2A Display Loops	. 10
Programming the PAX2A	. 11
PAX2A Modbus Register Table	. 24
Factory Service Operations	. 31
Troubleshooting Guide	. 33
Parameter Value Chart	. 33
Programming Overview	. 35

ORDERING INFORMATION

Meter Part Numbers

MODEL NO.	DESCRIPTION	PART NUMBER
PAX2A	Universal DC Analog Input Panel Meter	PAX2A000

Option Card and Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
		Dual Setpoint Relay Output Card	PAXCDS10
	BAYCDS	Quad Setpoint Relay Output Card	PAXCDS20
	PAACDS	Quad Setpoint Sinking Open Collector Output Card	PAXCDS30
		Quad Setpoint Sourcing Open Collector Output Card	PAXCDS40
Optional Plug-In		RS485 Serial Communications Card with Terminal Block	PAXCDC10
	PAXCDC	Extended RS485 Serial Communications Card with Dual RJ11 Connector	PAXCDC1C
Cards		RS232 Serial Communications Card with Terminal Block	PAXCDC20
		Extended RS232 Serial Communications Card with 9 Pin D Connector	PAXCDC2C
		DeviceNet Communications Card	PAXCDC30
		Profibus-DP Communications Card	PAXCDC50
PAXCDL		Analog Output Card	PAXCDL10
Accessories	SFCRD ²	Crimson PC Configuration Software for Windows 2000 and XP	SFCRD200
Accessories	CBLUSB	USB Programming Cable Type A-Mini B	CBLUSB01

Notes:

^{1.} For Modbus communications use RS485 Communications Output Card and configure communication (LyPE) parameter for Modbus.

^{2.} Crimson software is available for free download from http://www.redlion.net/

333

GENERAL METER SPECIFICATIONS

1. DISPLAY: Negative image LCD

- Top Line 6 digit, 0.71" (18 mm), with tri-color backlight (red, green or orange), display range: -199999 to 999999;
- Bottom Line 9 digit, 0.35" (8.9 mm), with green backlight, display range: - 199,999,999 to 999,999,999

2. POWER:

- AC Power: 40 to 250 VAC, 50/60 Hz, 20 VA
- DC Power: 21.6 to 250 VDC, 8 W
- Isolation: 2300 Vrms for 1 min. to all inputs and outputs.
- 3. ANNUNCIATORS: Backlight color: Red
 - 1 setpoint alarm 1
 - 2 setpoint alarm 2
 - 3 setpoint alarm 3
 - 4 setpoint alarm 4

Line 1 Units Display - programmable 3 digit units annunciator with tri-color backlight (red, green or orange)

- 4. KEYPAD: 2 programmable function keys, 4 keys total
- 5. A/D CONVERTER: 24 bit resolution

6. UPDATE RATES:

A/D conversion rate: programmable 5 to 160 readings/sec. Step response:

		Input Update Rate					Readings/
пристуре	5	10	20	40	80	160	Sec
V/I/Resistance	400	200	100	50	30	20	msec
Thermocouple	600	250	100	-	-	-	response
RTD	1000	500	250	-	-	-	time *

* - max. to within 99% of final readout value (digital filter disabled) Display update rate: 1 to 20 updates/sec.

Setpoint output on/off delay time: 0 to 3275 sec.

Analog output update rate: 0 to 10 sec Max./Min. capture delay time: 0 to 3275 sec.

7. DISPLAY MESSAGES:

"OLOL" - Appears when measurement exceeds + signal range. "ULUL" - Appears when measurement exceeds - signal range "Short" - Appears when shorted sensor is detected. (RTD range only) "OPEN" - Appears when open sensor is detected. (TC/RTD range only) "....." - Appears when display values exceed + display range. "- " - Appears when display values exceed - display range.

8. INPUT CAPABILITIES: **Current Input:**

INPUT RANGE	ACCURACY * (18 to 28°C)	ACCURACY * (0 to 50°C)	IMPEDANCE	‡ RESOLUTION
± 250 µADC	0.03% of rdg + 0.03µA	0.12% of rdg + 0.04µA	1.11 KΩ	10nA
± 2.5 mADC	0.03% of rdg + 0.3µA	0.12% of rdg + 0.4µA	111 Ω	0.1µA
± 25 mADC	0.03% of rdg + 3µA	0.12% of rdg + 4µA	11.1 Ω	1µA
± 250 mADC	0.05% of rdg + 30µA	0.12% of rdg + 40µA	1.1 Ω	10µA
± 2 ADC	0.5% of rdg + 0.3mA	0.7% of rdg + 0.4mA	0.1 Ω	0.1mA

Higher resolution can be achieved via input scaling.

Voltage Input:

INPUT RANGE	ACCURACY * (18 to 28°C)	ACCURACY * (0 to 50°C)	IMPEDANCE	‡ RESOLUTION
± 250 mVDC	0.03% of rdg + 30µV	0.12% of rdg + 40µV	451 ΚΩ	10µV
± 2.0 VDC	0.03% of rdg + 0.3mV	0.12% of rdg + 0.4mV	451 ΚΩ	0.1mV
± 10 VDC	0.03% of rdg + 3mV	0.12% of rdg + 4mV	451 ΚΩ	1mV
± 25 VDC	0.03% of rdg + 3mV	0.12% of rdg + 4mV	451 ΚΩ	1mV
± 100 VDC	0.3% of rdg + 30mV	0.12% of rdg + 40mV	451 KΩ	10mV
± 200 VDC	0.3% of rdg + 30mV	0.12% of rdg + 40mV	451 KΩ	10mV

Temperature Inputs:

READOUT:

Scale: F or C

Offset Range: -199,999 to 999,999 display units.

Thermocouple Inputs:

Input Impedance: 20MΩ Lead Resisitance Effect: 0.03 $\mu V/\Omega$ Max Continuous Overvoltage: 30 V

INPUT	DANICE	ACCURACY*	ACCURACY*		WIRE	COLOR
TYPE	RANGE	(18 to 28 °C)	(0 to 50 °C)	STANDARD	ANSI	BS 1843
т	-200 to 400°C	1.2°C	2.1°C	ITS-90	(+) blue (-) red	(+) white (-) blue
E	-200 to 750°C	1.0°C	2.4°C	ITS-90	(+) purple (-) red	(+) brown (-) blue
J	-200 to 760°C	1.1°C	2.3°C	ITS-90	(+) white (-) red	(+) yellow (-) blue
к	-200 to 1250°C	1.3°C	3.4°C	ITS-90	(+) yellow (-) red	(+) brown (-) blue
R	0 to 1768°C	1.9°C	4.0°C	ITS-90	no standard	(+) white (-) blue
S	0 to 1768°C	1.9°C	4.0°C	ITS-90	no standard	(+) white (-) blue
В	150 to 300°C 300 to 1820°C	3.9°C 2.8°C	5.7°C 4.4°C	ITS-90	no standard	no standard
N	-200 to 1300°C	1.3°C	3.1°C	ITS-90	(+) orange (-) red	(+) orange (-) blue
C (W5/W26)	0 to 2315°C	1.9°C	6.1°C	ASTM E988-90**	no standard	no standard

RTD Inputs:

Type: 3 or 4 wire, 2 wire can be compensated for lead wire resistance Excitation current: 100 ohm range: 136.5 μ A ±10%

10 ohm range: 2.05 mA ±10%

Lead resistance: 100 ohm range: 10 ohm/lead max.

10 ohm range: 3 ohms/lead max.

Max. continuous overload: 30 V

INPUT TYPE	RANGE	ACCURACY* (18 to 28 °C)	ACCURACY* (0 to 50 °C)	STANDARD
100 ohm Pt alpha = .00385	-200 to 850°C	0.4°C	1.6°C	IEC 751
100 ohm Pt alpha = .00392	-200 to 850°C	0.4°C	1.6°C	no official standard
120 ohm Nickel alpha = .00672	-80 to 259°C	0.2°C	0.5°C	no official standard
10 ohm Copper alpha = .00427	-110 to 260°C	0.4°C	0.9°C	no official standard

Resistance Inputs:

INPUT RANGE	ACCURACY * (18 to 28°C)	ACCURACY * (0 to 50°C)	COMPLIANCE	MAX CONT. OVERLOAD	‡ RESOLUTION
100 ohm	0.05% of rdg +0.03 ohm	0.2% of rdg +0.04 ohm	0.175 V	30 V	0.01 ohm
1000 ohm	0.05% of rdg +0.3 ohm	0.2% of rdg +0.4 ohm	1.75 V	30 V	0.1 ohm
10 Kohm	0.05% of rdg +1 ohm	0.2% of rdg +1.5 ohm	17.5 V	30 V	0.1 ohm

‡ Higher resolution can be achieved via input scaling.

* After 20 min. warm-up, @ 5 sample per second input rate. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 15 to 75% RH environment; and Accuracy over a 0 to 50°C and 0 to 85% RH (non condensing) environment. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest

** These curves have been corrected to ITS-90.

‡ Higher resolution can be achieved via input scaling

9. EXCITATION POWER: Jumper selectable Transmitter Power: +18 VDC, $\pm 5\%$ @ 50 mA max. Reference Voltage: +2 VDC, $\pm 2\%$ Compliance: 1KQ load min (2 mA max) Temperature Coefficient: 40 ppm/°C max. Reference Current: 1.05 mADC, $\pm 2\%$ Compliance: 10 KQ load max. Temperature Coefficient: 40 ppm/°C max. 10. USER INPUTS: Two programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. Response Time: 12 msec. max. Logic State: User programmable (USFALE) for sink/source (Lo/Hi) INPUT STATE LO/SINK HI/SOURCE (USrAEE) $20K\Omega$ pull-up to +3.3V $20K\Omega$ pull-down Active $V_{IN} < 1.1 \text{ VDC}$ V_{IN} > 2.2 VDC V_{IN} > 2.2 VDC $V_{IN} < 1.1 \text{ VDC}$ Inactive 11. TOTALIZER: Time Base: second, minute, hour, or day Batch: Can accumulate (gate) input display from a user input Time Accuracy: 0.01% typical Decimal Point: 0 to 0.0000 Scale Factor: 0.001 to 65.000 Low Signal Cut-out: -199,999 to 999,999 Total: 6 digits on Line 1; 9 digits on Line 2 12. CUSTOM LINEARIZATION:

Data Point Pairs: Selectable from 2 to 16 Display Range: -199,999 to 999,999 Decimal Point: 0 to 0.0000

13. **MEMORY**: Nonvolatile FRAM memory retains all programmable parameters and display values.

14. ENVIRONMENTAL CONDITIONS: Operating Temperature Range: 0 to 50 °C Storage Temperature Range: -40 to 60 °C Vibration to IEC 68-2-6: Operational 5-150 Hz, 2 g Shock to IEC 68-2-27: Operational 25 g (10 g relay) Operating and Storage Humidity: 0 to 85% max. RH non-condensing Altitude: Up to 2000 meters 15. CERTIFICATIONS AND COMPLIANCES: **CE** Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A IEC/EN 61010-1 **RoHS** Compliant UL Listed: File #E179259 Type 4X Indoor Enclosure rating (Face only) IP65 Enclosure rating (Face only) IP20 Enclosure rating (Rear of unit) Refer to EMC Installation Guidelines section of the bulletin for additional information. 16. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gauge Capacity: One 14 AWG (2.55 mm) solid, two 18 AWG (1.02 mm) or four 20 AWG (0.61 mm)

17. **CONSTRUCTION**: This unit is rated NEMA 4X/IP65 for indoor use only. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/ case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.

18. WEIGHT: 8 oz. (226.8 g)

OPTIONAL PLUG-IN OUTPUT CARDS

WARNING: Disconnect all power to the unit before installing plug-in cards.

Adding Option Cards

The PAX2A meters can be fitted with up to three optional plug-in cards. The details for each plug-in card can be reviewed in the specification section below. Only one card from each function type can be installed at a time. The function types include Setpoint Alarms (PAXCDS), Communications (PAXCDC), and Analog Output (PAXCDL). The plug-in cards can be installed initially or at a later date.

COMMUNICATION CARDS (PAXCDC)

A variety of communication protocols are available for the PAX2A meter. Only one PAXCDC card can be installed at a time. *Note: For Modbus communications use RS485 Communications Output Card and configure communication* (LPPE) parameter for Modbus.

PAXCDC10 - RS485 Serial (Terminal) PAXCDC30 - DeviceNet PAXCDC1C - RS485 Serial (Connector) PAXCDC50 - Profibus-DP PAXCDC20 - RS232 Serial (Terminal) PAXCDC2C - RS232 Serial (Connector)

SERIAL COMMUNICATIONS CARD

Type: RS485 or RS232

Communication Type: RLC Protocol (ASCII), Modbus RTU, and Modbus ASCII

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Data: 7/8 bits

Baud: 1200 to 38,400

Parity: no, odd or even

Bus Address: Selectable 0 to 99 (RLC Protocol), or 1 to 247 (Modbus Protocol), Max. 32 meters per line (RS485)

Transmit Delay: Selectable for 0 to 0.250 sec (+2 msec min)

DEVICENETTM CARD

Compatibility: Group 2 Server Only, not UCMM capable

Baud Rates: 125 Kbaud, 250 Kbaud, and 500 Kbaud

Bus Interface: Phillips 82C250 or equivalent with MIS wiring protection per DeviceNet[™] Volume I Section 10.2.2.

Node Isolation: Bus powered, isolated node

Host Isolation: 500 Vrms for 1 minute (50 V working) between DeviceNet[™] and meter input common.

PROFIBUS-DP CARD

Fieldbus Type: Profibus-DP as per EN 50170, implemented with Siemens SPC3 ASIC

Conformance: PNO Certified Profibus-DP Slave Device

Baud Rates: Automatic baud rate detection in the range 9.6 Kbaud to 12 Mbaud **Station Address:** 0 to 125, set by rotary switches.

Connection: 9-pin Female D-Sub connector

Network Isolation: 500 Vrms for 1 minute (50 V working) between Profibus network and sensor and user input commons. Not isolated from all other commons.

PROGRAMMING SOFTWARE

Crimson[®] software is a Windows[®] based program that allows configuration of the PAX[®] meter from a PC. Crimson offers standard drop-down menu commands, that make it easy to program the meter. The meter's program can then be saved in a PC file for future use. Crimson can be downloaded at www. redlion.net

SETPOINT CARDS (PAXCDS)

The PAX2A meter has 4 available setpoint alarm output plug-in cards. Only one PAXCDS card can be installed at a time. (Logic state of the outputs can be reversed in the programming.) These plug-in cards include:

PAXCDS10 - Dual Relay, FORM-C, Normally open & closed PAXCDS20 - Quad Relay, FORM-A, Normally open only PAXCDS30 - Isolated quad sinking NPN open collector PAXCDS40 - Isolated quad sourcing PNP open collector

DUAL RELAY CARD

Type: Two FORM-C relays

Isolation To Sensor & User Input Commons: 2000 Vrms for 1 min. Working Voltage: 240 Vrms

Contact Rating:

One Relay Energized: 5 amps @ 120/240 VAC or 28 VDC (resistive load). Total current with both relays energized not to exceed 5 amps

Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD RELAY CARD

Type: Four FORM-A relays

Isolation To Sensor & User Input Commons: 2300 Vrms for 1 min. Working Voltage: 250 Vrms

Contact Rating:

One Relay Energized: 3 amps @ 240 VAC or 30 VDC (resistive load). Total current with all four relays energized not to exceed 4 amps

Life Expectancy: 100K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD SINKING OPEN COLLECTOR CARD

Type: Four isolated sinking NPN transistors.

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons. Rating: 100 mA max @ $V_{SAT} = 0.7$ V max. $V_{MAX} = 30$ V

QUAD SOURCING OPEN COLLECTOR CARD

Type: Four isolated sourcing PNP transistors.

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Rating: Internal supply: 18 VDC unregulated, 30 mA max. total External supply: 30 VDC max., 100 mA max. each output

ALL FOUR SETPOINT CARDS

Response Time: See Update Rates step response specification on page 3; add 6 msec (typical) for relay card

LINEAR DC OUTPUT (PAXCDL)

Either a 0(4)-20 mA or 0-10 V retransmitted linear DC output is available from the analog output plug-in card. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing the scaling point positions.

PAXCDL10 - Retransmitted Analog Output Card

ANALOG OUTPUT CARD

Types: 0 to 20 mA, 4 to 20 mA or 0 to 10 VDC

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Accuracy: 0.17% of FS (18 to 28 °C); 0.4% of FS (0 to 50 °C) Resolution: 1/3500

Compliance: 10 VDC: 10 K Ω load min., 20 mA: 500 Ω load max. **Powered**: Self-powered

Step Response: See Update Rates step response specification on page 3. **Update time**: See ADC Conversion Rate and Update Time parameter

1.0 INSTALLING THE METER

Installation

The PAX2A meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

2.0 SETTING THE JUMPERS

The PAX2A meter has four jumpers that must be checked and/or changed prior to applying power. The following Jumper Selection Figures show an enlargement of the jumper area.

To access the jumpers, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

INPUT RANGE JUMPERS

Voltage Input

Two jumpers are used in configuring the meter for voltage/resistance. The first jumper, T/V, must be in the V (voltage) position. The second jumper is used to select the proper voltage input range. (This jumper is also used to select the current input range.) Select a range that is high enough to accommodate the maximum signal input to avoid overloads. For proper operation, the input range selected in programming must match the jumper setting.

screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

Current Input

For current input, only one jumper must be configured to select the current range. This jumper is shared with the voltage input range. To avoid overloads, select the jumper position that is high enough to accommodate the maximum signal input level to be applied.

Note: The position of the T/V jumper does not matter when the meter is in the current input mode.

Temperature Input

For temperature measurement the T/V jumper must be in the T (temperature) position. For RTD sensors the RTD jumper must also be set.

Resistance Input

Three jumpers are used to configure the resistance input. The T/V jumper must be in the V (voltage) position, and the excitation jumper must be in the 1.05 mA REF position. The voltage/resistance jumper position is determined by the input range.

Excitation Output Jumper

This jumper is used to select the excitation range for the application. If excitation is not being used, it is not necessary to check or move this jumper.

3.0 INSTALLING PLUG-IN CARDS

The plug-in cards are separately purchased optional cards that perform specific functions. These cards plug into the main circuit board of the meter. The plug-in cards have many unique functions when used with the PAX2A.

CAUTION: The plug-in card and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure (Pull wire to verify tightness). Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long

To Install:

- 1. With the meter removed from the case, locate the plug-in card connector for the card type to be installed. The types are keyed by position with different main circuit board connector locations. When installing the card, hold the meter by the rear terminals and not by the front display board.
 - If installing the Quad sourcing Plug-in Card (PAXCDS40), set the jumper for internal or external supply operation before continuing.

- 2. Install the plug-in card by aligning the card terminals with the slot bay in the rear cover. Be sure the connector is fully engaged and the tab on the plug-in card rests in the alignment slot on the display board.
- 3. Slide the meter base back into the case. Be sure the rear cover latches fully into the case.
- 4. Apply the plug-in card label to the bottom side of the meter in the designated area. Do Not Cover the vents on the top surface of the meter. The surface of the case must be clean for the label to adhere properly.

and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.

- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:

- Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)
- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
 - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
 - b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

VisitRLC's website at http://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

4.1 POWER WIRING

AC Power

1

2

DC Power

The power supplied to the meter shall employ a 15 Amp UL approved circuit breaker for AC input and a 1 Amp, 250 V UL approved fuse for DC input. It shall be easily accessible and marked as a disconnecting device to the installed unit. This device is not directly intended for connection to the mains without a reliable means to reduce transient over-voltages to 1500 V.

4.2 VOLTAGE/RESISTANCE/CURRENT INPUT SIGNAL WIRING

IMPORTANT: Before connecting signal wires, the Input Range Jumpers and Excitation Jumper should be verified for proper position.

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

4.3 TEMPERATURE INPUT SIGNAL WIRING

IMPORTANT: Before connecting signal wires, verify the T/V Jumper is in the T position.

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

1-717-767-6511

4.4 USER INPUT WIRING

If not using User Inputs, then skip this section. Only the appropriate User Input terminal has to be wired.

Sinking Logic (USrACt Lo)

When the lsrRL parameter is programmed to la, the user inputs of the meter are internally pulled up to +3.3 V with 20 K Ω resistance. The input is active when it is pulled low (<1.1 V).

Sourcing Logic (USr ALE H)

When the $U_{5r}RL_{E}$ parameter is programmed to H_{i} , the user inputs of the meter are internally pulled down to 0 V with 20 K Ω resistance. The input is active when a voltage greater than 2.2 VDC is applied.

4.5 SETPOINT (ALARMS) WIRING

- 4.6 SERIAL COMMUNICATION WIRING
- 4.7 ANALOG OUTPUT WIRING

See appropriate plug-in card bulletin for wiring details.

5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

*Factory setting for F1 and F2 is no mode

The PAX2A display consists of a large, 6-digit upper display referred to as Line 1 and a smaller 9-digit lower display referred to as Line 2. Line 1 can be configured to show one of several values, including the main input reading, min, max, setpoints or total values. Line 2 can be used to display several selectable values including; input value, min, max, total, list, setpoint values, and other values. For these values the mnemonics is shown in the left most digits of Line 2. To the right of Line 1 is a Programmable Units Display. This display consists of 3 programmable digits that are user defined as mnemonics for Line 1.

PAX2A DISPLAY LOOPS

* Pressing "D" at any time exits back to the Main Display Loop.

PAX2A DISPLAY LOOPS

The PAX2A offers three display loops to allow users quick access to needed information. These display loops are available when the meter is in the normal display mode. By pressing the **D** key, the user can view parameters such as the Total, Min, Max or the Input in the Main Display Loop. Display selections are fully programmable and are viewed on the 9 digit line of the meter.

Pressing the **P** key with no security code (EddE 0) will put the meter directly into the programming mode. When a security code is programmed (Code 1-250), pressing the **P** key will allow access to the Parameter Display Loop. This loop is where the parameters like setpoint values are normally put for general public access. Parameters in this loop can only be viewed/changed if enabled in the meter programming. After all the parameters in the Parameter Display Loop are viewed, an additional press of the **P** key will bring up the security code (LOdE D). Access the Hidden Parameter Display Loop by entering the selected security code. In this loop displayed parameters can be changed. Combining the two parameter loops provides an area for parameters that require general access and/or protected or secure access depending on your application needs.

During programming of the meter you will need to select if a value is to be displayed or not. If the value is not required, select the lock mode (L II). If you decide to display the value, you will need to assign it to a loop; **D** for the Main Display Loop, **P** for the Parameter Display Loop, and H
idE for the Hidden Display Loop. In the case of the parameters, such as the setpoint values you will also need to decide if the value can only be read (r E d) or entered ($E \Pi E$). The /F1 and \mathbf{E} key will increment or decrement the value when the edit mode is active. After the change, press the P key to save and move to the next value. Any values placed in the Hidden Parameter Loop can be changed as they are protected by the security code. While in the parameter display and hidden parameter loops,

pressing the **D** key will return the meter to the main display.

There are selections in the programming that allow for the values to be reset. When the **P** key is pushed on a resettable display, the unit will display the value mnemonic and "NO" (if Line 2 value was set for "d-ENL" in "J-d SPLY"). Pressing the Fi and E keys will toggle between "II" and "YE5". Pressing the P key with "JE5" displayed will cause the reset action to be performed.

The **P**, Parameter key is used to scroll among the programmed Line 2 parameter values when at the main display or to step through the parameter loop and hidden parameter loop. It is used as the enter key when the meter is in the programming mode.

Numerical Value Entry

If the parameter is programmed for enter $(E \Pi E)$, the \underline{F} and \underline{F} keys are used to change the parameter values in any of the display loops.

The $\underline{/F1}$ and $\underline{/F2}$ keys will increment or decrement the parameter value. When the arrow key is pressed and held, the value automatically scrolls. The longer the arrow key is held the faster the value scrolls.

For large value changes, press and hold the *F* or *P* key. While holding that key, momentarily press the **D** key and the value scrolls by 1000's as the arrow key is held. Releasing the arrow key removes the 1000's scroll feature. The arrow keys can then be used to make small value changes as described above.

6.0 PROGRAMMING THE PAX2A

MODULE 1 - INPUT SETUP PARAMETERS (1-1 IPUE)

r 392

r 6 72

r 427

tc-r

INPUT RANGE

250uR 20 10000 0,0025A 100 100000 £c-5 0.025A 250 £ c - £ Ec-b 0.25A 1000 tc-E 20-0 8 S 20011 Fr-F 20-0 0.250 1000 r 785 20-6

Select the desired input range.

TEMPERATURE SCALE For TC and RTD Input Range Selection only. οç ٥٢

Select the temperature scale. This selection applies for Input, MAX, MIN, and TOT displays. If changed, those parameters that relate to the temperature scale should be checked.

This parameter turns the internal ice point compensation on or off. Normally, the ice point compensation is on. If using external compensation, set this parameter to off. In this case, use copper leads from the external compensation point to the meter.

Select the ADC conversion rate (conversions per second). Temperature inputs can not be set higher than 20 updates per second. The selection does not affect the display update rate, however it does affect setpoint and analog output response time. The default factory setting of 5 is recommended for most applications. Selecting a fast update rate may cause the display to appear very unstable.

DECIMAL RESOLUTION (Display Units)

0 to 0.0000 (curr/volt) 0 to 0,0 (temp)

Select desired display resolution. The available selections are dependent on the Input Range selected (rmgE).

ROUNDING INCREMENT

רפעתם ^{ו הפ}	1	2	5	100
סטו	10	20	5 0	

Rounding selections other than one, cause the Input Display to 'round' to the nearest rounding increment selected (ie. rounding of '5' causes 122 to round to 120 and 123 to round to 125). Rounding starts at the least significant digit of the Input Display. Remaining parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection.

DISPLAY OFFSET

- 199999 to 999999

The display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the affects of offset.

DIGITAL FILTERING

00 to 250 seconds

The input filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of '0' disables filtering.

FILTER BAND

0 to 250 display units

The digital filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the digital filter permanently engaged.

When the meter is programmed for TC or RTD, the following programming steps are not active.

SCALING POINTS

2 to 16

Linear - Scaling Points (2)

For linear processes, only 2 scaling points are necessary. It is recommended

Ε

1-717-767-6511 Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

that the 2 scaling points be at opposite ends of the input signal being applied. The points do not have to be the signal limits. Display scaling will be linear between and continue past the entered points up to the limits of the Input Signal Jumper position. Each scaling point has a coordinate-pair of Input Value (I IPUL n) and an associated desired Display Value (d 5PLY n).

Nonlinear - Scaling Points (Greater than 2)

For non-linear processes, up to 16 scaling points may be used to provide a piece-wise linear approximation. (The greater the number of scaling points used, the greater the conformity accuracy.) The Input Display will be linear between scaling points that are sequential in program order. Each scaling point has a coordinate-pair of Input Value (I MPUL n) and an associated desired Display Value (d) $\ensuremath{\text{5PLY}}$ n). Data from tables or equations, or empirical data could be used to derive the required number of segments and data values for the coordinate pairs. In the Crimson software, several linearization equations are available.

SCALING STYLE

This parameter does not apply for thermocouple or RTD input ranges.

SEME Inp	KEY	key-in data
Key	RPPLY	apply signal

If Input Values and corresponding Display Values are known, the Key-in (WEY) scaling style can be used. This allows scaling without the presence of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (APPLY) scaling style must be used.

INPUT VALUE FOR SCALING POINT 1

- 199999 to 999999

For Key-in ($\[\]E\]$), enter the known first Input Value by using the $\[\]E\]$ or $\[\]E\]$ arrow keys. (The Input Range selection sets up the decimal location for the Input Value). For Apply (RPPLY), the existing programmed value will appear. If this is acceptable, press the P key to save and continue to the next parameter. To update/program this value, apply the input signal that corresponds to Scaling Point 1, press 🖾 key and the actual signal value will be displayed. Then press the **P** key to accept this value and continue to the next parameter.

DISPLAY VALUE FOR SCALING POINT 1

- 199999 to 999999

Enter the first coordinating Display Value by using the arrow keys. This is the same for KEY and RPPLY scaling styles. The decimal point follows the dECPTH selection.

INPUT VALUE FOR SCALING POINT 2

;	NPLIE	2
	100,00	

- 199999 to 999999

For Key-in (#EY), enter the known second Input Value by using the <u>Fi</u> or <u>Fi</u> arrow keys. For Apply (RPPL Y), the existing programmed value will appear. If this is acceptable, press the **P** key to save and continue to the next parameter. To update/program this value, apply the input signal that corresponds to Scaling Point 2, press 🖾 key and the actual signal value will be displayed. Then press the P key to accept this value and continue to the next parameter. (Follow the same procedure if using more than 2 scaling points.)

DISPLAY VALUE FOR SCALING POINT 2

- 199999 to 999999

Enter the second coordinating Display Value by using the F or F arrow keys. This is the same for KEY and APPLY scaling styles. (Follow the same procedure if using more than 2 scaling points.)

ЛО УЕБ

When enabled, a second list of scaling points is active in the selected parameter list for List A and List B.

The two user inputs are individually programmable to perform specific meter control functions. While in the Display Mode or Program Mode, the function is executed the instant the user input transitions to the active state. The front panel function keys, $\cancel{F1}$ and $\cancel{F2}$, are also individually programmable to perform specific meter control functions. While in the Display Mode, the primary function is executed the instant the key is pressed. Holding the function key for three seconds executes a secondary function. It is possible to program a secondary function without a primary function.

In most cases, if more than one user input and/or function key is programmed for the same function, the maintained (level trigger) actions will be performed while at least one of those user inputs or function keys are activated. The momentary (edge trigger) actions will be performed every time any of those user inputs or function keys transition to the active state.

Note: In the following explanations, not all selections are available for both user inputs and front panel function keys. Displays are shown with each selection. Those selections showing both displays are available for both. If a display is not shown, it is not available for that selection. USEr -n will represent both user inputs. Fn will represent both function keys and second function keys.

USER INPUT ACTIVE STATE

Lo Hi

Select the desired active state for the User Inputs. Select Lo for sink input, active low. Select H , for source input, active high.

NO FUNCTION

No function is performed if activated. This is the factory setting for all user inputs and function keys.

Programming Mode is locked-out, as long as activated (maintained action). A security code can be configured to allow programming access during lock-out.

ZERO (TARE) DISPLAY

The Zero (Tare) Display provides a way to zero the Input Display value at various input levels, causing future Display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), rESEE flashes and the Display is set to zero. At the same time, the Display value (that was on the display before the Zero Display) is subtracted from the Display Offset Value and is automatically stored as the new Display Offset Value. If another Zero (tare) Display is performed, the display will again change to zero and the Display offset value will shift accordingly.

RELATIVE/ABSOLUTE DISPLAY

FNE d-rEl

This function will switch the Input Display between Relative and Absolute. The Relative is a net value that includes the Display Offset Value. The Input Display will normally show the Relative unless switched by this function. Regardless of the display selected, all meter functions continue to operate based on relative values. The Absolute is a gross value (based on Module 1 DSP and INP entries) without the Display Offset Value. The Absolute display is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input display switches back to Relative display. (Ab5) or (rEL) is momentarily displayed at transition to indicate which display is active.

HOLD DISPLAY

The active display is held but all other meter functions continue as long as activated (maintained action).

A - H1 4

HOLD ALL FUNCTIONS

The meter disables processing the input, holds all display contents, and locks the state of all outputs as long as activated (maintained action). The serial port continues data transfer.

SYNCHRONIZE METER READING

The meter suspends all functions as long as activated (maintained action). When the user input is released, the meter synchronizes the restart of the A/D with other processes or timing events.

STORE BATCH READING IN TOTALIZER

FNE ЬЯЕ

The Input Display value is added (batched) to the Totalizer at transition to activate (momentary action) and Line 2 flashes back by The Totalizer retains a running sum of each batch operation until the Totalizer is reset. When this function is selected, the normal operation of the Totalizer is overridden and only batched Input Display values accumulate in the Totalizer.

SELECT TOTALIZER DISPLAY

The Totalizer display appears on Line 2 as long as activated (maintained action). When the user input is released, the previously selected display is returned. The

D or P keys override and disable the active user input. The Totalizer continues to function including associated outputs independent of being displayed.

RESET TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer then continues to operate as it is configured. This selection functions independent of the selected display.

RESET AND ENABLE TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

ENABLE TOTALIZER

SELECT MAXIMUM DISPLAY

The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions

independent of the selected display.

SEr - n^{FRE} d - HI

The Maximum display appears on Line 2 as long as activated (maintained). When the user input is released,

the previously selected display is returned. The **D** or **P** keys override and disable the active user input. The Maximum continues to function independent of being displayed.

RESET MAXIMUM DISPLAY

FNE 'n r - H1

When activated (momentary action), r E5EE flashes and the Maximum resets to the present Input Display value. The Maximum function then continues from that value. This selection functions independent of the selected display.

SELECT MINIMUM DISPLAY

The Minimum display appears on Line 2 as long as activated (maintained). When the user input is released, the previously selected display is returned. The **D** or **P** keys override and disable the active user input. The Minimum continues to function independent of being displayed.

When activated (momentary action), rE5EE flashes and the Minimum resets to the present Input Display value. The Minimum function then continues from that value. This selection functions independent of the selected display.

RESET MAXIMUM AND MINIMUM DISPLAY

When activated (momentary action), rE5Et flashes and the Maximum and Minimum readings are set to the present Input Display value. The Maximum and Minimum function then continues from that value. This selection functions independent of the selected display.

DISPLAY SELECT

When activated (momentary action), Line 2 advances to the next display that is not locked out from the Display Mode.

ADJUST DISPLAY INTENSITY

When activated (momentary action), the display intensity changes to the next intensity level.

LISEr - n^{FRE} E o lor

CHANGE DISPLAY COLOR

When activated (momentary action), Line 1 will change color.

SELECT PARAMETER LIST

Two lists of input scaling points and setpoint values (including band and deviation) are available. The two lists are named $l \downarrow 5l - R$ and $l \downarrow 5l - b$. If a user input is used to select the list then $l \downarrow 5l - R$ is selected when the user input is not active and $l \downarrow 5l - b$ is selected when the user input is active (maintained action). If a front panel key is used to select the list then the list will toggle for each key press (momentary action). The display will only indicate which list is active when the list is changed. To program the values for $l \downarrow 5l - R$ and $l \downarrow 5l - b$, first complete the programming of all the parameters. Exit programming and switch to the other list. Re-enter programming and enter the desired values for the input scaling points, setpoints, band, and deviation if used.

SETPOINT SELECTIONS

The following selections are functional only with a Setpoint plug-in card installed.

- r l Reset Setpoint 1 (Alarm 1) r - 2 - Reset Setpoint 2 (Alarm 2)
- r ∃ Reset Setpoint 3 (Alarm 3)
- г-Ч Reset Setpoint 4 (Alarm 4)
- r]4 Reset Setpoint 3 & 4 (Alarm 3 & 4)
- r 234 Reset Setpoint 2, 3 & 4 (Alarm 2, 3 & 4)
- r RLL Reset All Setpoints (Alarms 1-4)

PRINT REQUEST

The meter issues a block print through the serial port when activated, and the serial type is set to rLL. The data transmitted during a print request and the serial type is programmed in Module 7. If the user input is still active after the transmission is complete (about 100 msec), an additional transmission occurs. As long as the user input is held active, continuous transmissions occur.

Module 3 is the programming of the Main Display Loop, Parameter Display Loop, Hidden Parameter Loop, and Full Programming lock-out. The large upper display line value is configured by the "LITE I" parameter. The Units mnemonic can be used to assign a custom display mnemonic to the upper display value. When in the Main Display Loop, the available Line 2 displays (items configured for d - r E d or $d - E \Pi E$) can be consecutively read on lower display by repeatedly pressing the D key. A left justified 3 character mnemonic indicates which parameter value is being shown on the lower display. When in the Main Display Loop the User keys $\overline{F1}$ and $\overline{V2}$ function as programmed in Module 2.

The Parameter display loop items can be accessed by pressing the P key. To edit a main display line item, that is configured as $d - E \Pi \hat{E}$, the **P** key is pushed and the unit enters a parameter edit mode in which the F_1 and F_2 key increments or decrements the value.

Full Programming Mode permits all parameters to be viewed and modified. This Programming Mode can be locked with a security code and/or user input.

LINE 1 DISPLAY COLOR

I to 4

Enter the desired Display Line 1 and programmable Units Display color.

ч

DISPLAY INTENSITY LEVEL

Enter the desired Display Intensity Level (0-4) by using the arrow keys. The display will actively dim or brighten as the levels are changed. This parameter also appears in the Parameter Display Loop when enabled.

11 to 15

Enter the desired Display Contrast Level (0-15) by using the arrow keys. The display contrast / viewing angle will actively move up or down as the levels are changed. This parameter also appears in the Parameter Display Loop when enabled

LINE 1 DISPLAY

Select the value to be assigned to the primary or top line of the meter display.

UNITS MNEMONIC

This parameter allows programming of the display mnemonics characters. Three individual characters may be selected from a preprogrammed list. The list includes:

- A P C 9 E E E H I 7 K T U O B O B 2 F N A A 5 O I 5 3456789c29h 1 n o 9 r u - ^o blank

LINE 2 MAIN, SECONDARY & HIDDEN DISPLAY LOOP **ACCESSIBLE ITEMS**

NN 465

Select YE5 to program the display Line 2 accessible values. The default setting of III bypasses the programming of these values to shorten the module. All of the individual Line 2 settings are retained.

The following values can be made accessible on Line 2 of the Main (**D** key), Parameter (P key) and Hidden (P key following code entry) Display Loops.

Each of the following parameters can be configured for one of the following settings. Not all selections are available for each parameter.

SELECTION	DESCRIPTION
LDC	Not viewed on display line
d - r E d	View in Main Display Loop. Cannot change or reset.
d - E M E	View and change (reset) in Main Display Loop
P - r E d	View in Parameter Display Loop. Cannot change or reset.
P - E M E	View and change (reset) in Parameter Display Loop
H : d E	View and change in Hidden Parameter Display Loop
Hıdt	View and change in Hidden Parameter Display Loop

LINE 2 INPUT ACCESS

100 d-rEd d-ENE

When configured for d-Eflt, the Input value can be reset (tare) using a front keypad sequence. To reset (tare), push the P key while viewing the Input value $\Pi \Box$. Press the /F1 key to select $\Im E 5$ on Line 2. The display will show r EL and then press P key. The display will indicate rESEE and then advance to Parameter Display.

LINE 2 TOTAL ACCESS

100 d-ENE d-rEd

When configured for $d - E \Pi E$, the Total value can be reset using a front keypad sequence. To reset, push the **P** key while viewing the Total value on Line 2. The $\Pi \square$. Press the *F* key to select $\exists E 5$ and then press display will show r - Lot P key. The display will indicate r E 5E k and then advance to Parameter Display.

347

Ε

LINE 2 MAX ACCESS

When configured for $d - \xi \Pi t$, the Max Display value can be reset using a front keypad sequence. To reset, push the **P** key while viewing the Hi value on Line 2. The display will show $r - H = -\Pi D$. Press the *F* key to select $\forall \xi \xi$ and then press **P** key. The display will indicate $r \xi \xi \xi t$ and then advance to Parameter Display.

LINE 2 MIN ACCESS

When configured for $d - \xi \Pi t$, the Min Display value can be reset using a front keypad sequence. To reset, push the **P** key while viewing the Lo value on Line 2. The display will show $r - t a = \Pi D$. Press the *F* key to select $\forall \xi \xi$ and then press **P** key. The display will indicate $r \xi \xi \xi t$ and then advance to Parameter Display.

LINE 2 PARAMETER LIST A/B ACCESS

LISE LNZ	LOC	d - r E d	d-ЕПЕ
	P-rEd	P - E N E	Н ,dE
	, ,		

When configured for $d - E \pi t$, the Parameter list can be selected using a front keypad sequence. To select, push the **P** key while viewing $L 15t = x^{\circ}$. "x" will begin to flash, press the Fix key to select "A" or "B" and then press **P** key. The selected Parameter List will become active and the display will advance to Parameter Display. See User Functions "Select Parameter List" for a description of the list function. The Line 2 Parameter List provides a means of setting or viewing the active parameter list.

LINE 2 SETPOINTS ACCESS

	LOC	d-rEd	d - Е П Е
LOC	P-rEd	Р-ЕЛЬ	Ні́ДЕ

When configured for $d \cdot f \pi t$, the **P** key must be pressed to select the item for change before the <u>F</u>1 and <u>V</u>2 keys will increment or decrement the value.

LINE 2 BAND/DEVIATION ACCESS

LOC P-cEd	d - r E d P - E N E	9 - EUF H '9E	
 , ,	, ,,,,,		

When configured for d - E f l t, the **P** key must be pressed to select the item for change before the F l and F l keys will increment or decrement the value.

LINE 1 DISPLAY COLOR ACCESS

1.01

Ε

LOC P-rEd P-ENE Hide

When configured for $P \cdot E f l t$, Line 1 Color can be selected in the Parameter Display by using the $\underline{F n}$ and $\overline{V2}$ keys while viewing Lo lor.

DISPLAY INTENSITY ACCESS

When configured for $P - E \Pi k$, the display intensity can be selected in the Parameter Display by using the $\overline{fr1}$ and $\overline{fr2}$ keys while viewing *d*-*LEU*.

DISPLAY CONTRAST ACCESS

When configured for $P \in FIL$, the display contrast can be selected in the Parameter Display by using the \overline{FI} and $\overline{F2}$ keys while viewing d-Lone.

LINE 2 USER FUNCTIONS ACCESSIBLE ITEMS

YE S

ПО

Select $rac{4}{5}$ to display the following list of User functions that can be made available at the end of the Parameter ($P \cdot E \Pi E$) or Hidden ($H \cdot dE$) display loops. The more critical and frequently used Functions should be first assigned to the User Inputs and User Function keys. If more functions are needed than what can be obtained with User Inputs, this feature will provide a means to provide that access. Refer to module 2, 2-FIME for a description of the function.

rEL	ЬЯЕ	r-tot	r – Hl	r-Lo
r-HL	r - 1	r - 2	r -]	r - 4
r -]4	r - 234	r-ALL	Print	

PROGRAMMING SECURITY CODE

To activate either the Parameter or Hidden Parameter Display Loops, a security code (1-250) must be entered. If a "0" security code is programmed, pressing the ${\bf P}$ key takes you directly to the Full Programming Mode.

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (PLBL) in the User Input Function parameter (Module 2).

Two programming modes are available. Full Programming Mode allows all parameters to be viewed and modified. Parameter Display Loop mode provides access to those selected parameters, that can be viewed and/or modified without entering the Full programming mode.

The following chart indicates the levels of access based on various LodE and User Input PLOE settings.

SECURITY CODE	USER INPUT CONFIGURED	USER INPUT STATE	WHEN P KEY IS PRESSED	FULL PROGRAMMING MODE ACCESS
0	not PL DE		Full Programming	Immediate Access
>0	not PL DE		Enter Parameter Display Loop	After Parameter Display Loop with correct code # at [DdE prompt.
>0	PLOC	Active	Enter Parameter Display Loop	After Parameter Display Loop with correct code # at [DdE prompt.
>0	PLOC	Not Active	Full Programming	Immediate Access
0	PLOC	Active	Enter Parameter Display Loop	No Access
0	PLOC	Not Active	Full Programming	Immediate Access

www.redlion.net

HIdE

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

MODULE 4 - Secondary Function Parameters (4-5671dr 4)

MAX CAPTURE ASSIGNMENT

rEL *AP2*

Select the desired parameter that will be assigned to the Max Capture.

MAX CAPTURE DELAY TIME

00 to 32750 seconds

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN CAPTURE ASSIGNMENT

Select the desired parameter that will be assigned to the Min Capture.

MIN CAPTURE TIME

0.0 to 3275.0 seconds

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

DISPLAY UPDATE RATE

This parameter configures the display update rate. It does not affect the response time of the setpoint output or analog output option cards.

E

MODULE 5 - TOTALIZER (INTEGRATOR) PARAMETERS (5-EDERL)

The totalizer accumulates (integrates) the Input Display value using one of two modes. The first is using a time base. This can be used to compute a time temperature product. The second is through a user input or function key programmed for Batch (one time add on demand). This can be used to provide a readout of temperature integration, useful in curing and sterilization applications. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

For most applications, this matches the Input Display Decimal Point (dECPTE). If a different location is desired, refer to Totalizer Scale Factor.

TOTALIZER TIME BASE

//// -minutes (/60) 5EE -seconds (/1) hour -hours (/3600) dfg -days (/86400)

This is the time base used in Totalizer accumulations. If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply

TOTALIZER SCALE FACTOR

000 l to 65000

For most applications, the Totalizer reflects the same decimal point location and engineering units as the Input Display. In this case, the Totalizer Scale Factor is 1.000. The Totalizer Scale Factor can be used to scale the Totalizer to a value that is different than the Input Display. Common possibilities are:

- 1. Changing decimal point location (example tenths to whole)
- 2. Average over a controlled time frame.
- Details on calculating the scale factor are shown later.

If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER LOW CUT VALUE

- 199999 to 999999

A low cut value disables Totalizer when the Input Display value falls below the value programmed.

TOTALIZER POWER UP RESET

ПО

III - do not reset buffer

9E5 - reset buffer

The Totalizer can be reset to zero on each meter power-up by setting this parameter to YE5.

TOTALIZER BATCHING

The Totalizer Time Base and scale factor are overridden when a user input or function key is programmed for store batch (bRE). In this mode, when the user input or function key is activated, the Input Display reading is one time added to the Totalizer (batch). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. This is useful in weighing operations, when the value to be added is not based on time but after a filling event.

TOTALIZER USING TIME BASE

Totalizer accumulates as defined by:

Input Display x Totalizer Scale Factor Totalizer Time Base

Where:

Input Display - the present input reading Totalizer Scale Factor - 0.001 to 65.000 Totalizer Time Base - (the division factor of EbASE)

Example: The input reading is at a constant rate of 10.0 gallons per minute. The Totalizer is used to determine how many gallons in tenths has flowed. Because the Input Display and Totalizer are both in tenths of gallons, the Totalizer Scale Factor is 1. With gallons per minute, the Totalizer Time Base is minutes (60). By placing these values in the equation, the Totalizer will accumulate every second as follows:

 $10.0 \ge 1.000 = 0.1667$ gallon accumulates each second

60 This results in:

10.0 gallons accumulates each minute 600.0 gallons accumulates each hour

TOTALIZER SCALE FACTOR CALCULATION EXAMPLES

1. When changing the Totalizer Decimal Point (dECPTE) location from the Input Display Decimal Point (dELPTE), the required Totalizer Scale Factor is multiplied by a power of ten. Example:

I	nput (dEl	(PNL) = 0	Ι	nput (dEE)	PML) = 0.0) Inp	out (dECPNE	() = 0.00
	Totalizer dECPNL	Scale Factor		Totalizer dEEPNL	Scale Factor		Totalizer dE[PNL	Scale Factor
ľ	0.0	10		0.00	10		0.000	10
I	0	1		0.0	1		0.00	1
I	x10	0.1		0	0.1		0.0	0.1
	x100	0.01		x10	0.01		0	0.01
ſ	x1000	0.001		x100	0.001		x10	0.001

2. To obtain an average reading within a controlled time frame, the selected Totalizer Time Base is divided by the given time period expressed in the same timing units.

Example: Average temperature per hour in a 4 hour period, the scale factor would be 0.250. To achieve a controlled time frame, connect an external timer to a user input programmed for r-tot. The timer will control the start (reset) and the stopping (hold) of the totalizer.

www.redlion.net

Enter the setpoint (alarm output) to be programmed. The "n" in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to Π_{a}^{D} . Repeat step for each setpoint to be programmed. The Π_{a}^{D} chosen at $5ELELE^{spt}$, will return to Pra Π_{a}^{D} . The number of setpoints available is setpoint output card dependent.

Selects the meter value to be used to trigger the Setpoint Alarm. The r EL setting will cause the setpoint to trigger off of the relative (net) input value. The relative input value is the absolute input value that includes the Display Offset Value. The *Rb5* setting will cause the setpoint to trigger off of the absolute (gross) input value. The absolute input value is based on Module 1 *d SPLY* and *LNPUL* entries.

ACEL ANS A	ПО	АЬ-Н)	AP-F0	АU - НІ
	АU-LO	dE-Н)	96-F0	БАП І
		τοτίο	C O C M I	

Enter the action for the selected setpoint (alarm output). See Setpoint Alarm Figures for a visual detail of each action. The Setpoint Actions that pertains to the total is only active when the Setpoint Assignment is set to total.

- ПО = No Setpoint Action ЯЬ-HI = Absolute high, with balanced hysteresis *АР-ГО* = Absolute low, with balanced hysteresis RU - HI = Absolute high, with unbalanced hysteresis AU-LO = Absolute low, with unbalanced hysteresis dE-HI = deviation high, with unbalanced hysteresis dE-L0 = deviation low, with unbalanced hysteresis ьяла = Outside band, with unbalanced hysteresis blldln = Inside band, with unbalanced hysteresis totlo = Lower 6 digits of 9 digit Totalizer, with unbalanced hysteresis
- EDEH! = Upper 6 digits of 9 digit Totalizer, with unbalanced hysteresis

Setpoint Alarm Figures

ПО

With reverse output logic r Eu, the below alarm states are opposite.

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

SETPOINT VALUE

- 199999 to 999999

Enter desired setpoint alarm value. Setpoint values can also be entered in the Display Mode during Program Lockout when the setpoint is programmed as $E \Pi E$ in Parameter Module 3. The decimal point position is determined by the Setpoint Assignment value.

BAND/DEVIATION VALUE

- 199999 to 999999

This parameter is only available in band and deviation setpoint actions. Enter desired setpoint band or deviation value. When the Setpoint Action is programmed for Band, this value can only be a positive value.

HYSTERESIS VALUE

1 to 65000

Enter desired hysteresis value. See Setpoint Alarm Figures for visual explanation of how setpoint alarm actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints. Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

0.0 to 3275.0 seconds

Enter the time value in seconds that the alarm is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is r Eu, this becomes off time delay. Any time accumulated at power-off resets during power-up.

OFF TIME DELAY

0.0 to 3275.0 seconds

Enter the time value in seconds that the alarm is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is $r E_u$, this becomes on time delay. Any time accumulated at power-off resets during power-up.

OUTPUT LOGIC

rEu

Enter the output logic of the alarm output. The nor logic leaves the output operation as normal. The r E u logic reverses the output logic. In r E u, the alarm

000

RESET ACTION

LAFEP 1 LAFEPS Ruto

Enter the reset action of the alarm output.

states in the Setpoint Alarm Figures are reversed.

- $R_{ub} =$ Automatic action; This action allows the alarm output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Alarm Figures. The "on" alarm may be manually reset (off) immediately by a front panel function key or user input. The alarm remains reset off until the trigger point is crossed again.
- LREL h I = Latch with immediate reset action; This action latches the alarmoutput on at the trigger point per the Setpoint Action shown in Setpoint Alarm

Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the corresponding "on" alarm output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

LRELh2 = Latch with delay reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the meter delays the event until the corresponding "on" alarm output crosses the trigger off point. (Previously latched alarms are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous Latch 2 reset if it is not activated at power up.)

SETPOINT STANDBY OPERATION

When YE5, the alarm is disabled (after a power up) until the trigger point is crossed. Once the alarm is on, the alarm operates normally per the Setpoint Action and Reset Mode.

SETPOINT ANNUNCIATOR

nnr

NFF FLASH rEu

The OFF mode disables display setpoint annunciators. The nor mode displays the corresponding setpoint annunciators of "on" alarm outputs. The r Eu mode displays the corresponding setpoint annunciators of "off" alarms outputs. The FLR5h mode flashes the corresponding setpoint annunciators of "on" alarm outputs.

LINE 1 CHANGE COLOR

Sπ a iar *NO CHG*

ПО ЕНБ БгЕЕЛ 0*r* 806E r E d GrnOr6 rEdOr6 rEd6rn LINE I

This parameter allows the Line 1 Display to change color, or alternate between two colors, when the alarm is activated. When multiple alarms are programmed to change color, the highest numbered active alarm (S4-S1) determines the display color.

The III EHE selection will maintain the color displayed prior to the alarm activation. The LITE I selection sets the display to the Line 1 Display Color (Lo lor), programmed in Module 3.

The following programming step is only available when Input Range in Module 1 is set for a temperature input (TC/RTD).

PROBE BURN-OUT ACTION пп

Enter the probe burn-out action. In the event of a temperature probe failure (TC open; RTD open or short), the output can be programmed to be on or off.

DFF

352

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Ε

MODULE 7 - SERIAL COMMUNICATIONS PARAMETERS (7-5Er / RL) PARAMETER MENU Pro Pro ПО 1-5Er1 AL Р SQ! FA1156 AA -14114 Hbru iddr 247 пп 38400 0.0 10 пп **EUDELE** 27685 пп Data Bit Baud Rate Parity Bit USB Comms Meter Transmit Abbreviated Print Setup Address Delay Printing Options Type

Programming information contained in this manual supercedes all programming information included with the PAXCDC card.

USB SETUP

CONFIG Port

- [ONFI 6 Configures USB with settings required to operate with Crimson configuration software. This will automatically internally configure the PAX2A to use ModBus RTU protocol, 38400 baud, 8 bits, and unit address of 247 when a USB cable is attached to PAX2A and PC. The serial port settings shown in 7- SErI AL (this module) will not change, or show this.
- Part Configures USB to utilize serial settings and protocol as configured in "7- SErIAL" (this module).

COMMUNICATIONS TYPE

ModBus ASCII - RLC Protocol (ASCII) rLE Mbrtu - ModBus RTU

Select the desired communications protocol. Modbus is preferred as it provides access to all meter values and parameters. Since the Modbus protocol is included within the PAX2A, the PAX Modbus option card, PAXCDC4, should not be used. The PAXCDC1 (RS485), or PAXCDC2 (RS232) card should be used instead.

7 8

Set the baud rate to match the other serial communications equipment on the serial link. Normally, the baud rate is set to the highest value that all the serial equipment are capable of transmitting and receiving.

DATA BIT

Select either 7 or 8 bit data word lengths. Set the word length to match the other serial communications equipment on the serial link.

PARITY BIT

Set the parity bit to match that of the other serial communications equipment on the serial link. The meter ignores the parity when receiving data and sets the parity bit for outgoing data. If no parity is selected with 7 bit word length, an additional stop bit is used to force the frame size to 10 bits.

METER UNIT ADDRESS

0 to 99 - RLC Protocol 1 60 247 - ModBus

Select a Unit Address that does not match an address number of any other equipment on the serial link.

SR

TRANSMIT DELAY

0000 to 0250 seconds

Following a transmit value ("*" terminator) or Modbus command, the PAX2A will wait this minimum amount of time in seconds before issuing a serial response

The following programming steps are only available when Communications Type (LYPE) is programmed for r LE.

ABBREVIATED PRINTING

ПП YE S

Select YES for full print or Command T transmissions (meter address, mnemonics and parameter data) or NO for abbreviated print transmissions (parameter data only). This will affect all the parameters selected in the print options. If the meter address is 00, it will not be sent during a full transmission.

PRINT OPTIONS YE S

ПО

YE5 - Enters the sub-menu to select the meter parameters to appear during a print request. For each parameter in the sub-menu, select YE5 for that parameter information to be sent during a print request or ΠD for that parameter information not to be sent. A print request is sometimes referred to as a block print because more than one parameter information (meter address, mnemonics

DISPLAY	DESCRIPTION	FACTORY SETTING	MNEMONIC
i NPUL	Signal Input	YE S	INP
ŁołAL	Total Value	0 0	TOT
HI LO	Max & Min	0 0	MAX, MIN
SPNE	Setpoint Values	ПО	SP1-SP4

and parameter data) can be sent to a printer or computer as a block.

SERIAL COMMUNICATIONS

The PAX2A supports serial communications using the optional serial communication cards or via the USB programming port located on the side of the unit. When USB is being used (connected), the serial communication card is disabled. When using the standard RS232 and RS485 Pax option cards, the PAX2A supports both the RLC protocol and also supports ModBus communications. The Pax ModBus option card should not be used with the PAX2A, as the PAX2A internal ModBus protocol supports complete unit configuration, and is much more responsive.

USB

The USB programming port is primarily intended to be used to configure the PAX2A with the Crimson programming software. It can also, be used as a virtual serial communications port following installation of the PAX2A USB drivers that are supplied with the Crimson software. When the USB port is being used, i.e. the USB cable is connected between PAX2A and PC, all serial communications with the serial option card (if used) is disabled.

USB Cable type required: USB A to Mini-B (not supplied)

PAX2A CONFIGURATION USING CRIMSON AND USB

- 1. Install Crimson software.
- 2. Supply power to PAX2A
- 3. Insure "USB" parameter in module 7-5EP/AL, is set to "EDNFIE" (factory default setting).
- 4. Attach USB A MiniB cable between PC and PAX2A
- 5. Create a new (File, New) or open an existing PAX2A database within Crimson.
- 6. Configure Crimson 2 Link, Options to the serial port the communication cable is attached (in Step 4).

SERIAL MODBUS COMMUNICATIONS

Modbus Communications requires that the Serial Communication Type Parameter (kypE) be set to "phpFLu" or "phfSL".

PAX2A CONFIGURATION USING CRIMSON AND SERIAL COMMUNICATIONS CARD

- 1. Install Crimson software.
- Install RS232 or RS485 card and connect communications cable from PAX2A to PC.
- 3. Supply power to PAX2A

E

- 4. Configure serial parameters in 7-5EPI AL to Mbr Eu, 38,400 baud, address 247.
- 5. Create a new (File, New) or open an existing PAX2A database within Crimson.
- 6. Configure Crimson 2 Link, Options to the serial port the comunication cable is attached (in step 2).

SUPPORTED FUNCTION CODES

FC03: Read Holding Registers

- 1. Up to 32 registers can be requested at one time. 2. HEX <8000> is returned for non-used registers.
- 2. HEX <8000/ is returned for non-used registers

FC04: Read Input Registers

- 1. Up to 32 registers can be requested at one time.
- 2. Block starting point can not exceed register boundaries.
- 3. HEX <8000> is returned in registers beyond the boundaries.
- 4. Input registers are a mirror of Holding registers.

FC06: Preset Single Register

 HEX <8001> is echoed back when attempting to write to a read only register.
 If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit. It is also returned in the response.

FC16: Preset Multiple Registers

- 1. No response is given with an attempt to write to more than 32 registers at a time.
- 2. Block starting point cannot exceed the read and write boundaries (40001-41280).
- 3. If a multiple write includes read only registers, then only the write registers will change.
- 4. If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit.

FC08: Diagnostics

The following is sent upon FC08 request:

- Module Address, 08 (FC code), 04 (byte count), "Total Comms" 2 byte count, "Total Good Comms" 2 byte count, checksum of the string
- "Total Comms" is the total number of messages received that were addressed to the PAX2. "Total Good Comms" is the total messages received by the PAX2A with good address, parity and checksum. Both counters are reset to 0 upon response to FC08 and at power-up.

FC17: Report Slave ID

The following is sent upon FC17 request: RLC-PAX2A ab<0100h><20h><20h><10h> a = SP Card, "0"-No SP, "2" or "4" SP b = Linear Card "0" = None, "1" = Yes <0100> Software Version Number (1.00) <20h>Max Register Reads (32)

- <20h>Max Register Writes (32)
- <10h> Number Guid/Scratch Pad Regs (16)

SUPPORTED EXCEPTION CODES

01: Illegal Function Issued whenever the reques

Issued whenever the requested function is not implemented in the meter.

02: Illegal Data Address

Issued whenever an attempt is made to access a single register that does not exist (outside the implemented space) or to access a block of registers that falls completely outside the implemented space.

03: Illegal Data Value

Issued when an attempt is made to read or write more registers than the meter can handle in one request.

07: Negative Acknowledge

Issued when a write to a register is attempted with an invalid string length.

PAX2A FREQUENTLY USED MODBUS REGISTER TABLE

Only frequently used registers are shown below. The entire Modbus Register Table can be found at www.redlion.net. The below limits are shown as Integers or HEX <> values. Read and write functions can be performed in either Integers or Hex as long as the conversion was done correctly. Negative numbers are represented by two's complement.

Note 1: The PAX2A should not be powered down while parameters are being changed. Doing so may corrupt the non-volatile memory resulting in checksum errors.

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
	FREQUENTLY USED REGISTERS					
40001	Input Relative Value (Hi word)	N/A	N/A	N/A	Read Only	Process value of present input level. This value is affected by Input Type, Resolution, Scaling, & Offset
40002	Input Relative Value (Lo word)					Value. (Relative Value = Absolute Input Value + Offset Value)
40003	Maximum Value (Hi word)	-199999	999999	N/A	Read/Write	
40004	Maximum Value (Lo word)					
40005	Minimum Value (Hi word)	_199999	999999	N/A	Read/W/rite	
40006	Minimum Value (Lo word)	100000				
40007	Total Value (Hi word)	-100000000	000000000	Ν/Δ	Read/M/rite	
40008	Total Value (Lo word)	-1333333333	3333333333	11/7	Tread/White	
40009	Setpoint 1 Value (Hi word)	100000	000000	100	Pood/Mrito	Active List (A or P)
40010	Setpoint 1 Value (Lo word)	-199999	555555	100	Read/White	
40011	Setpoint 2 Value (Hi word)	100000	000000	200	Pood/ <i>Mr</i> ito	Active List (A or P)
40012	Setpoint 2 Value (Lo word)	-1999999	999999	200	Reau/White	
40013	Setpoint 3 Value (Hi word)	100000	000000	200	Deed/Mrite	Active List (A or D)
40014	Setpoint 3 Value (Lo word)	-199999	999999	300	Read/write	Active List (A of B)
40015	Setpoint 4 Value (Hi word)	100000	000000	400	Deed/Mrite	Active List (A or D)
40016	Setpoint 4 Value (Lo word)	-199999	999999	400	Read/white	
40017	Setpoint 1 Band/Dev. Value (Hi word)	400000	000000	0	Deed/M/rite	Active List (A or B). Applicable only for Band or
40018	Setpoint 1 Band/Dev. Value (Lo word)	-199999	555555	0	Reau/white	Deviation Setpoint Action.
40019	Setpoint 2 Band/Dev. Value (Hi word)	100000	000000	0	Deed/Mrite	Active List (A or B). Applicable only for Band or
40020	Setpoint 2 Band/Dev. Value (Lo word)	-199999	9999999	0	Read/white	Deviation Setpoint Action.
40021	Setpoint 3 Band/Dev. Value (Hi word)	100000	000000	0	Deed/Mrite	Active List (A or B). Applicable only for Band or
40022	Setpoint 3 Band/Dev. Value (Lo word)	-199999	999999	0	Read/white	Deviation Setpoint Action.
40023	Setpoint 4 Band/Dev. Value (Hi word)	100000	000000	0	Pood/M/rito	Active List (A or B). Applicable only for Band or
40024	Setpoint 4 Band/Dev. Value (Lo word)	-1999999	999999	0	Reau/White	Deviation Setpoint Action.
40025	Setpoint Output Register (SOR)	0	15	N/A	Read/Write	Status of Setpoint Outputs. Bit State: $0 = Off$, $1 = On$. Bit $3 = S1$, Bit $2 = S2$, Bit $1 = S3$, Bit $0 = S4$. Outputs can only be activated/reset with this register when the respective bits in the Manual Mode Register (MMR) are set.
40026	Manual Mode Register (MMR)	0	31	0	Read/Write	Bit State: 0 = Auto Mode, 1 = Manual Mode Bit 4 = S1, Bit 3 = S2, Bit 2 = S3, Bit 1 = S4, Bit 0 = Linear Output
40027	Reset Output Register	0	15	0	Read/Write	Bit State: 1 = Reset Output, bit is returned to zero following reset processing; Bit 3 = S1, Bit 2 = S2, Bit 1 = S3, Bit 0 = S4
40028	Analog Output Register (AOR)	0	4095	0	Read/Write	Linear Output Card written to only if Linear Output is in Manual Mode.(MMR bit 0 = 1)
40029	Input Absolute Value (Hi word)	N1/A	N1/A	N1/A	Deed Orth	Gross value of present Input level. This value is
40030	Input Absolute Value (Lo word)			IN/A		affected by offset Value
40031	Input Offset Value (Hi word)	-100000	000000	0	Read/Mrite	Input Offset Value plus the Input Absolute Value equals
40032	Input Offset Value (Lo word)	-199999	222222	0	neau/white	the Relative Input Value (standard meter value).

Ε

SERIAL RLC PROTOCOL COMMUNICATIONS

RLC Communications requires the Serial Communications Type Parameter ($\$ LPE) be set to "rLE".

SENDING SERIAL COMMANDS AND DATA TO THE METER

When sending commands to the meter, a string containing at least one command character must be constructed. A command string consists of a command character, a value identifier, numerical data (if writing data to the meter) followed by a command terminator character * or \$.

Command Chart

2		
COMMAND	DESCRIPTION	NOTES
N	Node Address Specifier	Address a specific meter. Must be followed by a one or two digit node address. Not required when address = 0.
Т	Transmit Value (read)	Read a register from the meter. Must be followed by register ID character
V	Value Change (write)	Write to register or output. Must be followed by register ID character and numeric data.
R	Reset	Reset a register or output. Must be followed by register ID character.
P	Block Print Request	Initiates a block print output. Registers are defined in programming.

Command String Construction

The command string must be constructed in a specific sequence. The meter does not respond with an error message to invalid commands. The following procedure details construction of a command string:

- The first characters consist of the Node Address Specifier (N) followed by a 1 or 2 character address number. The address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
- 2. After the address specifier, the next character is the command character.
- 3. The next character is the Register ID. This identifies the register that the command affects. The P command does not require a Register ID character. It prints according to the selections made in print options.
- 4. If constructing a value change command (writing data), the numeric data is sent next.
- 5. All command strings must be terminated with the string termination characters * or \$. The meter does not begin processing the command string until this character is received. See Timing Diagram figure for differences between terminating characters.

Register Identification Chart

ID	VALUE DESCRIPTION	MNEMONIC	APPLICABLE COMMANDS/COMMENTS
A	Input (relative value)	INP	T, P, R (Reset command resets input to zero; tares)
В	Total	тот	T, P, R (Reset command resets total to zero)
С	Max Input	MAX	T, P, R (Reset command resets Max to current reading)
D	Min Input	MIN	T, P, R (Reset command resets Min to current reading)
E	Setpoint 1	SP1	T, P, V, R (Reset command resets
F	Setpoint 2	SP2	the setpoint output)
G	Setpoint 3	SP3	
Н	Setpoint 4	SP4	
Ι	Band/Deviation 1	BD1	T, V
J	Band/Deviation 2	BD2	T, V
К	Band/Deviation 3	BD3	T, V
L	Band/Deviation 4	BD4	T, V
М	Absolute Input value	ABS	Т
0	Offset	OFS	T, V
U	Auto/Manual Register	MMR	T, V
W	Analog Output Register	AOR	T, V
Х	Setpoint Register	SOR	T, V

Command String Examples:

1. Node address = 17, Write 350 to Setpoint 1.

- String: N17VE350\$
- 2. Node address = 5, Read Input value.

String: N5TA*

3. Node address = 0, Reset Setpoint 4 output. String: RH*

Sending Numeric Data

Numeric data sent to the meter must be limited to 6 digits (-199999 to 999999). Leading zeros are ignored. Negative numbers must have a minus sign. The meter ignores any decimal point and conforms the number to the scaled resolution. (For example: the meter's scaled decimal point position = 0.0 and 25 is written to a register. The value of the register is now 2.5.

Note: Since the meter does not issue a reply to value change commands, follow with a transmit value command for readback verification.

RECEIVING DATA FROM THE METER

Data is transmitted by the meter in response to either a transmit command (T), a print block command (P) or User Function print request. The response from the meter is either a full field transmission or an abbreviated transmission. The meter response mode is selected in program Module 7 (Rbru).

Full Field Transmission (Address, Mnemonic, Numeric data)

- ByteDescription1, 22 byte Node Address field [00-99]
- 3 <SP> (Space)
- 4-6 3 byte Register Mnemonic field
- 7-18 2 byte data field, 10 bytes for number, one byte for sign, one byte for decimal point
- 19 <CR> carriage return
- 20 <LF> line feed
- 21 <SP>* (Space)
- 22 <CR>* carriage return
- 23 <LF>* line feed

* These characters only appear in the last line of a block print.

The first two characters transmitted are the node address, unless the node address assigned = 0, in which case spaces are substituted. A space follows the node address field. The next three characters are the register mnemonic.

The numeric data is transmitted next. The numeric field is 12 characters long (to accommodate the 10 digit totalizer), with the decimal point position floating within the data field. Negative values have a leading minus sign. The data field is right justified with leading spaces.

The end of the response string is terminated with a carriage return $\langle CR \rangle$ and $\langle LF \rangle$. When block print is finished, an extra $\langle SP \rangle \langle CR \rangle \langle LF \rangle$ is used to provide separation between the blocks.

Abbreviated Transmission (Numeric data only)

- Byte Description
- 1-12 12 byte data field, 10 bytes for number, one byte for sign, one byte for decimal point
- 13 <CR> carriage return
- 14 <LF> line feed
- 15 <SP>* (Space)16 <CR>* carriage return
- 17 <LF>* line feed
- * These characters only appear in the last line of a block print.

Meter Response Examples:

- 1. Node address = 17, full field response, Input = 875
- 17 INP 875 <CR><LF>
- 2. Node address = 0, full field response, Setpoint 2 = -250.5 SP2 -250.5<CR><LF>
- SP2 -250.5<CR><LF>
- 3. Node address = 0, abbreviated response, Setpoint 2 = 250, last line of block print

250<CR><LF><SP><CR><LF>

Auto/Manual Mode Register (MMR) ID: U

This register sets the controlling mode for the outputs. In Auto Mode (0) the meter controls the setpoint and analog output. In Manual Mode (1) the outputs are defined by the registers SOR and AOR. When transferring from auto mode to manual mode, the meter holds the last output value (until the register is changed by a write). Each output may be independently changed to auto or manual. In a write command string (VU), any character besides 0 or 1 in a field will not change the corresponding output mode.

Example: VU00011 places SP4 and Analog in manual.

Analog Output Register (AOR) ID: W

This register stores the present signal value of the analog output. The range of values of this register is 0 to 4095, which corresponds to the analog output range per the following chart:

Register	Output Signal*			
Value	0-20 mA	4-20 mA	0-10 V	
0	0.00	4.00	0.000	
1	0.005	4.004	0.0025	
2047	10.000	12.000	5.000	
4094	19.995	19.996	9.9975	
4095	20.000	20.000	10.000	

*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (0-20 mA, 4-20 mA or 0-10 V).

Writing to this register (VW) while the analog output is in the Manual Mode causes the output signal level to update immediately to the value sent. While in the Automatic Mode, this register may be written to, but it has no effect until the analog output is placed in the manual mode. When in the Automatic Mode, the meter controls the analog output signal level. Reading from this register (TW) will show the present value of the analog output signal.

Example: VW2047 will result in an output of 10.000 mA, 12.000 mA or 5.000V depending on the range selected.

Setpoint Output Register (SOR) ID: X

This register stores the states of the setpoint outputs. Reading from this register (TX) will show the present state of all the setpoint outputs. A "0" in the setpoint location means the output is off and a "1" means the output is on.

ć	abcd		
	∟	d =	SP4
		c =	SP3
		b =	SP2
		a =	SP1

Х

In Automatic Mode, the meter controls the setpoint output state. In Manual Mode, writing to this register (VX) will change the output state. Sending any character besides 0 or 1 in a field or if the corresponding output was not first in manual mode, the corresponding output value will not change. (It is not necessary to send least significant 0s.)

Example: VX10 will result in output 1 on and output 2 off.

Ε

COMMAND RESPONSE TIME

The meter can only receive data or transmit data at any one time (half-duplex operation). When sending commands and data to the meter, a delay must be imposed before sending another command. This allows enough time for the meter to process the command and prepare for the next command.

At the start of the time interval t_1 , the computer program prints or writes the string to the com port, thus initiating a transmission. During t_1 , the command characters are under transmission and at the end of this period, the command terminating character (*) is received by the meter. The time duration of t_1 is dependent on the number of characters and baud rate of the channel.

 $t_1 = (10 * \# of characters) / baud rate$

At the start of time interval t_2 , the meter starts the interpretation of the command and when complete, performs the command function. This time interval t_2 varies from 2 msec to 15 msec. If no response from the meter is expected, the meter is ready to accept another command.

If the meter is to reply with data, the time interval t_2 is controlled by the use of the command terminating character and the (Serial Transmit Delay parameter (dElAY)). The standard command line terminating character is "*". This terminating character results in a response time window of the Serial Transmit Delay time (dElAY) plus 15 msec. maximum. The dElAY parameter should be programmed to a value that allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with "\$" results in a response time window (t_2) of 2 msec minimum and 15 msec maximum. The response time of this terminating character requires that sending drivers release within 2 msec after the terminating character is received.

At the beginning of time interval t_3 , the meter responds with the first character of the reply. As with t_1 , the time duration of t_3 is dependent on the number of characters and baud rate of the channel.

 $t_3 = (10 * \# of characters) / baud rate.$

At the end of t_3 , the meter is ready to receive the next command. The maximum serial throughput of the meter is limited to the sum of the times t_1, t_2 and t_3 .

Timing Diagrams

NO REPLY FROM METER

RESPONSE FROM METER

COMMUNICATION FORMAT

Data is transferred from the meter through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character.

The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

LOGIC	INTERFACE STATE	RS232*	RS485*	
1	mark (idle)	TXD,RXD; -3 to -15 V	a-b < -200 mV	
0	space (active)	TXD,RXD; +3 to +15 V	a-b > +200 mV	
* Voltage levels at the Receiver				

Data is transmitted one byte at a time with a variable idle period between characters (0 to ∞). Each ASCII character is "framed" with a beginning start bit, an optional parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the meter.

Start bit and Data bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted. Since the sending and receiving devices operate at the same transmission speed (baud rate), the data is read without timing errors.

Parity bit

After the data bits, the parity bit is sent. The transmitter sets the parity bit to a zero or a one, so that the total number of ones contained in the transmission (including the parity bit) is either even or odd. This bit is used by the receiver to detect errors that may occur to an odd number of bits in the transmission. However, a single parity bit cannot detect errors that may occur to an even number of bits. Given this limitation, the parity bit is often ignored by the receiving device. The PAX meter ignores the parity bit of incoming data and sets the parity bit to odd, even or none (mark parity) for outgoing data.

Stop bit

The last character transmitted is the stop bit. The stop bit provides a single bit period pause to allow the receiver to prepare to re-synchronize to the start of a new transmission (start bit of next byte). The receiver then continuously looks for the occurrence of the start bit. If 7 data bits and no parity is selected, then 2 stop bits are sent from the PAX meter.

MODULE 8 - ANALOG OUTPUT PARAMETERS (8 - Ank Out)

ANALOG OUTPUT TYPE

4-20 0-10 0-20

Enter the analog output type. For 0-20 mA or 4-20 mA use terminals 18 and 19. For 0-10 V use terminals 16 and 17. Only one range can be used at a time.

ANALOG OUTPUT ASSIGNMENT

Enter the source for the analog output to retransmit:

 $\Pi \square \Pi E =$ Manual Mode operation. (See Module 7, Serial RLC Protocol).

r EL = Relative (net) Input Value. The Relative Input Value is the Absolute Input Value including the Display Offset Value.

Rb5 = Absolute (gross) Input Value. The Absolute Input Value is the scaled input value. It does not include the Display Offset Value.

Lot AL = Totalizer Value

- H_{i} = Maximum Display Value
- Lo = Minimum Display Value
- 51-54 = Setpoint Values

ANALOG LOW SCALE VALUE

- 199999 to 999999

Enter the Display Value that corresponds to 0 mA (0-20 mA) , 4 mA (4-20 mA) or 0 VDC (0-10 VDC).

ANALOG HIGH SCALE VALUE

Enter the Display Value that corresponds to 20 mA (0-20 mA), 20 mA (4-20 mA) or 10 VDC (0-10 VDC).

ANALOG UPDATE TIME

L 0,0 to 10,0

Enter the analog output update rate in seconds. A value of 0.0 allows the meter to update the analog output at the ADC Conversion Rate.

The following programming step is only available when Input Range in Module 1 is set for a temperature input (TC/RTD).

PROBE BURN-OUT ACTION

H, Lo

Enter the probe burn-out action. In the event of a temperature probe failure, the analog output can be programmed for low or high scale.

MODULE 9 - FACTORY SERVICE OPERATIONS (9-FACEr 9) PARAMETER MENU PARAMETER MENU Factory Service Code

Use the F_{Λ} and F_{2} keys to display [IIdE 55 and press **P**. The meter will flash $r E 5E \pm$ and then return to [IIdE 50]. Press the **P** key to return to Display Mode. This will overwrite all user settings with the factory settings.

The meter will briefly display the model (P2P) on Line 1, and the current firmware version ($UEr \ x.xx$) on Line 2, and then return to [DdE 50].

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed in Module 1. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter. When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment. Calibration does not change any user programmed parameters. However, it will affect the accuracy of the input signal and the values previously stored using the Apply (RPPLY) Scaling Style.

1-717-767-6511

Preparation for Current, Volt, and Ohm Input Calibration

Warning: Input Calibration of this meter requires a signal source capable of producing a signal greater than or equal to the range being calibrated with an accuracy of 0.01% or better.

Before starting, verify that the Input Range, T/V, and Excitation Jumper is set for the range to be calibrated. Verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. Selecting ΠI at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting $\Psi E 5$ and pressing the **P** key will cause the unit to store new calibration settings for the range selected. Pressing **D** at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

Current, Volt and Ohm Calibration Procedure

- 1. After entering <code>[odf 48</code>, in Module 9, select the input signal type (<code>[urr</code>, <code>uolb, 0hM5</code>) to be calibrated.
- 2. Press the **P** key until the desired range along with ZEP is indicated on Line 1 of the meter.
- 3. Apply the zero input limit of the range indicated on Line 1 of the meter.
- 4. Press **F1** to select 4E5.
- 5. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 6. Display will indicate the desired range along with FUL on Line 1 of the meter.
- 7. Apply the signal level indicated on Line 1 of the meter.
- 8. Press **F1** to select $\forall E5$.
- 9. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 10. Repeat Preparation and Calibration Procedure for each Input Range to be calibrated.

Preparation for TC calibration

TC calibration parameters will affect RTD calibration. If using an RTD, it is recommended that the RTD calibration be performed after completing the TC calibration.

Warning: TC Input Calibration of this meter requires a signal source capable of producing a 60 mV signal with an accuracy of 0.01% or better.

Before starting, verify the T/V jumper is in the T position. Verify the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. Selecting ΠB at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting $\Im E$ and pressing **P** key will cause the unit to store new calibration settings for the range selected. Pressing **D** at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

TC Calibration Procedure

- 1. After entering LodE 48, in Module 9, select the Ec.
- 2. Press the **P** key. Display will indicate **QDEDU** with **ZEP** in upper right.
- 3. Apply 0 mV to input.
- 4. Press $\overline{F1}$ to select 4E5.
- 5. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 6. Display will indicate QOGOU with FUL in upper right.
- 7. Apply 60 mV to input.
- 8. Press **F1** to select ¥E5.
- 9. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 10. TC Calibration complete.

Preparation for RTD Input Calibration

RTD calibration is dependent on TC calibration parameters. Therefore, the TC calibration should be performed prior to attempting the RTD calibration.

Warning: RTD Input Calibration of this meter requires a signal source capable of producing a 300 ohm resistance with an accuracy of 0.01% or better.

Before starting, verify that the T/V Jumper is in the T position. Verify the RTD jumper is in the proper range. Verify the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. Selecting ΠB at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting $\Im E_5$ and pressing **P** key will cause the unit to store new calibration settings for the range selected. Pressing **D** at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

RTD Calibration Procedure

- 1. After entering Code 48, in Module 9, select r Ed.
- 2. Press the **P** key until the desired range along with **I** in upper right corner is indicated on Line 1 of the meter.
- 3. Apply zero ohms to the input of the meter.
- 4. Press **F1** to select 9E5.
- 5. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 6. Display will indicate the desired range along with a value in the upper right corner, in ohms, to be applied in the next step on Line 1 of the meter.
- 7. Apply the signal level, in ohms, indicated in the upper right corner of Line 1 on the meter.
- 8. Press $\overline{F1}$ to select 4E5.
- 9. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 10. Repeat Preparation and Calibration Procedure for each Input Range to be calibrated.

Ice Point Calibration Procedure

- 1. Remove all option cards.
- 2. Verify ambient temperature of meter environment is between 20°C and 30°C.
- 3. Set T/V jumper in the T position.
- 4. Connect a thermocouple with an accuracy of 1°C or better to the meter.
- 5. In Module 1 of unit programming, verify Input Range (rAMSE) is set to the type thermocouple connected in step 4, Temperature Scale (SLALE) is °C, Ice Point Compensation (*IEE*) is turned ON, Decimal Resolution (dELPAE) is 0.0, Rounding Increment (round) is 0.1 and Display Offset (dFFSEE) is set to 0.
- 6. Place the thermocouple in close thermal contact to a reference thermometer probe. (Use a reference thermometer with an accuracy of 0.25% °C or better.) The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (A calibration bath could be used in place of the thermometer.)
- 7. If a difference exits between PAX2A display and reference thermometer, continue calibration.
- Note the PAX2A display reading as the "Display Mode" reading to be used in Step 12.
- 9. Enter Module 9, select [odE 48 and press P.
- 10. Select *IEE* and press **P**.
- 11. Display will indicate the Existing ICE Point Value.
- 12. Calculate a new ICE Point Value using: Existing ICE Point Value + (reference temperature Display Mode reading). All values are in °C.
- 13. Using Fi and Z change Existing ICE Point Value to indicate the new ICE Point Value calculated in Step 12.
- 14. Press **P** and return to Display Mode. Verify the Display Mode reading (with 0 Display Offset) matches the reference temperature. If not, repeat steps 8 thru 14.

Preparation for Analog Output Card Calibration

Warning: Calibration of this meter requires an external meter with an accuracy of 0.005% or better.

Before starting, verify that the precision voltmeter (voltage output) or current meter (current output) is connected and ready. Perform the following procedure. 1. After entering $\begin{bmatrix} a & B \end{bmatrix}$, in Module 9, select RnLBuk.

2. Using the chart below, step through the five selections to be calibrated. At each prompt, use the PAX2A /Ft and 2 keys to adjust the external meter display to match the selection being calibrated. When the external reading matches, or if the particular range is not in need of calibration, press the **P** key to advance to the next range.

PAX2A DISPLAY	EXTERNAL METER	ACTION
0 <u>0</u> 00A	0.00 mA	▲ and 2 to adjust External Meter
0,0 0 4 A	4.00 mA	<u>/F</u> 1∖ and ¹ E∕7 to adjust External Meter
0,0 2 0 A	20.00 mA	<u>/Fi</u> and ₺ to adjust External Meter
0,0 u	0.00 V	<u>/Fi</u> and ₺ to adjust External Meter
10 <u>.</u> 0 u	10.00 V	<u>/</u> F₁∖ and ^{F2} ⁄ to adjust External Meter

3. Calibration Complete.

TROUBLESHOOTING

PROBLEM	REMEDIES
No Display At Power-Up	Check power level and power connections
No Display After Power-Up	Check Module 3: d-LEU, d-Cont., and LI NE I program settings.
Program Locked-Out	Check for Active User Input, programmed for PLOC. Deactivate User Input.
	Enter proper access code at [] dE] prompt.
No Line 1 Display	Check Module 3: LI ITE / program setting.
No Line 2 Display	Check Module 3: #[[E55 program settings.
No Programmable Units Display	Check Module 3: IIII 15 Mnemonic program settings.
Incorrect Input Display Value	Check Input Jumper Setting, Input Level, and Input Connections. Verify Module 1 program settings. Contact factory
Display of OLOL, ULUL, Short, OPEN, or ""	See General Meter Specifications, Display Messages.
Modules or Parameters Not Accessible	Check for corresponding plug-in option card. Verify parameter is valid in regard to previous program settings.
Error Code: Err KEY	Keypad is active at power up. Check for depressed or stuck keypad. Press any key to clear Error Code.
Error Code: EE PAr Error Code: EE Pan	Parameter Data Checksum Error. Press any key to clear Error Code, verify all program settings and cycle power. Contact factory if Error Code returns at next power-up.
Error Code: ErrPra	Parameter Data Validation Error. Press any key to clear Error Code, verify all program settings and cycle power. Contact factory if Error Code returns at next power-up.
Error Code: EE EAL	Calibration Data Validation Error. Contact factory.
Error Code: EE L in	Linear Output Card Data Validation Error. Press any key to clear Error Code and cycle power. If Error Code returns at next power-up, replace Linear Option Card or contact factory.

MODEL PAXH - AC TRUE RMS VOLT AND CURRENT

This is a brief overview of the PAXH. For complete specifications and programming information, see the **PAX Analog Input Panel Meters Bulletin** starting on **page 301**.

(F

- 5-DIGIT 0.56" RED SUNLIGHT READABLE OR STANDARD GREEN DISPLAY
- FOUR VOLTAGE RANGES (300 VAC Max)
- FIVE CURRENT RANGES (5 A Max)
- ACCEPTS AC OR DC COUPLED INPUTS
- THREE WAY ISOLATION: POWER, INPUT AND OUTPUTS
- FOUR SETPOINT ALARM OUTPUTS (w/OPTION CARD)
- COMMUNICATION AND BUS CAPABILITIES (W/OPTION CARD

PAXH SPECIFICATIONS

INPUT RANGES:

Isolation To Option Card Commons and User Input Commons: 125 Vrms Isolation To AC Power Terminals: 250 Vrms

_	

INPUT RANGE	ACCURACY*	IMPEDANCE (60 Hz)	MAX CONTINUOUS OVERLOAD	MAX DC BLOCKING	RESOLUTION
200 mV	0.1% of reading +0.4 mV	686 Kohm	30 V	±10 V	0.01 mV
2 V	0.1% of reading +2 mV	686 Kohm	30 V	±50 V	0.1 mV
20 V	0.1% of reading +20 mV	686 Kohm	300 V	±300 V	1 mV
300 V	0.2% of reading +0.3 V	686 Kohm	300 V	±300 V***	0.1 V
200 µA	0.1% of reading +0.4 μA	1.11 Kohm	15 mA	±15 mA	0.01 μA
2 mA	0.1% of reading +2 μA	111 ohm	50 mA	±50 mA	0.1 μA
20 mA	0.1% of reading +20 μA	11.1 ohm	150 mA	±150 mA	1 μA
200 mA	0.1% of reading +0.2 mA	1.1 ohm	500 mA	±500 mA	10 μA
5 A	0.5% of reading +5 mA	0.02 ohm	7 A**	±7 A***	1 mA

*Conditions for accuracy specification:

- 20 minutes warmup
- 18-28°C temperature range, 10-75% RH non-condensing
- 50 Hz 400 Hz sine wave input
- 1% to 100% of range
- Add 0.1% reading + 20 counts error over 0-50°C range
- Add 0.2% reading + 10 counts error for crest factors up to 3, add 1% reading up to 5
- Add 0.5% reading + 10 counts of DC component
- Add 1% reading + 20 counts error over 20 Hz to 10 KHz range
- ** Non-repetitive surge rating: 15 A for 5 seconds
- *** Inputs are direct coupled to the input divider and shunts. Input signals with high DC component levels may reduce the usable range.

MAX CREST FACTOR (VP/VRMS): 5 @ Full Scale Input INPUT COUPLING: AC or AC and DC INPUT CAPACITANCE: 10 pF COMMON MODE VOLTAGE: 125 VAC working COMMON MODE REJECTION: (DC to 60 Hz) 100 dB

MODEL CUB4LP - LOOP POWERED PROCESS INDICATOR MODEL CUB4CL - CURRENT LOOP INDICATOR

FOR USE IN HAZARDOUS LOCATIONS: Class I, Division 2, Groups A, B, C, and D Class II, Division 2, Groups F and G Class III, Division 2

- DUAL RANGE, 4 to 20 mA OR 10 to 50 mA
- 3½-DIGIT, 0.6" (15.2 mm) HIGH DIGITS
- POSITIVE IMAGE TRANSFLECTIVE LCD WITH RED BACKLIGHT OR POSITIVE IMAGE REFLECTIVE LCD (CUB4LP)
- POSITIVE IMAGE TRANSFLECTIVE LCD WITH RED BACKLIGHT OR NEGATIVE IMAGE TRANSMISSIVE WITH RED OR YELLOW/ GREEN BACKLIGHT (CUB4CL)
- SPAN AND OFFSET CAPABILITY
- NEGATIVE AND OVERRANGE INDICATION
- SELECTABLE DECIMAL POINT POSITION
- NEMA 4X/IP65 SEALED FRONT PANEL BEZEL
- FITS DIN STANDARD CUT-OUT 2.68" (68 mm) X 1.30" (33 mm)

CE

Ε

DESCRIPTION

The CUB4LP and CUB4CL are additions to the CUB4 product line. The CUB4LP uses a 4 to 20 mA or a 10 to 50 mA input signal as operating power. The input signal is also used to power the backlighting on the CUB4LP40 unit. The CUB4CL uses a 4 to 20 mA or a 10 to 50 mA input signal to power the unit. An external power supply is used to power the CUB4CL backlighting to provide a brighter, more consistent display and a lower compliance voltage.

The units have a 3¹/₂-digit LCD display with 0.6" (15.2 mm) high digits and a DIP switch selectable decimal point. The CUB4LP display is available in positive image reflective (dark digits, reflective background) or positive image transflective (dark digits, illuminated background) with red backlighting. The CUB4CL display is available in positive image transflective (dark digits, illuminated background) with red or yellow/green backlighting or negative image transmissive (illuminated digits, dark background) with red or yellow/ green backlighting.

The ability to scale the display allows indication in any desired unit of measurement such as temperature, pressure, humidity, fluid flow, etc. The unit is calibrated at the factory with 0.0 displayed @ 4 mA input and 100.0 displayed @ 20 mA input.

The units are contained in a lightweight, high impact plastic case with a clear viewing window. When properly installed, the sealed front panel meets NEMA 4X/IP65 specifications for wash-down and dusty environments.

CAUTION: Risk of Danger. Read complete instructions prior to installation and operation of the unit.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR

CLASS I, DIVISION 2 / CLASS II, DIVISION 2 / CLASS III, DIVISION 2

SPECIFICATIONS

1. **DISPLAY**: 3¹/₂-digit (-1999 to 1999), 0.6" (15.2 mm) high digits.

The CUB4LP is available with a positive image reflective LCD or a red backlit positive image transflective LCD. The intensity of the backlighting will vary with the input signal.

The CUB4CL is available with a positive image transflective LCD with red or yellow/green backlighting or a negative image transmissive with red or yellow/green backlight.

A minus sign is displayed when the indicator is adjusted for a negative offset. **Overrange**: Overrange is indicated by a "1" in the most significant digit and the blanking of the three least significant digits.

- 2. EXTERNAL BACKLIGHT POWER: (CUB4CL only)
- 9 28 VDC, @ 35 mA typ., 50 mA max. Power Supplies must be Class 2 (NEC) or SELV rated. Above 26 VDC, derate the operating temperature to 50°C.
- DECIMAL POINTS: Three DIP switch selectable, decimal point positions allow the display to be read in tenths, hundredths or thousandths.

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

SPECIFICATIONS (Cont'd) 4. MAXIMUM VOLTAGE DROP: 3.2 VDC for CUB4LP00 4.0 VDC for CUB4LP40 3.2 VDC for CUB4CL all models 5. EQUIVALENT RESISTANCE: CUB4LP00: 800 Ω max. @ 4 mA; 160 Ω max. @ 20 mA 320 Ω max. @ 10 mA; 65 Ω max. @ 50 mA CUB4LP40: 1000 Ω max. @ 4 mA; 200 Ω max. @ 20 mA 400 Ω max. @ 10 mA; 80 Ω max. @ 50 mA CUB4CL (all models): 800 Ω max. @ 4 mA; 160 Ω max. @ 20 mA 320 Ω max. @ 10 mA; 65 Ω max. @ 50 mA 6. MAXIMUM ALLOWABLE INPUT CURRENT: 100 mA 7. SCALING RANGE: Span: Two potentiometers provide a coarse and fine span adjustment. Span range = 0 to 2000. Offset: Two potentiometers provide a coarse and fine zero offset adjustment. Offset range = -1999 to 1999. 8. LINEARITY: (@ 23°C, Less than 85% RH) ±(0.1% + 1 digit). 9. READING RATE: 2.5 per second, nominal. 10. RESPONSE TIME: 1.5 seconds to settle for a step change. 11. NORMAL MODE REJECTION: 60 dB 50/60 Hz

12. TEMPERATURE EFFECTS:

Span Temperature Coefficient: 100 PPM/°C

Offset Temperature Coefficient: 0.2 digits/°C

 CONSTRUCTION: High impact plastic case with clear viewing window. (Panel gasket and mounting clips included.) This unit is rated for NEMA 4X/ IP65 indoor use. Installation Category I, Pollution Degree 2

14. CERTIFICATIONS AND COMPLIANCES

SAFETY

- UL Listed, File #E184589, UL1604, CSA 22.2 No. 213-M1987 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards
- Type 4X Indoor Enclosure rating (Face only), UL50 IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control and laboratory use, Part 1.
- IP65 Enclosure rating (Face only), IEC 529

ELECTROMAGNETIC COMPATIBILITY

Immunity to EN 50082-2

Electrostatic discharge	EN 61000-4-2	Level 2; 4 Kv contact
		Level 3; 8 Kv air
Electromagnetic RF fields	EN 61000-4-3	Level 3; 10 V/m ¹
		80 MHz - 1 GHz
Fast transients (burst)	EN 61000-4-4	Level 4; 2 Kv I/O
		Level 3; 2 Kv power
RF conducted interference	EN 61000-4-6	Level 3; 10 V/rms ²
		150 KHz - 80 MHz
Power frequency magnetic fields	EN 61000-4-8	Level 4; 30 A/m
Emissions to EN 50081-1		
RF interference	EN 55011	Enclosure class B

RF interference EN 55011 Enclosure class B Power mains class B

Notes:

1. Self-recoverable loss of performance during EMI disturbance at 10 V/m: Process Signal may deviate during EMI disturbance.

For operation without loss of performance:

- Unit is mounted in a metal enclosure (Buckeye SM7013-0 or equivalent) connected to earth ground.
- Self-recoverable loss of performance during EMI disturbance at 10 Vrms. Process signal may deviate during EMI disturbance. For operation without loss of performance:
 - Install 1 ferrite core, RLC #FCOR0000 or equivalent, to signal cable at the unit.
- Refer to the EMC Installation Guidelines of this bulletin for additional information.
- 15. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0° to 60°C

(Derate backlight voltage to 26 VDC above 50°C.)

- Storage Temperature: -40° to 80°C
- **Operating and Storage Humidity**: 85% max. (non-condensing) from 0°C to 60°C.
- Vibration According to IEC 68-2-6: Operational 5 to 500 Hz, in X, Y, Z direction for 1.5 hours, 5g's.
- Shock According to IEC 68-2-27: Operational 30 g, 11 msec in 3 directions.
- Altitude: Up to 2000 meters
- 16. WEIGHT: 3.3 oz. (93.5 g)

INSTALLATION

When properly installed, the CUB4LP/CL meets NEMA 4X/IP65 requirements for indoor use. The units are intended to be mounted into an enclosed panel. A sponge rubber gasket, mounting clip, two screws, and nut fasteners are provided to install and seal the unit in the panel cutout.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents.

Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

The following procedure assures proper installation:

- 1. Cut the panel opening to the specified dimensions. Remove burrs and clean the panel opening.
- Slide nut fastener into slot on mounting clip and then insert mounting screw through nut on both sides of mounting clip. The tip of mounting screw should not project through hole on clip.
- Slide the panel gasket over the rear of the unit to the back of the bezel. Install CUB4LP/CL unit through panel cutout.
- 4. Slide mounting clip over rear of unit until the clip is against back of panel. The mounting clip and CUB4LP/CL housing have a latching feature to hold the unit in place until tightened.
 - Note: Hold the CUB4LP/CL front bezel in place when sliding the mounting clip into position.
- Alternately tighten each mounting screw to ensure uniform gasket pressure. Visually inspect the gasket for proper seal. The gasket should be compressed

- to approximately 75 to 80% of its original thickness. (Recommended torque is 28 to 36 in-oz.)
- 6. If the gasket is not adequately compressed and the mounting screws cannot be tightened any further, loosen the mounting screws and insure that the clip is latched as closely as possible to the panel.
- 7. Repeat Step #6 for tightening the mounting screws.

www.redlion.net

EMC INSTALLATION GUIDELINES

Although this unit is designed with a high degree of immunity to ElectroMagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the unit may be different for various installations. Cable length, routing and shield termination are very important and can mean the difference between a successful installation or a troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

- Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.
 - c. Connect the shield to common of the unit and leave the other end of the shield unconnected and insulated from earth ground.
- 2. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.

- 3. Signal or control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000)

TDK # ZCAT3035-1330A

Steward #28B2029-0A0

- Line Filters for input power cables: Schaffner # FN610-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VR3
- Note: Reference manufacturer's instructions when installing a line filter.
- Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.

WIRING CONNECTIONS

All conductors should meet voltage and current ratings for each terminal. Also cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the unit (AC or DC) be protected by a fuse or circuit breaker.

The electrical connections are made via screw-clamp terminals located on the back of the unit. When wiring the unit, use the label to identify the wire position with the proper function. Strip the wire, leaving approximately ¹/₄" of bare wire (stranded wires should be tinned with solder). Insert the wire into the screwclamp terminal and tighten the screw until the wire is clamped tightly. Each terminal can accept up to two #14 AWG wires.

CUB4LP/CL SIGNAL INPUT

The current range is selected by setting DIP switch S1 to the OFF position for a 4 to 20 mA input or ON for a 10 to 50 mA input. Attach the signal wires to terminals 3 (SIG-) and 4 (SIG+) observing the correct polarity. The (SIG-) signal input circuit is not reverse polarity protected.

Backlight Power (CUB4CL only)

Attach a 9 to 28 VDC supply to terminals 1 (COM) and 2 (V+) to power the backlight. Terminals 3 (SIG-) and 1 (COM) are AC coupled with a capacitor. This limits the isolation between these terminals to 50 VDC maximum.

OFFSET ADJUSTMENTS

The minimum currents are not zero based with 4 to 20 mA and 10 to 50 mA signals. To obtain a zero minimum display reading, the display must be offset. The display on the CUB4LP/CL can be offset by adjusting the Coarse and Fine Offset pots.

SPAN ADJUSTMENTS

Span is defined as the numerical range that the display traverses, disregarding the decimal point, when the input signal is varied from minimum to maximum (4 to 20 mA or 10 to 50 mA). For example; if a unit is to display 250 @ 4 mA and 1000 @ 20 mA, the span is 750 (the difference between 250 and 1000). Had the minimum display been -250, the span would be 1250 (1000 - (-250) = 1250). The CUB4LP/CL can be set to operate over a wide span range by adjusting the Coarse and Fine Span adjustment pots. The Coarse Span pot is used to get the display to within a couple of counts of the desired reading, and the Fine Span pot is used to adjust for the exact reading.

THIS EQUIPMENT IS SUITABLE FOR USE IN: Class I, Division 2, Groups A, B, C, and D Class II, Division 2, Groups F and G Class III, Division 2 or Non Hazardous locations.

DECIMAL POINT POSITION SELECTION

The decimal point position is DIP switch selectable for one of three locations. The CUB4LP/CL can be set up to read in 10ths, 100ths, or 1000ths. If all the DIP switches are set to the "OFF" position, no decimal point will appear on the display. The DIP switches are located at the rear of the unit.

APPLICATION EXAMPLE

Operation of a refinery process required a local display of the position of a remote pipeline valve. The display would indicate 0 (zero) when the valve was fully closed with an input signal of 4 mA. When the valve was fully open the display would indicate 100 with an input signal of 20 mA.

Both the CUB4LP and the CUB4CL meet the necessary requirements.

CALIBRATING THE DISPLAY

Calibrating the CUB4LP/CL requires either an accurate adjustable constant current supply or the CUB4LP/CL can be installed and scaled with the process sensor connected to the CUB4LP/CL. To calibrate the unit, proceed as follows.

- 1. Set DIP switching for the desired current range.
- 2. Select the desired decimal point position.
- 3. Apply the minimum input signal to the CUB4LP/CL and adjust the COARSE OFFSET to display the approximate desired minimum value.
- Apply the maximum input signal to the CUB4LP/CL and adjust the COARSE SPAN to display the approximate desired maximum value.
- 5. Repeat steps 3 and 4 until the minimum and maximum values are within the desired values.
- 6. Apply the minimum input signal to the CUB4LP/CL and adjust the FINE OFFSET to display the exact desired minimum value.
- Apply the maximum input signal to the CUB4LP/CL and adjust the FINE SPAN to display the exact desired maximum value.
- Apply the minimum input signal and verify that the display indicates correctly.
- 9. Apply the maximum input signal and verify that the display indicates correctly.
- 10. Repeat Steps 6 through 9 until display reads exact.
- Note: The CUB4LP/CL display is factory calibrated to indicate 0.0 to 100.0 with an input of 4 to 20 mA at approximately 25°C.

BLOCK DIAGRAM

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBERS
	Reflective LCD Loop Powered Process Indicator	CUB4LP00
COB4LP	Red Backlit LCD Loop Powered Process Indicator Positive Image Transflective LCD	*CUB4LP40
	Yel/Grn Backlit LCD External Powered Process Indicator Negative Image Transmissive LCD	CUB4CL10
CURACI	Red Backlit LCD External Powered Process Indicator Negative Image Transmissive LCD	CUB4CL20
COB4CL	Yel/Grn Backlit LCD External Powered Process Indicator Positive Image Transflective LCD	CUB4CL30
	Red Backlit LCD External Powered Process Indicator Positive Image Transflective LCD	CUB4CL40
MLPS Micro Line/Sensor Power Supply (Non-hazardous use only)		MLPS1000
*Backlight	intensity will vary depending on signal level.	

Ε

TROUBLESHOOTING

For further technical assistance, contact technical support at the appropriate company numbers listed.

MODEL CUB5P - MINIATURE ELECTRONIC 5-DIGIT PROCESS METER

- THREE SELECTABLE D.C. RANGES 0 to 10 V, 0(4) to 20 mA, 0 to 50 mA
- MINIMUM AND MAXIMUM DISPLAY CAPTURE
- LCD, REFLECTIVE OR RED/GREEN LED BACKLIGHTING
- 0.48" (12.2 mm) HIGH DIGITS
- OPTIONAL SETPOINT OUTPUT CARD
- OPTIONAL SERIAL COMMUNICATION CARD (RS232 or RS485)
- OPTIONAL USB PROGRAMMING CARD
- OPERATES FROM 9 TO 28 VDC POWER SOURCE
- FRONT PANEL OR CRIMSON PROGRAMMABLE
- DISPLAY COLOR CHANGE CAPABILITY AT SETPOINT OUTPUT
- NEMA 4X/IP65 SEALED FRONT BEZEL

GENERAL DESCRIPTION

The CUB5 Series provides the user the ultimate in flexibility, from its complete user programming to the optional setpoint control and communication capability. The CUB5 accepts a DC voltage or current input signal and provides a display in the desired unit of measure. The meter also features minimum and maximum display capture, display offset, units indicator, and programmable user input. The display can be toggled either manually or automatically between the selected displays.

The CUB5 display has 0.48" (12.2 mm) high digits. The LCD is available in two versions, reflective or red/green backlight. The backlight version is user selectable for the desired color and also has variable display intensity.

The capability of the CUB5 can be easily expanded with the addition of option cards. The setpoint output cards are field installable with programmable setpoints. Serial communications capability for RS232 or RS485 can be added with a serial option card.

The CUB5 can be powered from an optional Red Lion Micro-Line/Sensor Power Supply (MLPS), which attaches directly to the back of a CUB5. The MLPS is powered from 85 to 250 VAC and provides up to 400 mA to drive the unit and sensors.

INPUT

The CUB5P is a DC Process meter. It features voltage and current input ranges, that are selected by the user via a programming jumper and software input range selection. The ranges consist of the following: 0 to 10 V, 0(4) to 20 mA, or 0 to 50 mA. Users should select the appropriate voltage range that covers their maximum input.

DIMENSIONS In inches (mm)

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter.

Ε

CAUTION: Risk of electric shock.

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.15" (54.6) H x 3.00" (76.2) W.

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

ORDERING INFORMATION

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
CLIPE		Process Meter with Reflective Display	CUB5PR00
COBS	COBSE	Process Meter with Backlight Display	CUB5PB00
	CUB5RLY	Single Relay Option Card	CUB5RLY0
	CUB5SNK	Dual Sinking Open Collector Output Card	CUB5SNK0
Optional Plug-in Cards	CURECOM	RS485 Serial Communications Card	CUB5COM1
	COBSCON	RS232 Serial Communications Card	CUB5COM2
	CUB5USB	USB Programming Card	CUB5USB0
	MLDS	+12 VDC Micro-Line Power Supply, 85 to 250 VAC source, 400 mA max out	MLPS1000
	IVILF3	+24 VDC Micro-Line Power Supply, 85 to 250 VAC source, 200 mA max out	MLPS2000
Accessories	CBLPROG	CBLPROG Programming Cable RS232 (RJ11-DB9)	
Accessories	CBPRO	Programming Cable RS485 (RJ11-DB9)	CBPRO007
	SFCRD	Crimson PC Configuration Software, Free Download Available ¹	SFCRD200
	CBLUSB	USB Programming Cable	CBLUSB00

¹ Crimson software is a free download from http://www.redlion.net. System requirements for the software are listed on the download page.

GENERAL METER SPECIFICATIONS

- 1. DISPLAY: 5 digit LCD 0.48" (12.2 mm) high digits
- CUB5PR00: Reflective LCD with full viewing angle

CUB5PB00: Transmissive LCD with selectable red or green LED backlight, viewing angle optimized. Display color change capability with output state when using an output module.

 POWER: Input voltage range is +9 to +28 VDC with short circuit and input polarity protection. Must use an RLC model MLPS or an NEC Class 2 or Limited Power Source (LPS) rated power supply.

MODEL NO.	DISPLAY COLOR	INPUT CURRENT @ 9 VDC WITHOUT CUB5RLY0	INPUT CURRENT @ 9 VDC WITH CUB5RLY0
CUB5PR00		10 mA	40 mA
CUB5PB00	Red (max intensity)	85 mA	115 mA
CUB5PB00	Green (max intensity)	95 mA	125 mA

- 3. INPUT RANGES: Jumper Selectable
 - 0 to 10 V, 0(4) to 20 mÅ, 0 to 50 mA

4. SENSOR INPUTS:

INPUT RANGE	ACCURACY @23 °C, less than 85% RH	INPUT IMPEDANCE	MAX INPUT SIGNAL	RESOLUTION	TEMP. COEFFICIENT
20 / 50 mA	0.1% of span	10 Ω	150 mA	1 µA	70 ppm / °C
10 VDC	0.1% of span	538 KΩ	30 V	1 mV	70 ppm / °C

- 5. OVERRANGE RATINGS, PROTECTION & INDICATION: 9 to 28 VDC power circuit is not isolated from the signal circuit. Input Overrange Indication: "ULU". Input Underrange Indication: "ULU". Display Overrange/Underrange Indication: "......"/"-....."
- 6. **RESPONSE TIME**: **Display**: 500 msec min.
- **Output**: 800 msec max (with input filter setting of 0)
- 7. NORMAL MODE REJECTION: 60 dB 50/60 Hz
- 8. USER INPUT (USR): Programmable input. Connect USR terminal to USR COMM to activate function. Internal 10K Ω pull-up resistor to +9 to 28 VDC. Threshold Levels: V_{IL} = 0.7 V max; V_{IH} = 2.4 V min; V_{MAX} = 28 VDC Response Time: 5 msec typ.; 50 msec debounce (activation and release)
- CONNECTIONS: Wire clamping screw terminals Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire Torque: 5 inch-lbs (0.565 N-m) max.
 - 101que. 5 men-105 (0.303 N-III) max.

- MEMORY: Nonvolatile E²PROM memory retains all programming parameters and max/min values when power is removed.
- 11. ENVIRONMENTAL CONDITIONS:
- Operating Temperature Range for CUB5PR00: -35 to 75 °C Operating Temperature Range for CUB5PB00 depends on display color and intensity level as per below:

	INTENSITY LEVEL	TEMPERATURE
Red Display	1 & 2	-35 to 75 °C
	3	-35 to 70 °C
	4	-35 to 60 °C
	5	-35 to 50 °C
Green Display	1 & 2	-35 to 75 °C
	3	-35 to 65 °C
	4	-35 to 50 °C
	5	-35 to 35 °C

Storage Temperature: -35 to 85 °C

Operating and Storage Humidity: 0 to 85% max. relative humidity (noncondensing)

Vibration to IEC 68-2-6: Operational 5-500 Hz, 5 g

- Shock to IEC 68-2-27: Operational 30 g
- Altitude: Up to 2000 meters
- 12. CERTIFICATIONS AND COMPLIANCES:
 - CE Approved
 - EN 61326-1 Immunity to Industrial Locations
 - Emission EN 55011 Class A
 - IEC/EN 61010-1
 - UL Recognized Component: File #E179259
 - UL Listed: File #E137808
 - Type 4X Enclosure rating (Face only)
 - IP65 Enclosure rating (Face only)
 - IP20 Enclosure rating (Rear of unit)
- Refer to EMC Installation Guidelines section of the bulletin for additional information.
- CONSTRUCTION: This unit is rated for NEMA 4X/IP65 requirements for outdoor use. Installation Category I, Pollution Degree 2. High impact plastic case with clear viewing window. Panel gasket and mounting clip included.
- 14. WEIGHT: 3.2 oz (100 g)
OPTIONAL PLUG-IN CARDS

ADDING OPTION CARDS

The CUB5 meters can be fitted with optional output cards and/or serial communications cards. The details for the plug-in cards can be reviewed in the specification section below. The plug-in cards, that are sold separately, can be installed initially or at a later date.

WARNING: Disconnect all power to the unit before installing

Note: Measurement errors may occur if signal input common is shared with another circuit common (ie, serial common, Dual Sinking Output option card, or Power Supply common) on multiple units.

SINGLE RELAY CARD

Type: Single FORM-C relay

Isolation To Sensor & User Input Commons: 1400 Vrms for 1 min. Working Voltage: 150 Vrms

Contact Rating: 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive Life Expectancy: 100,000 minimum operations

DUAL SINKING OUTPUT CARD

Type: Non-isolated switched DC, N Channel open drain MOSFET Current Rating: 100 mA max. VDS ON: 0.7 V @ 100 mA

V_{DS MAX}: 30 VDC Offstate Leakage Current: 0.5 mA max.

RS485 SERIAL COMMUNICATIONS CARD

Type: RS485 multi-point balanced interface (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity Bus Address: 0 to 99; max 32 meters per line Transmit Delay: Selectable (refer to CUB5COM bulletin)

RS232 SERIAL COMMUNICATIONS CARD

Type: RS232 half duplex (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity

USB PROGRAMMING CARD

Type: USB virtual comms port Connection: Type B Baud Rate: 300 to 38.4k Unit Address: 0 to 99

1.0 INSTALLING THE METER

INSTALLATION

The meter meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel

The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest

forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approx. 28 to 36 in-oz [0.202 to 0.26 N-m]). Do not over-tighten the screws.

INSTALLATION ENVIRONMENT

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

SETTING THE JUMPERS

INPUT RANGE JUMPER

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum input signal to avoid overloads. To access the jumper, remove the rear cover of the meter.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

3.0 INSTALLING PLUG-IN CARDS

The Plug-in cards are separately purchased option cards that perform specific functions. The cards plug into the main circuit board of the meter

Locking Tab

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

- . The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.

4.1 POWER WIRING

DC Power

CAUTION: The Plug-in cards and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

- c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be ran in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- 4. Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
- 5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC# FCOR0000) TDK # ZCAT3035-1330A Steward # 28B2029-0A0 Line Filters for input power cables: Schaffner # FN2010-1/07 (RLC# LFIL0000)

- Schaffner # FN670-1.8/07
- Corcom # 1 VR3

Note: Reference manufacturer's instructions when installing a line filter.

- 6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC# SNUB0000.

4.2 USER INPUT WIRING

Sinking Logic

USR COMM USR Vonect external switching device between the User Input terminal and User Input Common.

PWR COMMON

The user input of the meter is internally pulled up to +9 to +28 V with 10 K resistance. The input is active when it is pulled low (<0.7 V).

+9-28 VDC

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

4.3 INPUT WIRING

CAUTION: Power input common is NOT isolated from user and input commons. In order to preserve the safety of the meter application, the power input common must be suitably isolated from hazardous live earth referenced voltage; or input common must be at protective earth ground potential. If not, hazardous voltage may be present at the signal or user inputs and input common terminals. Appropriate considerations must then be given

to the potential of the user and input commons with respect to earth ground; and the common of the plug-in cards with respect to input common.

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

Input Signal (self powered)

Series Loop (must use separate supply for sensor power

4.4 SETPOINT (OUTPUT) WIRING

SINGLE SETPOINT RELAY PLUG-IN CARD

DUAL SETPOINT N-FET OPEN DRAIN PLUG-IN CARD

4.5 SERIAL COMMUNICATION WIRING SERIAL COMMUNICATIONS PLUG-IN CARD

2 Wire With External Power

2 Wire With MLPS Power

2 Wire With Separate Sensor And CUB5 Power

ELECTRICAL CONNECTIONS

ELECTRICAL CONNECTIONS OSNK 1(2) (30 V MAX.) · COM

Output Common is not isolated from DC Power Common. Load must be wired between OSNK terminal and V+ of the load supply.

4.6 USB PROGRAMMING **USB PROGRAMING PLUG-IN CARD**

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

371

Ε

5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

ENTERING PROGRAM MODE

Press and hold for 2 seconds to activate

BUTTON DISPLAY MODE OPERATION

SEL Index display through enabled values

RST Resets values (MIN/MAX) or outputs

PROGRAMMING MODE OPERATION

Store selected parameter and index to next parameter Advances through the program menu Increments selected parameter value or selection

OPERATING MODE DISPLAY DESIGNATORS

MAX - Maximum display capture value

MIN - Minimum display capture value

- "1" To the right of the display indicates setpoint 1 output activated.
- "2" To the right of the display indicates setpoint 2 output activated.

Pressing the **SEL** button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

6.0 PROGRAMMING THE METER

PROGRAMMING MODE ENTRY (SEL BUTTON)

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the **SEL** button. If it is not accessible then it is locked by either a security code, or a hardware lock.

MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between P_{ro} and the present module. The **RST** button is used to select the desired module. The displayed module is entered by pressing the **SEL** button.

MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The **SEL** button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to P_{ro} ND. Programming may continue by accessing additional modules.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The **RST** button is used to move through the selections/values for that parameter. Pressing the **SEL** button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the **RST** button to access the value. The right hand most digit will begin to flash. Pressing the **RST** button again increments the digit by one or the user can hold the **RST** button and the digit will automatically scroll. The **SEL** button will advance to the next digit. Pressing and holding the **SEL** button will enter the value and move to the next parameter.

PROGRAMMING MODE EXIT (SEL BUTTON)

The Programming Mode is exited by pressing the **SEL** button with Pro ΠD displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

PROGRAMMING TIPS

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter's Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

Indicates	Indicates Program Mode Alternating Display					
Parameter	USr IN	কি				
	₿	ПО	Selection/Value			
	Factory Setting	gs are sho	own.			

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

Select the decimal point location for the Input, MIN and MAX displays. This selection also affects the dSP | and dSP2 parameters and setpoint values.

DISPLAY OFFSET VALUE

The display can be corrected with an offset value. This can be used to compensate for signal variations or sensor errors. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the effects of offset.

FILTER SETTING

If the displayed value is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.

PUNG প্টি P 10

FILTER BAND

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the filter permanently engaged at the filter level selected above.

ĥЕЛ SEYLE ᠬᠴ

РΕЧ

If Input Values and corresponding Display Values are known, the Key-in (YEY) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (RPLY) scaling style must be used.

RPL Y

INPUT VALUE FOR SCALING POINT 1

For Key-in (EY) style, enter the known first Input Value using the front panel buttons. (The Input Range selection sets the decimal location for the Input Value).

For Apply (RPLY) style, the meter shows the previously stored Input Value. To retain this value, press the **SEL** button to advance to the next parameter. To change the Input Value, press the **RST** button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the **SEL** button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 1

			INF	PUT VA	LU	E FOR	SCAL	ING P	OINT 2	2
IUb)	2]∽ <u></u>	0	to	59999				
\mathbb{P}		10,	000							

仑

For Key-in (YEY) style, enter the known second Input Value using the front panel buttons.

For Apply (RPLY) style, the meter shows the previously stored Input Value for Scaling Point 2. To retain this value, press the **SEL** button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 2

dSP 7 ᠬ · (9999 to 99999 F 10000

Enter the second Display Value using the front panel buttons. This is the same for YEY and RPLY scaling styles.

General Notes on Scaling

- 1. When using the Apply (RPLY) scaling style, input values for scaling points must be confined to signal limits of the selected range.
- 2. The same Input Value should not correspond to more than one Display Value. (Example: 10 V can not equal 0 and 10.)
- For input levels beyond the programmed Input Values, the meter extends the 3 Display Value by calculating the slope from the two coordinate pairs (INP 1 / dSP I & INP2 / dSP2).

1-717-767-6511

USER INPUT FUNCTION

DISPLAY	MODE	DESCRIPTION
ПО	No Function	User Input disabled.
P·Loc	Program Mode Lock-out	See Programming Mode Access chart (Module 3).
2Er 0	Zero Input (Edge triggered)	Zero the Input Display value causing Display Reading to be Offset.
rESEE	Reset (Edge triggered)	Resets the assigned value(s) to the current input value.
q-XFq	Display Hold	Holds the assigned display, but all other meter functions continue as long as activated (maintained action).
d-5EL	Display Select (Edge Triggered)	Advance once for each activation.
q-ren	Display Intensity Level (Edge Triggered)	Increase intensity one level for each activation (backlight version only).
[OLOr	Backlight Color (Edge Triggered)	Change backlight color with each activation (backlight version only).

DISPLAY MODE

ρ,

Pr int	Print Request	Serial transmit of the active parameters selected in the Print Options menu (Module 5).
₽∙rSŁ	Print and Reset	Same as Print Request followed by a momentary reset of the assigned value(s)
r St · I	Setpoint 1 Reset	Resets setpoint 1 output.
r 52 - 2	Setpoint 2 Reset	Resets setpoint 2 output.
r 5E 12	Setpoint 1 and 2 Reset	Reset both setpoint 1 and 2 outputs.

DESCRIPTION

USER INPUT ASSIGNMENT

U-RS	Π 🕤	H I	X I-LO
\clubsuit	dSP	LO	dSP

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, display hold, or print and reset is selected in the User Input Function menu.

6.2 MODULE 2 - Secondary Function Parameters (2.581)

MAX DISPLAY ENABLE YFS

ΠΟ

Enables the Maximum Display Capture capability.

MAX CAPTURE DELAY TIME

00 to 9999 seconds

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN DISPLAY ENABLE

Enables the Minimum Display Capture capability.

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

FACTORY SERVICE OPERATIONS

Select YE5 to perform either of the Factory Service Operations shown below.

RESTORE FACTORY DEFAULT SETTINGS

Entering Code 66 will overwrite all user settings with the factory settings. The meter will display rESEE and then return to LodE 00. Press the SEL button to exit the module.

EodE প্ম 50

Entering Code 50 will display the version (x.x) of the meter. The display then returns to LodE DD. Press the SEL button to exit the module.

CALIBRATION

VIEW VERSION DISPLAY

The CUB5P uses stored calibration values to provide accurate voltage and current measurements. Over time, the electrical characteristics of the components inside the meter could slowly change, therefore the stored calibration

values may no longer accurately define the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the CUB5P involves a voltage or current calibration, which should only be performed by individuals experienced in calibrating electronic equipment. Allow a 30 minute warm up for equipment and unit before performing any calibration related procedures. The following procedures should be performed at an ambient temperature of 15 to 35°C (59 to 95°F).

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the CUB5P.

Calibration

- 1. Connect the negative lead of a precision DC source with an accuracy of 0.01% or better to the COMM. Leave the positive lead of the DC source unconnected.
- With the display at LodE 48, press and hold the SEL button for 2 seconds. Unit 2. will display CAL NO.
- 3. Press the **RST** button to select the range to be calibrated.
- 4. Press the **SEL** button. Display reads ODR (OD U for voltage).
- 5. Apply 0 signal:

Current: leave the positive lead of the DC source unconnected. Voltage: apply a short to the input or connect the positive lead of the DC source to INP+ and set the source to 0.

- Press SEL. Display reads [RL[for about 8 seconds.
- 6. When the display reads the selected range (10 V, 20 mA, or 50 mA), connect the positive lead of the DC source to INP+ and apply the full scale input signal for the range. Press SEL. Display reads [RL[for about 8 seconds.
- 7. Repeat steps 3 through 6 for each input range to be calibrated. When display reads [RL ND, press the SEL button to exit calibration.

www.redlion.net

6.3 MODULE 3 - DISPLAY AND FRONT PANEL BUTTON PARAMETERS (3-45P)

This parameter sets the display update time in seconds.

DISPLAY COLOR (BACKLIGHT UNIT ONLY)

Brn

Enter the desired display color, red or green. This parameter is active for backlight units only.

FRONT PANEL DISPLAY SELECT ENABLE (SEL)

The ${}^{\mbox{\sc selection}}$ allows the ${\mbox{\sc selection}}$ button to toggle through the enabled displays.

FRONT PANEL RESET ENABLE (RST)

r 5Ł 🕅	nD	LD	dSP
K dSP	X i	8 I-LU	

This selection allows the **RST** button to reset the selected value(s).

ZERO DISPLAY WITH DISPLAY RESET

This parameter enables the **RST** button or user input to zero the input display value, causing the display reading to be offset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to $d5^{p}$ and the Input value must be displayed. If these conditions are not met, the display will not zero.

DISPLAY SCROLL ENABLE

Scr	ol	<u></u> ←		
\checkmark		ПΟ	YES	ПО

The 45 selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

This parameter activates the Units Indicator on the display. There are two methods of selecting the Indicator. List will present a group of Units preprogrammed into the meter. Segments allows the user to choose which of the segments should light.

DISPLAY INTENSITY LEVEL (BACKLIGHT UNIT ONLY)

1 to 5

Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed. This parameter is active for backlight units only.

PROGRAMMING SECURITY CODE

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (p-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the LodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the LodE prompt appears (see chart).

USER INPUT FUNCTION	USER INPUT STATE	SECURITY CODE	MODE WHEN "SEL" BUTTON IS PRESSED	FULL PROGRAMMING MODE ACCESS
		0	Full Programming	Immediate Access
not ^p ·Loc		1-99	Quick Programming	After Quick Programming with correct code entry at LodE prompt *
		100-999	[₀dE prompt	With correct code entry at LodE prompt *
	Active	0	Programming Lock	No Access
P-Loc		1-99	Quick Programming	No Access
		100-999	EødE prompt	With correct code entry at LodE prompt *
	Not Active	0-999	Full Programming	Immediate Access

* Entering Code 222 allows access regardless of security code.

Е

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

6.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-5PL)

The Setpoint Output Parameters are only active when an optional output module is installed in the meter.

SETPOINT SELECT

Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to 5P5EL. Repeat steps for each setpoint to be programmed. Select no to exit the module. The number of setpoints available is setpoint output card dependent.

SETPOINT 2 ENABLE

ПΟ

X I-Ub

Select ¥E5 to enable Setpoint 2 and access the setup parameters. If no is selected, the unit returns to 5P5EL and setpoint 2 is disabled.

P

SETPOINT ACTION

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

LO-Ub

- LO-PL = Low Acting, with balanced hysteresis
- H I 11h = High Acting with unbalanced hysteresis
- 10-116 = Low Acting, with unbalanced hysteresis

SETPOINT VALUE

· 19999 to 99999

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

HYSTERESIS VALUE

Ŀ

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

00 to 5999 seconds

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OFF TIME DELAY

00 to 5999 seconds

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OUTPUT RESET ACTION

r 5t m দি Ruto Ŀ

Ruto

L &F C H 1-414

Enter the reset action of the output. See figure for details.

 R_{uLo} = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The "on" output may be manually reset (off) immediately by the front panel RST button or user input. The output remains off until the trigger point is crossed again.

LREEH = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

HI-PL LO-PL X I - UЬ

ᠬᠷ

button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

L·dL^y = Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST** button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous L·dL^y reset if it is not activated at power up.)

OUTPUT RESET WITH DISPLAY RESET

This parameter enables the **RST** button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to d5^p and the Input value must be displayed. If these conditions are not met, the output will not reset.

When $\frac{1}{5}$, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset action.

CHANGE DISPLAY COLOR w/OUTPUT STATE

EPE	-n 🖓		
€>[ΠΟ	00	YES

This parameter enables the backlight CUB5 to switch the backlight color when the output state changes. This parameter is only active for the backlight version.

The Serial Setup Parameters are only active when one of the optional serial communications/programming cards is installed in the meter. Refer to the CUB5COM bulletin for details and setup for the CUB5 RS232 or RS485 serial communications. Refer to the CUB5USB bulletin for details on the CUB5 USB programming and programming requirements.

MODEL PAXLCL - PAX LITE CURRENT LOOP METER

- DUAL RANGE, 4 to 20 mA or 10 to 50 mA *
- 3 1/2-DIGIT, 0.56" (14.2 mm) HIGH RED LED READOUT
- 24 VDC EXCITATION SUPPLY
- WIDE SPAN & OFFSET SCALING RANGE
- OVER-RANGE INDICATION
- SELECTABLE DECIMAL POINTS
- NEMA 4X/IP65 SEALED FRONT BEZEL
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- * Also adapts to 0 to 50, 0 to 20, 0 to 10, 1 to 5 mA ranges as well as bi-polar inputs.

GENERAL DESCRIPTION

The premium features of the PAX Lite Series can now be applied to measurement of process variables. With its high sensitivity and programmability, the PAX Lite Current Loop Meter can be set up for a wide variety of applications. In most plants the PAXLCL can be used for 90 to 95% of current loop meter needs for readout of pressure, flow, temperature, level and other variables. The meter has been specifically designed for harsh industrial environments. With NEMA 4X/ IP65 sealed bezel and extensive testing of noise effects to CE requirements, the meter provides a tough yet reliable application solution. This allows the PAXLCL to be used in dirty, hostile environments and in wash-down areas. The 3 1/2-digit bi-polar display (minus sign displayed when current or voltage is negative) features 0.56" (14.2 mm) high, 7-segment LEDs for easy reading.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

CAUTION: Risk of electric shock.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

TABLE OF CONTENTS

Ordering Information	2
General Meter Specifications	3
Accessories	3
Installing the Meter	4
Setting the Switches	4

Wiring the Meter	. 4
Scaling the Meter	. 6
Calibrating the Meter	. 7
Applications	. 8

ORDERING INFORMATION

Meter Part Numbers

Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
Accessories	PAXLBK	Units Label Kit Accessory	PAXLBK30

GENERAL METER SPECIFICATIONS

- 1. **DISPLAY**: 3 1/2-digit, 0.56" (14.2 mm) high, 7-segment red LED, (-) minus sign displayed when current or voltage is negative. Decimal points inserted before 1st, 2nd, or 3rd least significant digits by DIP switch selection.
- 2. **OVER-RANGE INDICATION**: Indicated by blanking 3 least significant digits.
- 3. POWER:
- AC Power: 85 to 250 VAC, 50/60 HZ, 6 VA

Isolation: 2300 Vrms for 1 min. between input and supply (300 V working voltage).

- INPUT SENSITIVITY: (Numerical Readout Change/mA) 260 units/mA @ 4 to 20 mA input 105 units/mA @ 10 to 50 mA input (max. allowable input current, 170 mA)
- 5. **COMPLIANCE**: Voltage drop across input at max. signal current, less than 600 mV for both 4 to 20 and 10 to 50 mA ranges.
- 6. INPUT RESISTANCE: 4 to 20 mA - 29.2 Ω
- **10 to 50 mA** 11.8 Ω
- 7. SCALING RANGE:
- **SPAN**: 32 coarse steps *(binary progression with 5 DIP switches)* Each step providing approx. 8.125 numerical units/mA/step sensitivity for 4 to 20 mA input and 3.25 units/mA/step for 10 to 50 mA input.
- **OFFSET**: 16 coarse steps (*binary progression with 4 DIP switches*) with \pm switch to add or subtract offset. Each step adds or subtracts approximately 175 from the numerical display for a total offset range of ± 2700 .
- 8. LINEARITY: ±(0.05% ±1 digit)
- 9. READING RATE: 2.5 updated readings/second, nominal.
- 10. RESPONSE TIME: 1 second to settle for step change.11. LOW FREQUENCY NOISE REJECTION:
- Normal Mode Rejection: 63 dB @ 50/60 Hz Common Mode Rejection: 100 dB, DC to 50/60 Hz
- 12. ENVIRONMENTAL CONDITIONS:
- **Operating Temperature**: 0° to 60°C
- Storage Temperature: -40° to 80°C
- Operating and Storage Humidity: 85% max. relative humidity (noncondensing)

Span Temperature Coeff.: 100 PPM/°C

- Offset Temperature Coeff.: 100 PPM/°C
- Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2 g's.
- Shock According to IEC 68-2-27: Operational 30 g's, 11 msec in 3 directions. Altitude: Up to 2000 meters
- 13. CERTIFICATIONS AND COMPLIANCES:

SAFETY

- UL Recognized Component, File # E179259, UL61010A-1, CSA C22.2 No. 61010-1 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
- UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50

- IECEE CB Scheme Test Report # 04ME11209-20041018 Issued by Underwriters Laboratories, Inc.
- IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
- IP65 Enclosure rating (Face only), IEC 529
- IP20 Enclosure rating (Rear of unit), IEC 529
- ELECTROMAGNETIC COMPATIBILITY

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

|--|

Electrostatic discharge	EN 61000-4-2	Criterion A
		4 kV contact discharge
		8 kV air discharge
Electromagnetic RF fields	EN 61000-4-3	Criterion B
		10 V/m
Fast transients (burst)	EN 61000-4-4	Criterion A
		2 kV power
		2 kV signal
Surge	EN 61000-4-5	Criterion A
		1 kV L-L,
		2 kV L&N-E power
		1 kV signal
RF conducted interference	EN 61000-4-6	Criterion A
		3 V/rms
Power frequency magnetic fields	EN 61000-4-8	Criterion A
		30 A/m
Voltage dip/interruptions	EN 61000-4-11	Criterion A
		0.5 cycle
Emissions:		
Emissions	EN 55011	Class B

Notes:

- 1. Criterion A: Normal operation within specified limits.
- 2. Criterion B: Temporary loss of performance from which the unit selfrecovers.
- 14. EXCITATION SUPPLY: 24 VDC @ 50 mA max. Regulated and isolated.
- 15. CONNECTIONS: High compression cage-clamp terminal block
 - Wire Strip Length: 0.3" (7.5 mm)
 - Wire Gage: 30-14 AWG copper wire Torque: 4.5 inch-lbs (0.51 N-m) max.
- CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Panel gasket and mounting clip included.
- 17. WEIGHT: 0.65 lbs (0.24 kg)

ACCESSORIES

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit (PAXLBK30). The backlight is controlled by a DIP switch.

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

2.0 SETTING THE SWITCHES

The meter has switches, which must be checked and/or changed prior to applying power. To access the switches, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Set-Up DIP Switches

Two banks of DIP switches are located inside the meter. The 10 position bank of switches are used for calibrating the meter. The values of these switches are discussed in section 5.0 Calibrating the Meter.

The bank of 4 switches located near the front display are used for the selection of decimal points and backlight annunciator. Selecting "ON" position enables the function.

SWITCH	FUNCTION
1	Decimal Point 1 (000.0)
2	Decimal Point 2 (00.00)
3	Decimal Point 3 (0.000)
4	Backlight Annunciator for Units Label

3.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

381

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
- Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection.

Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000) TDK # ZCAT3035-1330A Steward #28B2029-0A0 Line Filters for input power cables: Schaffner # FN610-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VR3

Note: Reference manufacturer's instructions when installing a line filter.

- 5. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC#SNUB0000.

3.1 POWER WIRING

Terminal 2: VAC

1 2

2**0** 20

3.2 INPUT SIGNAL WIRING

2-WIRE, EXTERNAL EXCITATION 2-WIRE, WITH EXCITATION (Series Conn.) 2-WIRE, WITH EXCITATION (Parallel Conn.)

NOTES

- 1. When shielded wire leads are used, connect the shield to earth ground at the meter and insulate the other end to avoid contact with machine ground.
- 2. Never run signal leads in conduit, bundles, or race ways with power conductors. Avoid runs close to contactors, relays, solenoids, transformers, and other potential sources of electrical noise.

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

4.0 SCALING THE METER

DESCRIPTION OF OPERATION

The PAX Lite Current Loop Meter consists of a digital volt meter combined with an analog scaling circuit (shown above). The unit was designed primarily for use with 4-20 mA and 10-50 mA current loop signal circuits. However, it can also be adapted to other current ranges, such as 0-50 mA, 0-20 mA, 0-10 mA, and in a great many applications it can be used even with 0-5 mA and 1-5 mA current loops. In addition, input current can be reversed in polarity resulting in negative numerical readout with a minus (-) sign displayed. Input terminals 3 and 4 are connected in series with 10-50 mA current loops, and Terminal 3 and 5 are series connected with 4-20 mA loops. In either case, the voltage drop generated across the shunt resistor(s) ranges from approximately 0.12 V min. (@ 4 or 10 mA) to 0.59 V max. (@ 20 or 50 mA). The buffer amplifier (K1) conditions and filters the input signal voltage and applies it to the input of the scaling circuit. The scaling process into two separate components, span adjustments and offset adjustments which are defined in the following discussion.

SPAN ADJUSTMENTS

Span is defined as the numerical range that the display traverses, disregarding decimal points, when the input signal current is varied from minimum (4 or 10 mA) to maximum (20 or 50 mA). For example, if a unit is to display 25.0 @ 4 mA and 100.0 @ 20 mA, the span is 750 (the difference between 250 and 1000). Had the minimum display been -25.0 @ 4 mA and +100.0 @ 20 mA, the span would be 1250 (1000 - (-250) = 1250). (Note: the terms "GAIN", "SCALE", and "SENSITIVITY" are also frequently used interchangeably with the term

"SPAN.") The PAX Lite Current Loop Meter can be set up over a very wide span range by means of the coarse DIP switches S6-S10, and the fine screwdriver adjustment pot, located at the back cover. The coarse span switches add parallel input resistors to the summing amplifier (K2), thereby increasing its gain, or sensitivity, as more summing resistors are added. Effectively, adding more parallel input resistors, increases the slope of the transfer curve (at right) and increases the numerical readout for a given input signal

current change. The input summing resistor values are weighted in a binary progression, so they can be switched in combinations to give 32 discrete steps of span. The fine adjust control brackets these coarse steps and can be adjusted to the exact span needed.

The approximate span contributed by each switch is shown on the rear label. These values are based on the standard current-loop spans of 4 to 20 mA (16 mA current variation) and 10-50 mA (40 mA current variation). In other words, if S7 only is turned "ON", the numerical readout will display a change approximately 1050 for a current swing of 16 mA (4-20 mA input) or 40 mA (10-50 mA input). If S8 were also turned "ON", the numerical readout would swing approximately 1575 (1050 for S7 + 525 for S8) for the same signal current variation. The fine control has a continuous span range of approximately 0-150.

OFFSET ADJUSTMENTS

In the foregoing discussion of span, the transfer curves were shown as "ZERO-BASED", i.e., the numerical readout displays "0" when the signal current goes to zero. With current loop ranges such as 0-5 or 0-10, or 0-20 mA, and with Bi-Polar (+/-) signals, this is often the desired condition. However, with 4-20 and 10-50 mA current loops, the minimum current level of 4 or 10 mA usually represents the zero level of the parameter being displayed. There are

also many applications where the minimum (or zero level) represents some value that does not fall on a zero based transfer curve. To accommodate non-zero based applications, the PAX Lite Current Loop Meter has provisions for offsetting the transfer curve over a wide range. Essentially, offset moves the transfer curve up or down to change its intercept with the numerical readout axis, but it does not change the slope (SPAN) of the transfer curve. In the PAX Lite Current Loop Meter, offset is accomplished by

adding (or subtracting) a constant at the input of the summing amplifier (K2). This offset constant is summed in with a switched binary resistor network and a fine adjust offset control in a similar manner to that used for span adjustment. Switches S2-S5 can be turned on in combinations to give 16 different coarse offset levels. Each switch is labeled to show the approximate amount of offset contributed when it is turned "ON". Switch 1 selects the polarity of the switched-in offset value and allows offsetting the transfer curve "UP" (adding the offset constant) or "DOWN" (subtracting). The fine offset control has a numerical readout range of ± 100 and brackets all the coarse switched ranges.

383

5.0 CALIBRATING THE METER

Direct calibration in the signal loop is usually not practical due to the difficulty in varying the measured parameter and the confusing interaction that occurs between span and offset adjustments. However, the PAXLCL can be quickly and easily bench calibrated using a commercially available current calibrator or the calibration set-up shown below.

CALIBRATION PROCEDURE

The procedure outlined below minimizes span/offset interaction and simplifies calibration. In Steps 1 to 4 the unit is "nulled" to zero readout with zero input signal current. In Steps 5 and 6, the span adjustments are made to establish the required slope of the transfer curve. Then in Step 7, the transfer curve is shifted up or down as required by setting the offset adjustments. In Step 8, the final "tweaking" adjustments are made at minimum and maximum signal current. Setting the decimal points in Step 9 completes the calibration.

Before calibrating, the READOUT SPAN (Rs) and SWING CURRENT (Is) must be determined.

WHERE:

Rs = (Max. Numerical Display) - (Min. Numerical Display) (Disregard Decimal Points) Is = (Current @ Max. Display) - (Current @ Min. Display)

Example:

Readout is to be 0.00 @ 4 mA and 10.00 @ 20 mA. READOUT SPAN (Rs) = 1000 - 0 = 1000 SWING CURRENT (Is) = 20 mA - 4 mA = 16

CALIBRATION STEPS

- Power down the meter and remove it from its case. Turn off all offset and span adjustment switches (S2-S10 down). S1 has no effect when zeroing and can be in either position.
- 2. Turn the span control pot fully counter-clockwise (20 turns max.).
- 3. Turn on a combination of span adjust switches (6-10) to obtain a total value closest to (but not greater than) the READOUT SPAN (Rs) desired (1000 in this example). The following chart gives an approximate span adjustment value for each switch:

SWITCH NUMBER	SPAN VALUE
6	2100
7	1050
8	525
9	260
10	130

- 4. Place unit in its case and apply power. Apply zero current. Adjust the indicator to read zero using the offset adjustment pot.
- 5. Apply the SWING CURRENT (Is) (16 mA in the example) to the input. Set the exact READOUT SPAN value (1000) with span adj.pot.
- 6. Apply zero current to see if the zero value has shifted. If it has, re-zero with the offset pot, then repeat Step 5.
- 7. After the span has been adjusted, set the signal current to the minimum level (4 mA in the example). Record the meter reading (in this example the reading will be 250). Subtract the desired reading at minimum current value (0 in the example) from the recorded reading (0-250 = 250). Power down the meter and remove it from its case. Set the offset add/subtract switch S1 (subtract = on), and the offset switches (S2-S5) to obtain a total value closest to (but no more than) the difference between the desired reading at minimum current value and the observed reading The following chart gives an approximate offset adjustment value for each switch:

SWITCH NUMBER	OFFSET VALUE
2	1400
3	700
4	350
5	175

Place the meter in its case and apply power. Using the offset adjust pot, adjust the readout to equal the desired reading at the minimum current value (0 in the example).

- 8. Adjust the input signal current to its maximum value to see if the proper readout is obtained (1000 @ 20 mA in the example). If the readout is slightly off, adjust the span pot to obtain the true reading. Then, recheck the reading at the minimum input current (4 mA) and readjust the offset pot if necessary. Repeat the maximum and minimum readout adjustments until the unit displays the proper readout at both extremes.
- 9. Set decimal points as desired using the three decimal point switches. The unit can now be installed.

TROUBLESHOOTING

For further assistance, contact technical support at the appropriate company numbers listed.

6.0 APPLICATIONS

Example 1:

A PAXLCL is to be calibrated to match a flow transducer whose output is 10 mA @ 0 GPM and 50 mA @ 1375 GPM.

READOUT SPAN (Rs) = 1375 – 0 = 1375 SWING CURRENT (Is) = 50 mA – 10 mA = 40 mA

ADJUSTMENTS (Refer to the transfer curve below)

- (A) Null the unit to zero readout @ 0 current per Steps 1 to 4 of the calibration steps.
- B Set the coarse and fine span adjustments to get a readout of 1375 @ 40 mA per Steps 5 and 6. Note: With the full standard swing of 40 mA, the coarse span switch reference markings can be used to determine settings as follows:
 S7 ON (1050) + S9 ON (260) = 1310 Span set with switches.

- Span set with switches. 375 (needed) - 1310 (with SW's) = 65w. fine span adj. Set offset to readout 0 @ 10 mA per Step
- (C) Set offset to readout 0 @ 10 mA per Step 7. Note: The read out observed when the 10 mA min. current is first applied can be used to determine the offset switch settings.) In this example the readout will be (+) 344 when the 10 mA min. current is first applied. Applying -344 offset then reduces the readout to zero @ 10 mA.
- **(D)** Check readout at max. (50 mA) and min. (10 mA) and fine tune (tweak) as required per Step 8.

Example 2 (Negative Slope):

A level measuring device puts out 6 mA when a storage tank is full and 15 mA when the tank is empty. The PAXLCL is to readout 90.0 tons at full tank and zero when empty.

READOUT SPAN (Rs) = 900 - 0 = 900 (Disregard Decimal Points) SWING CURRENT (Is) = 6 mA (@ max rdg) - 15 mA (@ min rdg) = -9 mA

In this case, the signal current is reverse [Term 3 (-) with respect to Term 5 (+)] causing the readout to go "down" (increasingly negative) as the negative current increases.

ADJUSTMENTS

- A Null the unit per Steps 1 to 4.
- (B) Set slope of transfer curve with span adjustments to get readout of -900 (a) -9 mA per Steps 5 and 6.
- (C) Move transfer curve up by applying (+) offset per Step 7 until readout is +900 @ -6 mA.
- D Check extreme readings per Step 8, 0 readout @ -15 mA and +900 readout @ -6 mA. Set D.P. Switch S1 and replace unit in case.

Example 3 (± Display):

A differential pressure transducer has a range of ± 1500 PSI with a 4 to 20 mA output (-1500 @ 4 mA, +1500 @ 20 mA).

READOUT SPAN (Rs) = +1500 -(-1500) = 3000 SWING CURRENT (Is) = 20 mA(max) - 4 mA(min) = 16 mA

Note: Since the display readout is limited to 1999 numerical indication, the full READOUT SPAN of 3000 cannot be obtained during zero based span adjustment. However, dividing both the READOUT SPAN and SWING CURRENT by two, i.e. 1500 readout (@ 8 mA, allows the span adjustment to be made for the proper transfer curve slope.

ADJUSTMENTS

- A Null the unit per Steps 1 to 4.
- (B) Set transfer curve slope with span adjustments per Steps 5 and 6, to get a readout of +1500 @ 8 mA.
- C Apply (-) offset per Step 7 to get a reading of -1500 @ 4 mA.
- D Check min. and max. extremes and tweak if required to get desired readout @ 4 and 20 mA per Step 8.

MODEL PAXLPV - PAX LITE PROCESS VOLT METER

LISTED IND. CONT. EQ. 51EB

- 3 1/2-DIGIT, 0.56" (14.2 mm) HIGH RED LED READOUT
- 24 VDC EXCITATION SUPPLY
- OVER-RANGE INDICATION
- SELECTABLE DECIMAL POINTS
- NEMA 4X/IP65 SEALED FRONT BEZEL
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- ±25 VOLT DC MAXIMUM INPUT

CE

GENERAL DESCRIPTION

The premium features of the PAX Lite Series can now be applied to measurement of process variables. With its high sensitivity and programmability, the PAX Lite Process Volt Meter can be set up for a wide variety of applications. In most plants the PAXLPV can be used for 90 to 95% of Process Volt meter needs for readout of pressure, flow, temperature, level and other variables. The meter has been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, the meter provides a tough yet reliable application solution. This allows the PAXLPV to be used in dirty, hostile environments and in wash-down areas. The $3\frac{1}{2}$ -digit bi-polar display (minus sign displayed when voltage is negative) features 0.56" (14.2 mm) high, 7-segment LEDs for easy reading.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

CAUTION: Risk of electric shock.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

TABLE OF CONTENTS

Ordering Information	. 2
General Meter Specifications	. 3
Accessories	. 3
Installing the Meter	.4
Setting the Switches	.4

Wiring the Meter	5
Scaling the Meter	6
Calibrating the Meter	7
Applications	8

ORDERING INFORMATION

Meter Part Numbers

Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
Accessories	PAXLBK	Units Label Kit Accessory	PAXLBK30

GENERAL METER SPECIFICATIONS

- 1. DISPLAY: 3 1/2-digit, 0.56" (14.2 mm) high, 7-segment red LED, (-) minus sign displayed when current or voltage is negative. Decimal points inserted before 1st, 2nd, or 3rd least significant digits by DIP switch selection. 2. OVER-RANGE INDICATION: Indicated by blanking 3 least significant digits. 3. POWER: AC Power: 85 to 250 VAC, 50/60 HZ, 6 VA Isolation: 2300 Vrms for 1 min. to all inputs. 4. INPUT SENSITIVITY: (Numerical Readout Change/Volt) Adjustable from 40 units/volt to 1000 units/volt. Max. allowable input voltage, ±25 volts DC. 5. INPUT RESISTANCE: $1 M \Omega$ 6. SCALING RANGE: SPAN: 32 coarse steps (binary progression with 5 DIP switches) Each step providing approx. 40 numerical units/volt/step sensitivity. Fine adjust brackets the coarse step increments. OFFSET: 16 coarse steps (binary progression with 4 DIP switches) with ± switch to add or subtract offset. Each step adds or subtracts approximately 175 from the numerical display for a total offset range of ± 2700 . Fine control brackets the steps. 7. LINEARITY: ±(0.05% ±1 digit) 8. READING RATE: 2.5 updated readings / second, nominal. 9. RESPONSE TIME: 1 second to settle for step change. 10. LOW FREQUENCY NOISE REJECTION: Normal Mode Rejection: 63 dB @ 50/60 Hz Common Mode Rejection: 100 dB, DC to 50/60 Hz 11. ENVIRONMENTAL CONDITIONS: **Operating Temperature:** 0° to 60°C Storage Temperature: -40° to 80°C Operating and Storage Humidity: 85% max. relative humidity (noncondensing) Span Temperature Coeff.: 100 PPM/°C Offset Temperature Coeff.: 100 PPM/°C Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z
 - direction for 1.5 hours, 2 g. Shock According to IEC 68-2-27: Operational 30 g, 11 msec in 3 directions.
 - Altitude: Up to 2000 meters 12. CERTIFICATIONS AND COMPLIANCES:

SAFETY

- UL Recognized Component, File # E179259, UL61010A-1, CSA C22.2 No. 1010-1
- Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
- UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50

- IECEE CB Scheme Test Report # 04ME11209-20041018 Issued by Underwriters Laboratories, Inc.
 - IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
- IP65 Enclosure rating (Face only), IEC 529
- IP20 Enclosure rating (Rear of unit), IEC 529
- ELECTROMAGNETIC COMPATIBILITY

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

Immunity to Industrial Locations:

Electrostatic discharge	EN 61000-4-2	Criterion A
		4 kV contact discharge
		8 kV air discharge
Electromagnetic RF fields	EN 61000-4-3	Criterion B
		10 V/m
Fast transients (burst)	EN 61000-4-4	Criterion A
		2 kV power
		2 kV signal
Surge	EN 61000-4-5	Criterion A
-		1 kV L-L,
		2 kV L&N-E power
		1 kV signal
RF conducted interference	EN 61000-4-6	Criterion A
		3 V/rms
Power frequency magnetic fields	EN 61000-4-8	Criterion A
		30 A/m
Voltage dip/interruptions	EN 61000-4-11	Criterion A
		0.5 cycle
Emissions:		
Emissions	EN 55011	Class B

- Notes:
 - 1. Criterion A: Normal operation within specified limits.
- 2. Criterion B: Temporary loss of performance from which the unit selfrecovers.
- 13. EXCITATION SUPPLY: 24 VDC @ 50 mA max. Regulated and isolated.
- 14. **CONNECTIONS**: High compression cage-clamp terminal block
- Wire Strip Length: 0.3" (7.5 mm)
- Wire Gage: 30-14 AWG copper wire Torque: 4.5 inch-lbs (0.51 N-m) max.
- CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece
- bezel/case. Flame resistant. Panel Gasket and mounting clip included.
- 16. WEIGHT: 0.65 lbs (0.24 kg)

ACCESSORIES

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit (PAXLBK30). The backlight is controlled by a DIP switch.

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

2.0 SETTING THE SWITCHES

The meter has switches that must be checked and/or changed prior to applying power. To access the switches, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Set-Up DIP Switches

Two banks of DIP switches are located inside the meter. The 10 position bank of switches are used for calibrating the meter. The values of these switches are discussed in section 5.0 Calibrating the Meter.

The bank of 4 switches located near the front display are used for the selection of decimal points and backlight annunciator. Selecting "ON" position enables the function.

SWITCH	FUNCTION	
1	Decimal Point 1 (000.0)	
2	Decimal Point 2 (00.00)	
3	Decimal Point 3 (0.000)	
4	Backlight Annunciator for Units Labe	

Ε

3.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.

- 3. Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000) TDK # ZCAT3035-1330A Steward #28B2029-0A0 Line Filters for input power cables: Schaffner # FN610-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VR3

Note: Reference manufacturer's instructions when installing a line filter.

- 5. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- 6. Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC#SNUB0000.

3.1 POWER WIRING

AC Power

SA SA Terminal 1: VAC Terminal 2: VAC

85-250 VAC

3.1 INPUT WIRING

Voltage Signal (2 wire) Terminal 3: COMM Terminal 4: INPUT

4.0 SCALING THE METER

DESCRIPTION OF OPERATION

The PAX Lite Process Volt Meter consists of a digital volt meter combined with an analog scaling circuit (shown above). Input voltage can be reversed in polarity resulting in negative numerical readout with a minus (-) sign displayed. Input terminals 3 and 4 are connected to the signal voltage. The buffer amplifier (K1) conditions and filters the input signal voltage and applies it to the input of the scaling circuit. The procedure for scaling PAX Lite Process Volt Meters is simplified by dividing the scaling process into two separate components, span adjustments and offset adjustments which are defined in the following discussion.

SPAN ADJUSTMENTS

Span is defined as the numerical range that the display traverses, disregarding decimal points, when the input signal is varied from minimum to maximum. For example, if a unit is to display 25.0 @ 1 V and 100.0 @ 5 V, the span is 750 (*the difference between 250 and 1000*). Had the minimum display been -25.0 @ 1 V and +100.0 @ 5 V, the span would be 1250 (1000 - (-250) = 1250). (*Note: the terms "GAIN," "SCALE," and "SENSITIVITY" are also frequently used interchangeably with the term "SPAN."*) The PAX Lite Process Volt Meter can be set up over a very wide span range by means of the coarse DIP switches S6-S10, and the fine screwdriver adjustment pot, located at the back cover. The coarse span switches add parallel input resistors to the summing amplifier (K2),

thereby increasing its gain, or sensitivity, as more summing resistors are added. Effectively, adding more parallel input resistors increases the slope of the transfer curve (at right) and increases the numerical readout for a given input signal change. The input summing resistor values are weighted in a binary progression, so they can be switched in combinations to give 32 discrete steps of span. The fine adjust control brackets these coarse steps and can be adjusted to the exact span needed.

The approximate span contributed by each switch is shown on the rear label. The values shown are "units per volt." For example, if S6 only is turned "ON," the numerical readout will change approximately 550 units for a signal voltage change of 1 volt. If S7 were also turned "ON," the numerical readout would change approximately 825 units for a signal voltage change of 1 volt. The span adjust pot has a continuous span range of approximately 0- 45.

OFFSET ADJUSTMENTS

Effectively, adding more parallel input resistors increases the slope of the transfer curve (at right) and increases the numerical readout for a given input signal change. In the foregoing discussion of span, the transfer curves were shown as "ZERO-BASED," i.e., the numerical readout displays "0" when the signal goes to zero. With voltage ranges such as 0-5 V or 0-10 V, and with Bi-Polar (+/-) signals this is often the desired condition. However, with voltage ranges such as 1-5

V or 1-10 V, the minimum voltage level usually represents the zero level of the parameter being displayed. There are also many applications where the minimum (or zero level) represents some value that does not fall on a zero based transfer curve. To accommodate non-zero based applications, the PAX Lite Process Volt Meter has provisions for offsetting the transfer curve over a wide range. Essentially, offset moves the transfer curve up or down to change its intercept with the numerical readout axis, but it does not change the slope (SPAN) of the transfer curve. In the PAX Lite Process Volt Meter, offset is accomplished by adding (or subtracting) a constant at the input of the summing amplifier (K2). This offset constant is summed in with a switched binary resistor network and a fine adjust offset control in a similar manner to that used for span adjust. Switches S2-S5 can be turned on in combinations to give 16 different coarse offset levels. Each switch is labeled to show the approximate amount of offset contributed when it is turned "ON." Switch 1 selects the polarity of the switched-in offset value and allows offsetting the transfer curve "UP" (adding the offset constant) or "DOWN" (subtracting). The offset adjust pot has a numerical readout range of +/-100 and brackets all the coarse switched ranges.

391

5.0 CALIBRATING THE METER

Direct calibration in the signal loop is usually not practical due to the difficulty in varying the measured parameter and the confusing interaction that occurs between span and offset adjustments. However, the PAXLPV can be quickly and easily bench calibrated using a commercially available calibrator.

CALIBRATION PROCEDURE

The procedure outlined in the calibration steps below, minimizes span/offset interaction and simplifies calibration. In Steps 1 to 4 the unit is "nulled" to zero readout with zero input signal voltage. In Steps 5 and 6, the span adjustments are made to establish the required slope of the transfer curve. Then in Step 7, the transfer curve is shifted up or down as required by setting the offset adjustments. In Step 8, the final "tweaking" adjustments are made at minimum and maximum signal voltage. Setting the decimal points in Step 9 completes the calibration. Before calibrating, the READOUT SPAN (Rs), SWING VOLTAGE (Vs), and SPAN PER VOLT (Rs/Vs) must be determined.

CALIBRATION STEPS

- 1. Power down the meter and remove it from its case. Turn off all offset and span adjustment switches (S2-S10 down). S1 has no effect when zeroing and can be in either position.
- 2. Turn the span control pot. fully counter-clockwise (20 turns max.).
- 3. Turn on a combination of span adjust switches (6-10) to obtain a total value closest to (but not greater than) the SPAN PER VOLT desired (250 in this example). The following chart gives an approximate span adjustment value for each switch:

SWITCH NUMBER	SPAN VALUE
6	550
7	275
8	140
9	75
10	40

- 4. Place unit in its case and apply power. Apply zero volts. Adjust the indicator to read zero using the offset adjustment pot.
- 5. Apply the SWING VOLTAGE (Vs) (4 V in this example) to the input. Set the exact READOUT SPAN value (1000) with span adj. pot.
- Apply zero volts to see if the zero value has shifted. If it has, re-zero with the offset pot, then repeat Step 5.
- 7. After the span has been adjusted, set the signal voltage to the minimum level (1 V in the example). Record the meter reading (in this example the reading will be 250). Subtract the desired reading at minimum voltage value (0 in the example) from the recorded reading (0-250 = 250). Power down the meter and remove it from its case. Set the offset add/subtract

WHERE:

Rs = (Max. Numerical Display) - (Min. Numerical Display) (Disregard Decimal Points) Vs = (Voltage @ Max. Display) - (Voltage @ Min. Display) Rs/Vs = READOUT SPAN (Rs)

SWING VOLTAGE (Vs)

Example:

Readout is to be 0.00 @ 1 V and 10.00 @ 5 V. READOUT SPAN (Rs) = 1000 - 0 = 1000 SWING VOLTAGE (Vs) = 5 V - 1 V = 4 V SPAN PER VOLT (Rs/Vs) = 1000 / 4 V = 250

switch S1 (subtract = on), and the offset switches (S2-S5) to obtain a total value closest to (but no more than) the difference between the desired reading at minimum voltage value and the observed reading. The following chart gives an approximate offset adjustment value for each switch:

SWITCH NUMBER	OFFSET VALUE
2	1400
3	700
4	350
5	175

Place the meter in its case and apply power. Using the offset adjust pot, adjust the readout to equal the minimum voltage value (0 in the example).

- 8. Adjust the input signal voltage to its maximum value to see if the proper readout is obtained (1000 @ 5 V in the example). If the readout is slightly off, adjust the span pot to obtain the true reading. Then, recheck the reading at the minimum input voltage (1 V) and readjust the offset pot if necessary. Repeat the maximum and minimum readout adjustments until the unit displays the proper readout at both extremes.
- 9. Set decimal points as desired using the three decimal point switches. The unit can now be installed.

TROUBLESHOOTING

For further assistance, contact technical support at the appropriate company numbers listed.

6.0 APPLICATIONS

Example 1 (± Display):

A differential pressure transducer has a range of ± 15 PSI with a 1-6 V output (-15 @ 1 V, +15 @ 6 V)

READOUT SPAN (Rs) = +1500 - (-1500) = 3000 SWING VOLTAGE (Vs) = 6 V (max) - 1 V (min) = 5 V SPAN PER VOLT (Rs/Vs) = 3000 / 5 V = 600

Note: Since the display readout is limited to 1999 numerical indication, the full READOUT SPAN of 3000 cannot be obtained during zero based span adjustment. However, dividing both the READOUT SPAN and SWING VOLTAGE by two, i.e. 1500 readout (a) 2.5 V, allows the span adjustment to be made for the proper transfer curve slope.

ADJUSTMENTS

- (A) Null the unit to zero readout (a) 0 V per Steps 1 to 4 of the calibration steps.
- (B) Set transfer curve slope with span adjustments per Steps 5 and 6 to get a readout of +1500 @ 2.5 V (SPAN PER VOLT = 600).
- (C) Apply (-) offset per Step 7 to get a reading of -1500 @ 1 V.
- D Check min. and max. extremes and tweak () if required to get desired readout @ 1 V and 6 V per step 8. Set D.P. switch S2 and replace unit in case.

Example 2 (Positive Offset):

PAXLPV is to be calibrated to match a flow transducer whose output is 0 V @ 40 GPM and 5 V @ 650 GPM.

READOUT SPAN (Rs) = 650 - 40 = 610 SWING VOLTAGE (Vs) = 5 V (max) - 0 V (min) = 5 V SPAN PER VOLT (Rs/Vs) = 610 / 5 V = 122

ADJUSTMENTS

- (A) Null the unit per Steps 1 to 4 of the calibration steps.
- (B) Set the coarse and fine span adjustments to get a readout of 610 @ 5 V (SPAN PER VOLT = 122) per Steps 5 and 6.
- (C) Set offset to readout 40 @ 0 V per Step 7.
- D Check the readout @ max. (5 V) and min. (0 V) and fine tune (tweak) as required per Step 8.

Example 3 (Negative Slope):

A liquid level sensor puts out 1 V when a storage tank is full and 11 V when the tank is empty. The PAXLPV is to read out 100.0 when the tank is full and zero when the tank is empty.

READOUT SPAN (Rs) = 1000 - 0 = 1000

SWING VOLTAGE (Vs) = 1 V (max) - 11 V (min) = -10 V

SPAN PER VOLT (Rs/Vs) = 1000 / -10 V = -100

In this case, the signal voltage is reversed [Term. 3 (+) with respect to Term. 4 (-)] causing the readout to go "down" (increasingly negative) as the negative voltage increases (hence, the negative (-) SPAN PER VOLT).

ADJUSTMENTS

- (\underline{A}) Null the unit per Steps 1 to 4 of the calibration steps.
- B Set the slope of the transfer curve with the span adjustments to get a readout of -1000
 @ -10V (SPAN PER VOLT = -100) per Steps 5 and 6.
- © Move the transfer curve up by applying (+) offset per Step 7 until readout is +1000 @ (-) -1 V.
- D Check extreme readings per Step 8 0 readout @ -11 V and +1000 @ -1 V. Set D.P. switch S1 ON and replace unit in case.

MODEL DP5P - PROCESS INPUT

This is a brief overview of the DP5P. For complete specifications and programming information, see the **DP5 Analog Input Panel Meters Bulletin** starting on **page 283**.

CE

- 5-DIGIT 0.56" HIGH RED LED DISPLAY
- PROGRAMMABLE FUNCTION KEYS/USER INPUT
- 24 VDC TRANSMITTER POWER
- NEMA 4X/IP65 SEALED FRONT BEZEL

DP5P SPECIFICATIONS

SENSOR INPUTS:

INPUT (RANGE)	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	IMPEDANCE/ COMPLIANCE	MAX CONTINUOUS OVERLOAD	DISPLAY RESOLUTION
20 mA (-2 to 26 mA)	0.03% of reading +2 μA	0.12% of reading +3 μA	20 ohm	150 mA	1 μA
10 VDC (-1 to 13 VDC)	0.03% of reading +2 mV	0.12% of reading +3 mV	500 Kohm	300 V	1 mV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85%RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

EXCITATION POWER:

Transmitter Power: 24 VDC, ±5%, regulated, 50 mA max.

MODEL PAXP - PROCESS INPUT

This is a brief overview of the PAXP. For complete specifications and programming information, see the **PAX Analog Input Panel Meters Bulletin** starting on **page 301**.

(F

- 5-DIGIT 0.56" RED SUNLIGHT READABLE OR STANDARD GREEN DISPLAY
- DUAL RANGE INPUT (20 mA or 10 VDC)
- 24 VDC TRANSMITTER POWER
- FOUR SETPOINT ALARM OUTPUTS (W/OPTION CARD)
- RETRANSMITTED ANALOG OUTPUT (W/OPTION CARD)
- COMMUNICATION AND BUS CAPABILITIES (W/OPTION CARD)
- CRIMSON PROGRAMMING SOFTWARE

PAXP SPECIFICATIONS

SENSOR INPUTS:

INPUT (RANGE)	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	IMPEDANCE/ COMPLIANCE	MAX CONTINUOUS OVERLOAD	DISPLAY RESOLUTION
20 mA (-2 to 26 mA)	0.03% of reading +2 μA	0.12% of reading +3 μA	20 ohm	150 mA	1 μΑ
10 VDC (-1 to 13 VDC)	0.03% of reading +2 mV	0.12% of reading +3 mV	500 Kohm	300 V	1 mV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

EXCITATION POWER:

Transmitter Power: 24 VDC, ±5%, regulated, 50 mA max.

Ε

MODEL PAXDP – 1/8 DIN DUAL PROCESS INPUT METER

- ACCEPTS TWO 4 20 mA OR 0 10 VDC INPUT SIGNALS
- PROGRAMMABLE A/D CONVERSION RATE, 5 TO 105 READINGS PER SECOND
- 5-DIGIT 0.56" RED SUNLIGHT READABLE DISPLAY
- VARIABLE INTENSITY DISPLAY
- LINEARIZATION/SQUARE ROOT EXTRACTION INPUT RANGE
- PROGRAMMABLE FUNCTION KEYS/USER INPUTS
- 9 DIGIT TOTALIZER (INTEGRATOR) WITH BATCHING
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- FOUR SETPOINT ALARM OUTPUTS (W/OPTION CARD)
- COMMUNICATION AND BUS CAPABILITIES (W/OPTION CARD)
- RETRANSMITTED ANALOG OUTPUT (W/OPTION CARD)
- NEMA 4X/IP65 SEALED FRONT BEZEL
- PC SOFTWARE AVAILABLE FOR METER CONFIGURATION

GENERAL DESCRIPTION

The PAXDP Dual Process Input Meter offers many features and performance capabilities to suit a wide range of industrial applications. Available in two models, AC or DC power, the meter has the capability to accept two, 4 to 20 mA or 0 to 10 VDC input signals. Each input signal can be independently scaled and displayed. In addition, a math function can be performed on the two signals, C + A + B, C - A - B, C + A - B, AB / C, CA / B, or C (A / B - 1). Any of the three meter values can have Alarms, Comms, and/or a Retransmitted Analog Output capability by simply adding optional cards. The optional plug-in output cards allow the opportunity to configure the meter for current applications, while providing easy upgrades for future needs.

The update rate of the meter is user selectable. This will help in those applications where a quick response from the meter is of the utmost importance. The rate can be adjusted from eight selections with a minimum of 5 updates/ second to a maximum of 105 updates/second.

The meters employ a bright 0.56" (14.2 mm) red sunlight readable LED display. The intensity of display can be adjusted from dark room applications up to sunlight readable, making it ideal for viewing in bright light applications.

The meters provide a MAX and MIN reading memory with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events.

The signal totalizer (integrator) can be used to compute a time-input product. This can be used to provide a readout of totalized flow, calculate service intervals of motors or pumps, etc. The totalizer can also accumulate batch operations.

The meter has four setpoint outputs, implemented on Plug-in option cards. The Plug-in cards provide dual FORM-C relays (5A), quad FORM-A (3A), or either quad sinking or quad sourcing open collector logic outputs. The setpoint alarms can be configured to suit a variety of control and alarm requirements.

Communication and Bus Capabilities are also available as option cards. The standard output is in Modbus Protocol. Any of the following option cards, RS232, RS485, DeviceNet, or Profibus can be used with the meter. Readout

values and setpoint alarm values can be controlled through the bus. Additionally, the meters have a feature that allows a remote computer to directly control the outputs of the meter.

A linear DC output signal is available as an optional Plug-in card. The card provides either 20 mA or 10 V signals. The output can be scaled independent of the input range and can track either the input, totalizer, max/min readings, or math calculation value.

Once the meters have been initially configured, the parameter list may be locked out from further modification in its entirety or only the setpoint values can be made accessible.

The meters have been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, the meter provides a tough yet reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.

CAUTION: Risk of Danger. Read complete instructions prior to installation and operation of the unit.

CAUTION: Risk of electric shock

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

TABLE OF CONTENTS

Ordering Information	. 2
General Meter Specifications	. 3
Accessories	.4
Optional Plug-In Cards	.4
Installing the Meter	. 5
Setting the Jumpers	. 5
Installing Plug-In Cards	. 6

Wiring the Meter	. 6
Reviewing the Front Buttons and Display	. 8
Programming the Meter	. 9
Factory Service Operations	27
Troubleshooting Guide	28
Parameter Value Chart	28
Programming Overview	30

ORDERING INFORMATION

Meter Part Numbers

Option Card and Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
	DAYODO	Dual Setpoint Relay Output Card	PAXCDS10
		Quad Setpoint Relay Output Card	PAXCDS20
	PAACUS	Quad Setpoint Sinking Open Collector Output Card	PAXCDS30
		Quad Setpoint Sourcing Open Collector Output Card	PAXCDS40
		RS485 Serial Communications Card with Terminal Block	PAXCDC10
Optional		Extended RS485 Serial Communications Card with Dual RJ11 Connector	PAXCDC1C
Cards	PAXCDC	RS232 Serial Communications Card with Terminal Block	PAXCDC20
		Extended RS232 Serial Communications Card with 9 Pin D Connector	PAXCDC2C
		DeviceNet Communications Card	PAXCDC30
		Profibus-DP Communications Card	PAXCDC50
	PAXCDL	Analog Output Card	PAXCDL10
PAXUSB		PAX USB Programming Card (Not included in PAX product UL E179259 file)	PAXUSB00
	CBLUSB	USB Programming Cable Type A-Mini B	CBLUSB01
	ICM8	Ethernet Gateway	ICM80000
Accessories	PAXLBK	Units Label Kit Accessory	PAXLBK10
	SFCRD*	Crimson PC Configuration Software for Windows 98, ME, 2000 and XP	SFCRD200

Notes:

1. For Modous communications use RS485 Communications Output Card and configure communication (LYPE) parameter for Modbus.

2. Crimson[®] 2 software is available as a free download at http://www.redlion.net/

GENERAL METER SPECIFICATIONS

1. **DISPLAY**: 5 digit, 0.56" (14.2 mm) variable intensity red sunlight readable (-19999 to 99999)

2. POWER:

AC Versions:

AC Power: 85 to 250 VAC, 50/60 Hz, 21 VA

Isolation: 2300 Vrms for 1 min. to all inputs and outputs.

DC Versions: (Derate operating temperature to 40° C if three plug-in option cards or PAXCDC50 are installed.)

DC Power: 18 to 36 VDC, 13 W

AC Power: 24 VAC, ± 10%, 50/60 Hz, 16 VA

Isolation: 500 Vrms for 1 min. to all inputs and outputs (50 V working).

Must use a Class 2 or SELV rated power supply

3. ANNUNCIATORS:

- A Programmable Display
- B Programmable Display
- C Programmable Display
- SP1 Setpoint alarm 1 is active
- SP2 Setpoint alarm 2 is active
- SP3 Setpoint alarm 3 is active
- SP4 Setpoint alarm 4 is active
- Units Label Optional units label backlight
- 4. **KEYPAD**: 3 programmable function keys, 5 keys total
- 5. A/D CONVERTER: 16 bit resolution

6. UPDATE RATES:

A/D conversion rate: Adjustable 5.3 to 105 readings/sec.

Step response: (to within 99% of final readout value with digital filter disabled)

INPUT UPDATE RATE	MAX. TIME (msec)
5.3	770
7.5	560
16.7	260
19.8	220
20	220
30	150
105	60

Display update rate: adjustable 1 to 20 readings/sec. Setpoint output on/off delay time: 0 to 3275 sec. Analog output update rate: 0 to 10 sec

Max./Min. capture delay time: 0 to 3275 sec.

7. DISPLAY MESSAGES:

"OLOL" - Appears when measurement exceeds + signal range. "ULUL" - Appears when measurement exceeds - signal range "...." - Appears when display values exceed + display range. "-..." - Appears when display values exceed - display range.

8. SENSOR INPUTS:

INPUT (RANGE)	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	IMPEDANCE/ COMPLIANCE	MAX CONTINUOUS OVERLOAD	DISPLAY RESOLUTION
±20 mA (-26 to 26 mA)	0.03% of reading +2 μA	0.12% of reading +3 μA	24.6 ohm	90 mA	1 μΑ
±10 VDC (-13 to 13 VDC)	0.03% of reading +2 mV	0.12% of reading +3 mV	500 Kohm	50 V	1 mV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

9. EXCITATION POWER:

398

Transmitter Power: 18 VDC, ±20%, unregulated, 70 mA max. per input channel.

10. LOW FREQUENCY NOISE REJECTION:

Normal Mode: (digital filter off)

INPUT UPDATE RATE	50 Hz ±1 Hz	60 Hz ±1 Hz
5.3	>90 dB	>65 dB
7.5	>60 dB	>55 dB
16.7	>100 dB	>50 dB
19.8*	>60 dB	>95 dB
20	>55 dB	>100 dB
30	>20 dB	>20 dB
105	>20 dB	>13 dB

*Note: 19.8 Hz Input Rate provides best rate performance and simultaneous 50/60 Hz rejection.

Common Mode: >100 dB @ 50/60 ±1 Hz (19.8 or 20 Input Rate)

11. USER INPUTS: Three programmable user inputs

Max. Continuous Input: 30 VDC

Isolation To Sensor Input A Common: 500 Vrms for 1 min; Working Voltage: 50 V

Isolation To Sensor Input B Common: Not isolated.

INPUT STATE	SINKING INPUTS 22 K Ω pull-up to +5 V	SOURCING INPUTS 22 K Ω pull-down
Active	$V_{IN} < 0.9 VDC$	V _{IN} > 3.6 VDC
Inactive	V _{IN} > 3.6 VDC	V _{IN} < 0.9 VDC

Response Time: 20 msec. max.

Logic State: Jumper selectable for sink/source logic

12. TOTALIZER:

Function:

Time Base: second, minute, hour, or day

Batch: Can accumulate (gate) input display from a user input

Time Accuracy: 0.01% typical

Decimal Point: 0 to 0.0000

Scale Factor: 0.001 to 65.000

Low Signal Cut-out: -19,999 to 99,999

Total: 9 digits, display alternates between high order and low order readouts 13. CUSTOM LINEARIZATION:

- Data Point Pairs: Selectable from 2 to 16
- Display Range: -19,999 to 99,999

Decimal Point: 0 to 0.0000

 MEMORY: Nonvolatile memory retains all programmable parameters and display values.

15. CERTIFICATIONS AND COMPLIANCES:

CE Approved

EN 61326-1 Immunity to Industrial Locations

- Emission EN 55011 Class A
- IEC/EN 61010-1

UL Recognized Component: File #E179259

- UL Listed: File #E137808
- Type 4X Enclosure rating (Face only)
- IP65 Enclosure rating (Face only)

IP20 Enclosure rating (Rear of unit)

Refer to EMC Installation Guidelines section of the bulletin for additional information.

16. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range: 0 to 50°C (0 to 45°C with all three plug-in option cards installed)

Storage Temperature Range: -40 to 60°C

- Vibration to IEC 68-2-6: Operational 5-150 Hz, 2 g
- Shock to IEC 68-2-27: Operational 25 g (10 g relay)
- Operating and Storage Humidity: 0 to 85% max. RH non-condensing Altitude: Up to 2000 meters
- 17. **CONNECTIONS**: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire
 - Torque: 4.5 inch-lbs (0.51 N-m) max.
- CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.
- 19. WEIGHT: 10.4 oz. (295 g)

www.redlion.net

An: Ma

ACCESSORIES

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled in the programming.

PROGRAMMING SOFTWARE

The Crimson[®] 2 (SFCRM2) software is a Windows[®] based program for configuring and updating the firmware of the PAXDP meter from a PC. Using the software makes programming the PAXDP meter easier and allows the user to save the PAXDP database in a PC file for future use. The software is available as a free download from Red Lion's website.

The first time Crimson 2 software is run from the File menu, select "New" to display a dialog and select the PAXDP. The screen will display icons that

represent the various programming sections of the PAXDP. Double-click on an icon to configure the programming parameters pertaining to the selection. Tool Tip help is available for each of the program parameters. A PAX serial plug-in card or PAX USB programming card is required to program the meter using the software.

When communicating with Crimson 2 software, the PAXDP must be set in default configuration type of:

Communications Type: MODBUS RTU Baud Rate: 38400 Data Bit: 8 ParityBit: no Meter Unit Address: 247

OPTIONAL PLUG-IN OUTPUT CARDS

WARNING: Disconnect all power to the unit before installing Plug-in cards.

Adding Option Cards

The PAX and MPAX series meters can be fitted with up to three optional plugin cards. The details for each plug-in card can be reviewed in the specification section below. Only one card from each function type can be installed at one time. The function types include Setpoint Alarms (PAXCDS), Communications (PAXCDC), and Analog Output (PAXCDL). The plug-in cards can be installed initially or at a later date.

COMMUNICATION CARDS (PAXCDC)

A variety of communication protocols are available for the PAX and MPAX series. Only one of these cards can be installed at a time. *Note: For Modbus communications use RS485 Communications Output Card and configure communication* (EUPE) parameter for Modbus.

PAXCDC10 - RS485 Serial (Terminal)	PAXCDC30 - DeviceNet
PAXCDC1C - RS485 Serial (Connector)	PAXCDC50 - Profibus-DP
PAXCDC20 - RS232 Serial (Terminal)	PAXUSB00 - USB (Mini B)
PAXCDC2C - RS232 Serial (Connector)	

SERIAL COMMUNICATIONS CARD

Type: RS485 or RS232

- Communication Type: RLC Protocol (ASCII), Modbus RTU, and Modbus ASCII
- Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Baud: 300 to 38,400

Data: 7/8 bits

Parity: No, Odd or Even

Bus Address: Selectable 0 to 99 (RLC Protocol), or 1 to 247 (Modbus Protocol), Max. 32 meters per line (RS485)

Transmit Delay: Selectable for 0 to 0.250 sec (+2 msec min)

DEVICENETTM CARD

Compatibility: Group 2 Server Only, not UCMM capable

Baud Rates: 125 Kbaud, 250 Kbaud, and 500 Kbaud

Bus Interface: Phillips 82C250 or equivalent with MIS wiring protection per DeviceNet[™] Volume I Section 10.2.2.

Node Isolation: Bus powered, isolated node

Host Isolation: 500 Vrms for 1 minute (50 V working) between DeviceNetTM and meter input common.

PROFIBUS-DP CARD

Fieldbus Type: Profibus-DP as per EN 50170, implemented with Siemens SPC3 ASIC

Conformance: PNO Certified Profibus-DP Slave Device

Baud Rates: Automatic baud rate detection in the range 9.6 Kbaud to 12 Mbaud **Station Address**: 0 to 125, set by rotary switches.

Connection: 9-pin Female D-Sub connector

Network Isolation: 500 Vrms for 1 minute (50 V working) between Profibus network and sensor and user input commons. Not isolated from all other commons.

PAXUSB PROGRAMMING CARD

Type: USB Virtual Comms Port

Connection: Type mini B

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Baud Rate: 300 to 19.2k

Unit Address: 0 to 99; only 1 meter can be configured at a time

SETPOINT CARDS (PAXCDS)

The PAX and MPAX series has 4 available setpoint alarm output plug-in cards. Only one of these cards can be installed at a time. (Logic state of the outputs can be reversed in the programming.) These plug-in cards include:

PAXCDS10 - Dual Relay, FORM-C, Normally open & closed PAXCDS20 - Quad Relay, FORM-A, Normally open only PAXCDS30 - Isolated quad sinking NPN open collector PAXCDS40 - Isolated quad sourcing PNP open collector

DUAL RELAY CARD

Type: Two FORM-C relays Isolation To Sensor & User Input Commons: 2000 Vrms for 1 min. Working Voltage: 240 Vrms

Contact Rating:

One Relay Energized: 5 amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @120 VAC, inductive load

Total current with both relays energized not to exceed 5 amps **Life Expectancy**: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD RELAY CARD

Type: Four FORM-A relays

Isolation To Sensor & User Input Commons: 2300 Vrms for 1 min.

Working Voltage: 250 Vrms

Contact Rating:

One Relay Energized: 3 amps @ 240 VAC or 30 VDC (resistive load), 1/10 HP @120 VAC, inductive load

Total current with all four relays energized not to exceed 4 amps

Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD SINKING OPEN COLLECTOR CARD

Type: Four isolated sinking NPN transistors.

 $\label{eq:solution} \begin{array}{l} \mbox{Isolation To Sensor & User Input Commons: } 500 \mbox{ Vrms for 1 min.} \\ \mbox{Working Voltage: } 50 \mbox{ V.} & \mbox{Not Isolated from all other commons.} \\ \mbox{Rating: } 100 \mbox{ mA max } @ \mbox{ V}_{SAT} = 0.7 \mbox{ V max. } \mbox{ V}_{MAX} = 30 \mbox{ V} \end{array}$

QUAD SOURCING OPEN COLLECTOR CARD

Type: Four isolated sourcing PNP transistors.
Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.
Rating: Internal supply: 24 VDC ± 10%, 30 mA max. total External supply: 30 VDC max., 100 mA max. each output

ALL FOUR SETPOINT CARDS

Response Time: See update rates step response specification; add 6 msec (typical)for relay card

399

1-717-767-6511

Ε

LINEAR DC OUTPUT (PAXCDL)

Either a 0(4)-20 mA or 0-10 V retransmitted linear DC output is available from the analog output plug-in card. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing the scaling point positions.

PAXCDL10 - Retransmitted Analog Output Card

ANALOG OUTPUT CARD

Types: 0 to 20 mA, 4 to 20 mA or 0 to 10 VDC

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons. **Accuracy**: 0.17% of FS (18 to 28°C); 0.4% of FS (0 to 50°C)

Resolution: 1/3500 **Compliance:** 10 VDC: 10 K Ω load min., 20 mA: 500 Ω load max. **Powered:** Self-powered (Active)

Step Response: See update rates step response specification **Update time**: See ADC Conversion Rate and Update Time parameter

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

2.0 SETTING THE JUMPERS

The meter has three jumpers that must be checked and/or changed prior to applying power. The following Jumper Selection Figures show an enlargement of the jumper area.

To access the jumpers, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Input Jumpers

Ε

These jumpers are used to select the proper input types, Voltage (V) or Current (I). The input type selected in programming must match the jumper setting. See the Jumper Selection Figures for more details.

PAXDP Jumper Selection

 JUMPER SELECTIONS The indicates factory setting.

 INPUT A
 INPUT B

 VOLT/CURRENT
 VOLT/CURRENT
 USER INPUT

 - CURRENT (I)
 - CURRENT (I)
 - SINK

 - VOLTAGE (V)
 - SOURCE (SRC)

Note: In the figures above, the text shown in parenthesis is printed on the circuit board to help with proper jumper positioning.

User Input Logic Jumper

This jumper selects the logic state of all the user inputs. If the user inputs are not used, it is not necessary to check or move this jumper.

400

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

3.0 INSTALLING PLUG-IN CARDS

The plug-in cards are separately purchased optional cards that perform specific functions. These cards plug into the main circuit board of the meter. The plug-in cards have many unique functions when used with the PAX.

CAUTION: The plug-in card and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- With use of the lower input ranges or signal sources with high source impedance, the use of shielded cable may be necessary. This helps to guard against stray AC pick-up. Attach the shield to the input common of the meter.
- 3. To minimize potential noise problems, power the meter from the same power branch, or at least the same phase voltage as that of the signal source.
- Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and

To Install:

- 1. With the meter removed from the case, locate the plug-in card connector for the card type to be installed. The types are keyed by position with different main circuit board connector locations. When installing the card, hold the meter by the rear terminals and not by the front display board.
 - If installing the Quad sourcing Plug-in Card (PAXCDS40), set the jumper for internal or external supply operation before continuing.

- Install the plug-in card by aligning the card terminals with the slot bay in the rear cover. Be sure the connector is fully engaged and the tab on the plug-in card rests in the alignment slot on the display board.
- 3. Slide the meter base back into the case. Be sure the rear cover latches fully into the case.
- 4. Apply the plug-in card label to the bottom side of the meter in the designated area. Do Not Cover the vents on the top surface of the meter. The surface of the case must be clean for the label to adhere properly.

heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.

- Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 6. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000) TDK # ZCAT3035-1330A Steward #28B2029-0A0

Line Filters for input power cables: Schaffner # FN2010-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VR3

Note: Reference manufacturer's instructions when installing a line filter.

- 7. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC#SNUB0000.

1-717-767-6511

4.1 POWER WIRING

4.2 INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper must be verified for proper position.

INPUT A SIGNAL WIRING

INPUT B SIGNAL WIRING

CAUTION: Sensor Input B common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

4.3 USER INPUT WIRING

Before connecting the wires, the User Input Logic Jumper should be verified for proper position. If not using User Inputs, then skip this section. Only the appropriate User Input terminal has to be wired.

USER

9

USER1

10

USER2

Sinking Logic

Terminal 9: Terminal 10-11:	Connect external switching device between appropriate User Input terminal and User Comm
In this logic, the u are internally pull K resistance. The	laser inputs of the meter led up to +5 V with 22 input is active when it
is pulled low (<0	.9 V). O

Sourcing Logic

Terminal 9: -VDC thru external switching device

Terminal 10-11: + VDC thru external switching device

In this logic, the user inputs of the meter are internally pulled down to 0 V with 22 K resistance. The input is active when a voltage greater than 3.6 VDC is applied.

4.4 SETPOINT (ALARMS) WIRING4.5 SERIAL COMMUNICATION WIRING

4.6 ANALOG OUTPUT WIRING

See appropriate plug-in card bulletin for details.

5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

KEY DISPLAY MODE OPERATION

- DSP Index display through main displays as programmed in 3-LOC
- PAR Access parameter list
- **F1▲** Function key 1; hold for 3 seconds for Second Function 1**
- F2▼ Function key 2; hold for 3 seconds for Second Function 2**
- **RST** Reset (Function key)**
- * Display Readout Legends may be locked out in Factory Settings.
- ** Factory setting for the F1, F2, and RST keys is NO mode.

PROGRAMMING MODE OPERATION

Quit programming and return to display mode Store selected parameter and index to next parameter Increment selected parameter value Decrement selected parameter value Hold with F1▲, F2▼ to scroll value by x1000

6.0 PROGRAMMING THE METER

DISPLAY MODE

The meter normally operates in the Display Mode. In this mode, the meter displays can be viewed consecutively by pressing the **DSP** key. The annunciators to the left of the display indicate which display is currently shown; A, B, or C. Each of these displays are programmable and can be locked from view through programming. (See Module 3.)

PROGRAMMING MODE

Two programming modes are available.

- **Full Programming Mode** permits all parameters to be viewed and modified. Upon entering this mode, the front panel keys change to Programming Mode operations. This mode should not be entered while a process is running, since the meter functions and User Input response may not operate properly while in Full Programming Mode.
- Quick Programming Mode permits only certain parameters to be viewed and/ or modified. When viewing parameters (SP1, etc), the front panel keys change to Programming Mode operations, and all meter functions continue to operate properly. Quick Programming Mode is configured in Module 3. The Display Intensity Level "d-tEu" parameter is available in the Quick Programming Mode only when the security code is non-zero. For a description, see Module 9—Factory Service Operations. Throughout this document, Programming Mode (without Quick in front) always refers to "Full" Programming Mode.

The Programming Menu is organized into ten modules (see above). These modules group together parameters that are related in function. It is recommended to begin programming with Module 1 and proceed through each module in sequence. Note that Modules 6 through 8 are only accessible when the appropriate plug-in option card is installed. If lost or confused while programming, press the **DSP** key to exit programming mode and start over. When programming is complete, it is recommended to record the meter settings on the Parameter Value Chart and lock-out parameter programming with a User Input or lock-out code. (See Modules 2 and 3 for lock-out details.)

FACTORY SETTINGS

Factory Settings may be completely restored in Module 9. This is a good starting point if encountering programming problems. Throughout the module description sections which follow, the factory setting for each parameter is shown below the parameter display. In addition, all factory settings are listed on the Parameter Value Chart following the programming section.

ALTERNATING SELECTION DISPLAY

In the module description sections which follow, the dual display with arrows appears for each programming parameter. This is used to illustrate the display alternating between the parameter (top display) and the parameter's Factory Setting (bottom display). In most cases, selections or value ranges for the parameter will be listed on the right.

Indicates	Indicates Program Mode Alternating Display			
Parameter	r RN9E 🕤			
	A nort	Selection/Value		

STEP BY STEP PROGRAMMING INSTRUCTIONS:

PROGRAMMING MODE ENTRY (PAR KEY)

The Programming Mode is entered by pressing the **PAR** key. If this mode is not accessible, then meter programming is locked by either a security code or a hardware lock. (See Modules 2 and 3 for programming lock-out details.)

MODULE ENTRY (ARROW & PAR KEYS)

Upon entering the Programming Mode, the display alternates between P_{ro} and the present module (initially $\pi 0$). The arrow keys (F1 \blacktriangle and F2 \bigtriangledown) are used to select the desired module, which is then entered by pressing the **PAR** key.

PARAMETER (MODULE) MENU (PAR KEY)

Each module has a separate parameter menu. These menus are shown at the start of each module description section which follows. The **PAR** key is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to *Pra nt*. From this point, programming may continue by selecting and entering additional modules. (See **MODULE ENTRY** above.)

PARAMETER SELECTION ENTRY (ARROW & PAR KEYS)

For each parameter, the display alternates between the parameter and the present selection or value for that parameter. For parameters which have a list of selections, the arrow keys (F1 \blacktriangle and F2 \checkmark) are used to sequence through the list until the desired selection is displayed. Pressing the **PAR** key stores and activates the displayed selection, and also advances the meter to the next parameter.

NUMERICAL VALUE ENTRY (ARROW, RST & PAR KEYS)

For parameters which require a numerical value entry, the arrow keys can be used to increment or decrement the display to the desired value. When an arrow key is pressed and held, the display automatically scrolls up or scrolls down. The longer the key is held, the faster the display scrolls.

The **RST** key can be used in combination with the arrow keys to enter large numerical values. When the **RST** key is pressed along with an arrow key, the display scrolls by 1000's. Pressing the **PAR** key stores and activates the displayed value, and also advances the meter to the next parameter.

PROGRAMMING MODE EXIT (DSP KEY or PAR KEY at Pro III)

The Programming Mode is exited by pressing the **DSP** key (from anywhere in the Programming Mode) or the **PAR** key (with **Pro nu** displayed). This will commit any stored parameter changes to memory and return the meter to the Display Mode. If a parameter was just changed, the **PAR** key should be pressed to store the change before pressing the **DSP** key. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

www.redlion.net
6.1 MODULE 1 - SIGNAL INPUT PARAMETERS

INPUT RANGE

Select the input range that corresponds to the external signal. Before applying signal configure input jumper to match setting desired.

ADC CONVERSION RATE

Select the ADC conversion rate (conversions per second). The selection does not affect the display update rate, however it does affect setpoint and analog output response time. The default factory setting of 19.8 is recommended for most applications. Selecting a fast update rate may cause the display to appear very unstable.

DISPLAY DECIMAL POINT

Select the decimal point location for the Input display. (The **TOT** display decimal point is a separate parameter.) This selection also affects *round*, *dSP* t and *dSP2* parameters and setpoint values.

DISPLAY ROUNDING* round 1 2 5 10 V 0001 20 50 100

Rounding selections other than one, cause the Input Display to 'round' to the nearest rounding increment selected (ie. rounding of '5' causes 121 to round to 120 and 124 to round to 125). Rounding starts at the least significant digit of the Input Display. Remaining parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection.

FILTER SETTING

0.0 to 25.0 seconds

The input filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of '0' disables filtering.

FILTER BAND*

The digital filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the digital filter permanently engaged.

		SCALING POINTS
PE 5	ৰ্শ্ম	2 to 16
\$	2	

Linear - Scaling Points (2)

For linear processes, only 2 scaling points are necessary. It is recommended that the 2 scaling points be at opposite ends of the input signal being applied. The points do not have to be the signal limits. Display scaling will be linear between and continue past the entered points up to the limits of the Input Signal Jumper position. Each scaling point has a coordinate-pair of Input Value ($t\pi P$) and an associated desired Display Value (dSP).

Square Root Extraction Input Range - Scaling Points (2)

The PAXDP can apply the square root function directly to the sensor signal by selecting the Square Root Extraction Input Range (l - 59r or l - 59r). When configured for Square Root Extraction, piecewise multipoint linearization is not required and only the first 2 scaling points are used. For proper operation the Display 1 (d5P) value must be zero.

Nonlinear - Scaling Points (Greater than 2)

For non-linear processes, up to 16 scaling points may be used to provide a piece-wise linear approximation. (The greater the number of scaling points used, the greater the conformity accuracy.) The Input Display will be linear between scaling points that are sequential in program order. Each scaling point has a coordinate-pair of Input Value ($l\pi P$) and an associated desired Display Value (d5P). Data from tables or equations, or empirical data could be used to derive the required number of segments and data values for the coordinate pairs.

In the Crimson 2 (SFCRM2) software, several linearization equations are available. See the Accessories section for more information.

SCALING STYLE

۲٤۶ key-in data ۱۹۹۲ אפע-in data

If Input Values and corresponding Display Values are known, the Key-in (\mathcal{PEY}) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (\mathcal{RPLY}) scaling style must be used.

* The decimal point position is dependent on the selection made in the "Display Decimal Point" parameter.

1-717-767-6511 Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

INPUT VALUE FOR SCALING POINT 1

- 199999 to 999999

For Key-in (PEY), enter the known first Input Value by using the arrow keys. (The Input Range selection sets up the decimal location for the Input Value.) For Apply (RPLY), apply the input signal to the meter, adjust the signal source externally until the desired Input Value appears. In either method, press the **PAR** key to enter the value being displayed. In the RPLY style, the **RST** key can be pressed to advance the display past the INP I value or other input value without storing it. This is useful for application scaling of the second scaling point (i.e. when the tank is full), or some other point in multipoint applications.

DISPLAY VALUE FOR SCALING POINT 1*

- 19999 to 99999

Enter the first coordinating Display Value by using the arrow keys. This is the same for *PEY* and *RPLY* scaling styles. The decimal point follows the *dELPL* selection. For Square Root Extraction Input Range, the Display 1 value must be zero.

INPUT VALUE FOR SCALING POINT 2

d S P

0.000

- 19999 to 99999

For Key-in (PEY), enter the known second Input Value by using the arrow keys. For Apply (RPLY), adjust the signal source externally until the next desired Input Value appears. (Follow the same procedure if using more than 2 scaling points.)

* The decimal point position is dependent on the selection made in the "Display Decimal Point" parameter.

DISPLAY VALUE FOR SCALING POINT 2*

- 19999 to 99999

Enter the second coordinating Display Value by using the arrow keys. This is the same for $\forall E \forall$ and $RPL \forall$ scaling styles. (Follow the same procedure if using more than 2 scaling points.)

General Notes on Scaling

- 1. Input Values for scaling points should be confined to the limits of the Input Signal, ie. 4-20 mA or 0-10 VDC.
- 2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA can not equal 0 and 10.)
 - This is referred to as readout jumps (vertical scaled segments).
- 3. The same Display Value can correspond to more than one Input Value. (Example: 0 mA and 20 mA can equal 10.)
 - This is referred to as readout dead zones (horizontal scaled segments).
- 4. The maximum scaled Display Value spread between range maximum and minimum is limited to 65,535. For example using +20 mA range the maximum +20 mA can be scaled to is 32,767 with 0 mA being 0 and Display Rounding of 1. (Decimal points are ignored.) The other half of 65,535 is for the lower half of the range 0 to -20 mA even if it is not used. With Display Rounding of 2, +20 mA can be scaled for 65,535 (32,767 x 2) but with even Input Display values shown.
- 5. For input levels beyond the first programmed Input Value, the meter extends the Display Value by calculating the slope from the first two coordinate pairs ($1\Pi P \ i \ dSP \ i \ dSP \ dSP$
- 6. For input levels beyond the last programmed Input Value, the meter extends the Display Value by calculating the slope from the last two sequential coordinate pairs. If three coordinate pair scaling points were entered, then the Display Value calculation would be between INP2 / d5P2 & INP3 / d5P3. The calculations stop at the limits of the Signal Input.

6.2 MODULE 2 - User Input and Front Panel Function Key Parameters (2-FRE)

The two user inputs are individually programmable to perform specific meter control functions. While in the Display Mode or Program Mode, the function is executed the instant the user input transitions to the active state.

The front panel function keys are also individually programmable to perform specific meter control functions. While in the Display Mode or when viewing meter values in Quick Programming mode, the primary function is executed the instant the key is pressed. Holding the function key for three seconds executes a secondary function. It is possible to program a secondary function without a primary function.

In most cases, if more than one user input and/or function key is programmed for the same function, the maintained (level trigger) actions will be performed while at least one of those user inputs or function keys are activated. The momentary (edge trigger) actions will be performed every time any of those user inputs or function keys transition to the active state.

Note: In the following explanations, not all selections are available for both user inputs and front panel function keys. Alternating displays are shown with each selection. Those selections showing both displays are available for both. If a display is not shown, it is not available for that selection. USr - 1 will represent both user inputs. F 1 will represent all five function keys.

NO FUNCTION

F	1	\$
\swarrow		ΠΟ

No function is performed if activated. This is the factory setting for all user inputs and function keys. No function can be selected without affecting basic start-up.

PROGRAMMING MODE LOCK-OUT

Programming Mode is locked-out, as long as activated (maintained action). A security code can be configured to allow programming access during lock-out.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

INPUT A ZERO (TARE) DISPLAY

The Zero (Tare) Display provides a way to zero the Input A value at various input levels, causing future Display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), *rE5EE* flashes and the Input A value is set to zero. At the same time, the Input A value (that was on the display before the Zero Display) is subtracted from the Input A Display Offset Value and is automatically stored as the new Display Offset Value (*BF5-R*). If another Zero (tare) Display is performed, the display will again change to zero and the Input A reading will shift accordingly.

INPUT B ZERO (TARE) DISPLAY

The Zero (Tare) Display provides a way to zero the Input B value at various input levels, causing future Display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), *rE5EE* flashes and the Input B value is set to zero. At the same time, the Input B value (that was on the display before the Zero Display) is subtracted from the Input B Display Offset Value and is automatically stored as the new Display Offset Value (*IF5-b*). If another Zero (tare) Display is performed, the display will again change to zero and the Input B reading will shift accordingly.

INPUT A RELATIVE/ABSOLUTE DISPLAY

This function will switch the Input A Display between Relative and Absolute. The Relative is a net value that includes the Display Offset Value. The Input A Display will normally show the Relative unless switched by this function. The Absolute is a gross value (based on Module 1 **DSP** and **INP** entries) without the Display Offset Value. The Absolute display is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input A display switches back to Relative display. **Rb5-R** (absolute) or **rEL-R** (relative) is momentarily displayed at transition to indicate which display is active.

ן אם-קידך אם-קיד

This function will switch the Input B Display between Relative and Absolute. The Relative is a net value that includes the Display Offset Value. The Input B Display will normally show the Relative unless switched by this function. The Absolute is a gross value (based on Module 1 **DSP** and **INP** entries) without the Display Offset Value. The Absolute display is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input B display switches back to Relative display. **Rb5-R** (absolute) or rEL-R (relative) is momentarily displayed at transition to indicate which display is active.

HOLD DISPLAY

The shown display is held but all other meter functions continue as long as activated (maintained action).

The meter disables processing the input, holds all display contents, and locks the state of all outputs as long as activated (maintained action). The serial port continues data transfer.

SYNCHRONIZE METER READING

The meter suspends all functions as long as activated (maintained action). When the user input is released, the meter synchronizes the restart of the A/D's with other processes or timing events.

Input assignment for the totalizer is programmed in Module 5, Totalizer (Integrator) Parameters. Only the assigned input or calculation will be active for the following Totalizer User Functions.

STORE BATCH READING IN TOTALIZER

5	r - 1 🕤	F	<	ት
₹¢	6 <u>8</u> 5	於 [<u> </u>	Ŀ

The assigned value is one time added (batched) to the Totalizer at transition to activate (momentary action). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. When this function is selected, the normal operation of the Totalizer is overridden.

When activated (momentary action), *rESEE* flashes and the Totalizer resets to zero. The Totalizer then continues to operate as it is configured. This selection functions independent of the selected display.

RESET AND ENABLE TOTALIZER

When activated (momentary action), **rESEE** flashes and the Totalizer resets to zero. The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

ENABLE TOTALIZER

The Totalizer continues to operate as long as activated (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

RESET MAXIMUM

When activated (momentary action), *r***E5E**^{*t*} flashes and the Maximum resets to the present assigned value. The Maximum function then continues from that value. This selection functions independent of the selected display.

RESET MINIMUM

When activated (momentary action), *rESEk* flashes and the Minimum reading is set to the present assigned value. The Minimum function then continues from that value. This selection functions independent of the selected display.

RESET MAXIMUM AND MINIMUM

F | \$

প্ম

0

When activated (momentary action), *rESEE* flashes and the Maximum and Minimum readings are set to the present assigned values. The Maximum and Minimum function then continues from that value. This selection functions independent of the selected display.

Note: Following display functions are only available on User Input.

ADVANCE DISPLAY

When activated (momentary action), the display advances to the next display that is not locked out from the Display Mode.

SELECT DISPLAY A

When activated (momentary action), the display advances to Display A, if enabled.

U5r - 1 € ₩ d5P - b

When activated (momentary action), the display advances to Display B, if enabled.

SELECT DISPLAY C

U5r - 1 ↔ � d5P - [

When activated (momentary action), the display advances to Display C, if enabled.

SELECT DISPLAY

When activated (momentary action), the display advances to the Display $_$ (no annunciator), if enabled.

CHANGE DISPLAY INTENSITY LEVEL

U5r - 1 m b d - L E U

When activated (momentary action), the display intensity changes to the next intensity level (of 4). The four levels correspond to Display Intensity Level (d-LEU) settings of 0, 3, 8, and 15.

SETPOINT SELECTIONS

The following selections are functional only with the Setpoint plug-in card installed. Refer to Module 6 - Setpoint (Alarm) Parameters for an explanation of their operation.

SELECT SETPOINT LIST

Two lists of values are available for 5P-1, 5P-2, 5P-3, 5P-4. The two lists are named L5E-R and L5E-B. If a user input is used to select the list then L5E-R is selected when the user input is not active and and L5E-B is selected when the user input is active (maintained action). If a front panel key is used to select the list then the list will toggle for each key press (momentary action). The display will only indicate which list is active when the list is changed.

To program the values for *L5L-R* and *L5E-b*, first complete the programming of all the parameters. Exit programming and switch to the other list. Re-enter programming and enter the values for *SP-t*, *SP-2*, *SP-3*, *SP-4*. If any other parameters are changed then the other list values must be reprogrammed.

PRINT REQUEST

The meter issues a block print through the serial port when activated, and the serial type is set to rLL. The data transmitted during a print request and the serial type is programmed in Module 7. If the user input is still active after the transmission is complete (about 100 msec), an additional transmission occurs. As long as the user input is held active, continuous transmissions occur.

SELECT DISPLAY B

Module 3 is the programming for the Display, Display assignments, Display lock-out and "Full" and "Quick" Program lock-out.

When in the main Display Mode, the available displays (A,B,C,_) can be read consecutively by repeatedly pressing the **DSP** key. An annunciator indicates the display being shown (_ = No annunciator). A meter display value can be programmed to one of the displays, to the quick programming mode or be locked from being visible. It is recommended that the meter display value be set to **LOC** when it is not being used in the application.

"Full" Programming Mode permits all parameters to be viewed and modified. This Programming Mode can be locked with a security code and/or user input. When locked and the PAR key is pressed, the meter enters a Quick Programming Mode. In this mode, the setpoint values can still be read and/or changed per the selections below. The display Intensity Level $(d-l \mathcal{E} \mathcal{U})$ parameter also appears whenever Quick Programming Mode is enabled and the security code greater than zero.

There are six meter values that can be individually programmed for one of the main displays (A,B,C or _), or programmed to be viewable in Quick Programming mode (rEd), or programmed to be locked out from display (LOC) (see the following table). If two or more values are assigned to the same display the last value assigned will be the one that is displayed.

LOC	Not visible in Display Mode or Quick Programming Mode				
rEd	Ed Visible in Quick Programming Mode only				
d5P	Assign to Display _ (No annunciator)				
d5P-R	Assign to Display A				
d5P-b	Assign to Display B				
d5P-[Assign to Display C				

PROGRAMMING MODE ACCESS

SECURITY CODE	USER INPUT CONFIGURED	USER INPUT STATE	WHEN PAR KEY IS PRESSED	"FULL" PROGRAMMING MODE ACCESS	
0	not PLOC		"Full" Programming	Immediate access.	
>0	not PLOC		Quick Programming w/Display Intensity	After Quick Programming with correct code # at []]dE prompt	
>0	PLOC	Active	Quick Programming w/Display Intensity	After Quick Programming with correct code # at []dE prompt.	
>0	PLOC	Not Active	"Full" Programming	Immediate access.	
0	PLOC	Active	Quick Programming	No access	
0	PLOC	Not Active	"Full" Programming	Immediate access.	

Throughout this document, Programming Mode (without Quick in front) always refers to "Full" Programming (all meter parameters are accessible).

SP-1 SP-2 SP-3 SP-4 SETPOINT ACCESS*

5 <i>P</i>	'- !	58	2	5 <i>P</i>	'-3	5 <i>P</i>	'- ५ कि	2
Ø	L 0 C	\$	LOC	\$	LOC	\swarrow		

The setpoint displays can be programmed for LOL, *rEd* or *EflE* (see the following table). Accessible only with the Setpoint plug-in card installed.

SELECTION	DESCRIPTION
LOC	Not visible in Quick Programming Mode Only
r E d	Visible in Quick Programming Mode Only
ЕЛЕ	Visible and changeable in Quick Programming Mode Only

PROGRAM MODE SECURITY CODE*

0 to 250

By entering any non-zero value, the prompt **LUdE U** will appear when trying to access the Program Mode. Access will only be allowed after entering a matching security code or universal code of **ZZZ**. With this lock-out, a user input would not have to be configured for Program Lock-out. However, this lock-out is overridden by an inactive user input configured for Program Lock-out.

* Factory Setting can be used without affecting basic start-up.

INPUT A OFFSET VALUE*

0F5-8 🕤 0.000

- 19999 to 19999

Unless a Zero Display was performed or an offset from Module 1 scaling is desired for Input A, this parameter can be skipped. The Display Offset Value is the difference between the Absolute (gross) Display value and the Relative (net) Display value for the same input level. The meter will automatically update this Display Offset Value after each Zero Display. The Display Offset Value can be directly keyed-in to intentionally add or remove display offset. See Relative / Absolute Display and Zero Display explanations in Module 2.

INPUT B OFFSET VALUE*

- 19999 to 19999

Unless a Zero Display was performed or an offset from Module 1 scaling is desired for Input B, this parameter can be skipped. The Display Offset Value is the difference between the Absolute (gross) Display value and the Relative (net) Display value for the same input level. The meter will automatically update this Display Offset Value after each Zero Display. The Display Offset Value can be directly keyed-in to intentionally add or remove display offset. See Relative / Absolute Display and Zero Display explanations in Module 2.

MAX CAPTURE ASSIGNMENT

R-rEL R-R65 6-rEL 6-R65 [RL[

MAX CAPTURE DELAY TIME

0.0 to 3275.0 sec.

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN CAPTURE ASSIGNMENT

R-rEL R-R65 6-rEL 6-R65 [RL[

Select the desired parameter that will be assigned to the Min Capture.

MIN CAPTURE DELAY TIME

0.0 to 3275.0 sec.

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

This parameter determines the rate of display update.

UNITS LABEL BACKLIGHT

The Units Label Kit Accessory contains a sheet of custom unit overlays which can be installed in to the meter's bezel display assembly. The backlight for these custom units is activated by this parameter.

This parameter determines the math calculation that will be performed on Input A and Input B and shown on the calculation display. The above formulas represent the available calculations; \mathbf{R} = Input A relative value, \mathbf{b} = Input B relative value, and $\mathbf{c} = \text{Calculation Constant Value } (con5t)$. For the average between A and B inputs, scale the display (Input A & Input B d5P x) values in half and then use C I A I b.

Note: $\mathbf{I} = add$, $\mathbf{-} = subtract$, $\mathbf{r} = division$, $\mathbf{c} (\mathbf{Rr} \mathbf{b} \cdot \mathbf{I})$ is displayed in the PAX as Rrb-1 and the function performs with A divided b then 1 is subtracted and the result is multiply by c.

CALCULATION DECIMAL POINT

Γ	dP	প্ম					
\mathcal{C}	0.0	88	Ш	п'п	Ц,Ц Ц	0,000	0,0000

This parameter determines the decimal point location for the Calculation Display. For the **[1R1b**, **[-R-b**, and **[1R-b** calculation functions, Input A "Display Decimal Point", Input B "Display Decimal Point" and "Calculation Decimal Point" must all be in the same position.

* The decimal point position is dependent on the selection made in the "Display Decimal Point" parameter.

410

www.redlion.net

CALCULATION CONSTANT VALUE

con5t m % (000

- 9999 to 99999

The constant value is used in the Calculation Function formulas to provide offsetting or scaling capabilities. For the L + R + b, L - R - b, and L + R - b calculation functions, the Constant decimal point matches that Calculation Decimal point position. For these functions, the "Constant Value" must be lowered to a value of 0 for no offset.

For the $\mathbf{Rb'c}$, $\mathbf{cR'b}$, and $\mathbf{c(R'b-i)}$ calculation functions, there is no "Constant Value" decimal point shown. However, when Input A "Display Decimal Point" and "Calculation Decimal Point" are in the same position, then the "Constant Value" decimal point will be assumed to be at the same location as the "Calculation Decimal Point". For the Calculation Display to have the same resolution as Inputs A & B, the "Constant Value" must be a value of 1 with trailing 0's for each assumed decimal point location. Example: With Input A, Input B and the Calculation decimal point entered as 0.00, then the "Constant Value" would be entered as 100 for no gain.

Rounding selections other than one, cause the Calculation Display to 'round' to the nearest rounding increment selected (ie. rounding of '0.005' causes 0.121 to round to 0.120 and 0.124 to round to 125). Rounding starts at the least significant digit of the Calculation Display. Remaining parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection. The displayed decimal point reflects that programmed in **L** dP.

0.0 to **25.0**

The calculation filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Calculation Display reading. A value of '0' disables filtering.

CALCULATION FILTER BAND*

1 to **251** display units

The digital filter will adapt to variations in the calculation filter. When the variation exceeds the calculation filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the digital filter permanently engaged.

* The decimal point position is dependent on the selection made in the "Display Decimal Point" parameter.

The totalizer accumulates (integrates) the relative Input value using one of two modes. The first is using a time base. This can be used to provide an indication of total flow, usage or consumption over time. The second is through a user input or function key programmed for Batch (one time add on demand). This can be used for weighing applications where accumulation is based on a completed event. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

TOTALIZER ASSIGNMENT

This parameter determines which value is to be totalized.

For most applications, this should match the decimal point position of the meter value selected in the totalizer assignment. If a different location is desired, refer to Totalizer Scale Factor.

TOTALIZER TIME BASE

5EL - seconds (÷ 1) hour - hours (÷ 3600) רק (ה - minutes (÷ 60) מאש - days (÷ 86400)

This is the time base used in Totalizer accumulations. If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER SCALE FACTOR*

000 / to 65000

For most applications, the Totalizer reflects the same decimal point location and engineering units as the assigned Input Display. In these cases, the Totalizer Scale Factor is 1.000. The Totalizer Scale Factor can be used to scale the Totalizer to a different value than the Input Display. Common possibilities are:

1. Changing decimal point location (example tenths to whole)

2. Average over a controlled time frame.

Details on calculating the scale factor are shown later.

If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER LOW CUT VALUE*

Locut 🖄 - 19999

- 19999 to 99999

A low cut value disables Totalizer when the Input Display value falls below the value programmed.

* The decimal point position is dependent on the selection made in the "Totalizer Decimal Point" parameter.

TOTALIZER POWER UP RESET

The Totalizer can be reset to zero on each meter power-up by setting this parameter to reset.

TOTALIZER HIGH ORDER DISPLAY

When the total exceeds 5 digits, the front panel annunciator flashes (if assigned to A, B, or C display). In this case, the meter continues to totalize up to a 9 digit value. The high order 4 digits and the low order 5 digits of the total are displayed alternately. The letter "h" denotes the high order display.

TOTALIZER BATCHING

The Totalizer Time Base and scale factor are overridden when a user input or function key is programmed for store batch (**b**R**b**). In this mode, when the user input or function key is activated, the Input Display reading is one time added to the Totalizer (batch). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. This is useful in weighing operations, when the value to be added is not based on time but after a filling event.

TOTALIZER USING TIME BASE

Totalizer accumulates as defined by:

Input Display x Totalizer Scale Factor Totalizer Time Base

Where:

Input Display - the present input reading Totalizer Scale Factor - 0.001 to 65.000 Totalizer Time Base - (the division factor of **LbR5E**)

Example: The input reading is at a constant rate of 10.0 gallons per minute. The Totalizer is used to determine how many gallons in tenths has flowed. Because the Input Display and Totalizer are both in tenths of gallons, the Totalizer Scale Factor is 1. With gallons per minute, the Totalizer Time Base is minutes (60). By placing these values in the equation, the Totalizer will accumulate every second as follows:

 $10.0 \times 1.000 = 0.1667$ gallons accumulate each second 60

This results in:

10.0 gallons accumulate each minute 600.0 gallons accumulate each hour

TOTALIZER SCALE FACTOR CALCULATION EXAMPLES

1. When changing the Totalizer Decimal Point (**dECPE**) location from the Input Display Decimal Point (*dECPE*), the required Totalizer Scale Factor is multiplied by a power of ten. Input (dEEPE) = 0.00

Example: Input (dECPE) = 0.0

1 (,		1 (· ·
Totalizer dEEPE	Scale Factor		Totalizer dECPE	Scale Factor
0.00	10	[0.000	10
0.0	1	[0.00	1
0	.1	[0.0	.1
x10	.01	[0	.01
x100	.001	[x10	.001

⁽x = Totalizer display is round by tens or hundreds)

2. To obtain an average reading within a controlled time frame, the selected Totalizer Time Base is divided by the given time period expressed in the same timing units.

Example: Average flow rate per hour in a 4 hour period, the scale factor would be 0.250. To achieve a controlled time frame, connect an external timer to a user input programmed for *rtat2*. The timer will control the start (reset) and the stopping (hold) of the totalizer.

www.redlion.net

 ∇ - A setpoint card must be installed in order to access this module.

Repeat programming for each setpoint.

SELECT SETPOINT

Select a setpoint (alarm output) to open the remaining module menu. (The "*n*" in the following parameters will reflect the chosen setpoint number.) After the chosen setpoint is programmed, the display will default to **5P5EL NO**. Select the next setpoint to be programmed and continue the sequence for each setpoint. Pressing **PAR** at **5P5EL NO** will exit Module 6.

SETPOINT ASSIGNMENT

Selects the meter value that is used to trigger the Setpoint Alarm. The -rEL settings cause the setpoint to trigger off of the relative (net) input value. The relative input value is the absolute input value that includes the Display Offset Value. The -**Rb5** settings cause the setpoint to trigger off of the absolute (gross) input value. The absolute input value is based on Module 1 **d5P** and **INP** entries.

SETPOINT ACTION

Enter the action for the selected setpoint (alarm output).

See the Setpoint Alarm Figures in the Setpoint Card Bulletin for a visual detail of each action. The Inside Band action is shown here as it only applies to the PAXDP.

ПО	=	No Setpoint Action
R6-X1	=	Absolute high, with balanced hysteresis
R6-L0	=	Absolute low, with balanced hysteresis
RU-H (=	Absolute high, with unbalanced hysteresis
RU-L0	=	Absolute low, with unbalanced hysteresis
dE - H 1	=	Deviation high, with unbalanced hysteresis *
dE - L 0	=	Deviation low, with unbalanced hysteresis *
ьяла	=	Outside band, with unbalanced hysteresis *
b∏d In	=	Inside band, with unbalanced hysteresis *
totLo	=	Lower Totalizer absolute high, unbalance hysteresis **
totX (=	Upper Totalizer absolute high, unbalance hysteresis **

* Setpoint 2 or Setpoint 4 deviation and band action setpoints are relative to the value of setpoint 1 or Setpoint 3 respectively. It is not possible to configure setpoint 1 or 3 as deviation or band actions. It is possible to use setpoint 1 or 3 for an absolute action, while its value is being used for deviation or band.

** These modes only appear, and are the only modes that appear, when the setpoint assignment $\$5\pi$ -n is set to kak. The lower Totalizer action, kakla, allows setpoints to function off of the lower 5 digits of the Totalizer. The upper Totalizer action, kakh, allows setpoints to function off of the upper 4 digits of the Totalizer. To obtain absolute low alarms for the Totalizer, program the kakla or kakh output logic as reverse.

Setpoint Alarm Figures

With reverse output logic r Eu, the below alarm states are opposite.

1-717-767-6511

SETPOINT VALUE

- 19999 to 99999

Enter desired setpoint alarm value. These setpoint values can also be entered in the Display Mode during Program Lock-out when the setpoint is programmed as Ent in Parameter Module 3. When a setpoint is programmed as deviation or band acting, the associated output tracks 5Pt as it is changed. The value entered is the offset, or difference from 5Pt.

Ε

to **55000**

HYSTERESIS VALUE

Enter desired hysteresis value. See Setpoint Alarm Figures for visual explanation of how setpoint alarm actions (balance and unbalance) are affected by the hysteresis. When the setpoint is a control output, usually balance hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

0.0 to 3275.0 sec.

Enter the time value in seconds that the alarm is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is rE_u , this becomes off time delay. Any time accumulated at power-off resets during power-up.

OFF TIME DELAY

Enter the time value in seconds that the alarm is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is rE_u , this becomes on time delay. Any time accumulated at power-off resets during power-up.

OUTPUT LOGIC

nor rEu

Enter the output logic of the alarm output. The *nar* logic leaves the output operation as normal. The *rEu* logic reverses the output logic. In *rEu*, the alarm states in the Setpoint Alarm Figures are reversed.

RESET ACTION

Enter the reset action of the alarm output.

Ruto = Automatic action; This action allows the alarm output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Alarm Figures. The "on" alarm may be manually reset (off) immediately by a front panel function key or user input. The alarm remains reset off until the trigger point is crossed again.

LREC2

- LREL ! = Latch with immediate reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the corresponding "on" alarm output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)
- LREC2 = Latch with delay reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the meter delays the event until the corresponding "on" alarm output crosses the trigger off point. (Previously latched alarms are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous Latch 2 reset if it is not activated at power up.)

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

When **YE5**, the alarm is disabled (after a power up) until the trigger point is crossed. Once the alarm is on, the alarm operates normally per the Setpoint Action and Reset Mode.

YE 5

SETPOINT ANNUNCIATORS

The **DFF** mode disables display setpoint annunciators. The nor mode displays the corresponding setpoint annunciators of "on" alarm outputs. The *r* **Eu** mode displays the corresponding setpoint annunciators of "off" alarms outputs. The FLR5H mode flashes the corresponding setpoint annunciators of "on" alarm outputs.

Alternate Setpoints

An Alternate list of setpoint values can be stored and recalled as needed. The Alternate list allows an additional set of setpoint values. (The setpoint numbers nor rear terminal numbers will change in the Alternate list.) The Alternate list can only be activated through a function key or user input programmed for L 15E in Module 2. When the Alternate list is selected, the Main list is stored and becomes inactive. When changing between Main and Alternate, the alarm state of Auto Reset Action alarms will always follow their new value. Latched "on" alarms will always stay latched during the transition and can only be reset with a user input or function key. Only during the function key or user input transition does the display indicate which list is being used.

 ∇ - A communication card must be installed in order to access this module.

COMMUNICATIONS TYPE

ЪЯИА

rLC - RLC Protocol (ASCII) Modbus RTU⁺

ГЛЬЯ5 - Modbus ASCII

Select the desired communications protocol. Modbus is preferred as it provides access to all meter values and parameters. Since the Modbus protocol is included within the PAXDP, the PAX Modbus option card, PAXCDC4, should not be used. The PAXCDC1 (RS485), or PAXCDC2 (RS232) card should be used instead.

BAUD RATE ᠬᠷ 300 600 1200

2400 4800 9600 19200 38400 38400

Set the baud rate to match the other serial communications equipment on the serial link. Normally, the baud rate is set to the highest value that all the serial equipment are capable of transmitting and receiving.

[†] The Communication Type factory settings must be changed from the Modbus RTU for Crimson 2 communications.

Select either 7 or 8 bit data word lengths. Set the word length to match the other serial communications equipment on the serial link.

PARITY BIT

Set the parity bit to match that of the other serial communications equipment on the serial link. The meter ignores the parity when receiving data and sets the parity bit for outgoing data. If no parity is selected with 7 bit word length, an additional stop bit is used to force the frame size to 10 bits.

METER UNIT ADDRESS

Enter the serial meter (node) address. The address range is dependent on the **EYPE** parameter. With a single unit, configured for RLC protocol (**EYPE** = rLL), an address is not needed and a value of zero can be used. With multiple units (RS485 applications), a unique 2 digit address number must be assigned to each meter.

Ε

1-717-767-6511 Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com del Ra 🖓

0.0 10 to 0.250

Following a transmit value ('*' terminator) or Modbus command, the PAXDP will wait this minimum amount of time in seconds before issuing a serial response.

CRIMSON SOFTWARE

When communicating with Crimson 2 software, the PAXDP must be set in default configuration type of:

Communications Type: MODBUS RTU[†] Baud Rate: 38400 Data Bit: 8 ParityBit: no Meter Unit Address: 247

Parameters below only appear when communications type $(E \ UPE)$ parameter is set to rLE.

ABBREVIATED PRINTING

Select **#0** for full print or Command T transmissions (meter address, parameter data and mnemonics) or **¥E5** for abbreviated print transmissions (parameter data only). This will affect all the parameters selected in the print options. (If the meter address is 00, it will not be sent during a full transmission.)

0PE 🔩 Ф ПО

yE5 - Enters the sub-menu to select the meter parameters to appear during a print request. For each parameter in the sub-menu, select **yE5** for that parameter information to be sent during a print request or **n** for that parameter information not to be sent. A print request is sometimes referred to as a block print because more than one parameter information (meter address, parameter data and mnemonics) can be sent to a printer or computer as a block.

PRINT OPTIONS

PARAMETER	DESCRIPTION			
INP R	Input A Value			
(ПР Ь	Input B Value			
ERLE	Calculation			
Fof	Total Value			
H IL O	Max. & Min.			
SPNE	Setpoint Values			

SERIAL MODBUS COMMUNICATIONS

Modbus Communications requires that the Serial Communication Type Parameter (*LYPE*) be set to "*MbrE*" or "*MbrE*".

SUPPORTED FUNCTION CODES

FC03: Read Holding Registers

- 1. Up to 32 registers can be requested at one time.
- 2. HEX <8000> is returned for non-used registers.

FC04: Read Input Registers

- 1. Up to 32 registers can be requested at one time.
- 2. Block starting point can not exceed register boundaries.
- 3. HEX <8000> is returned in registers beyond the boundaries.
- 4. Input registers are a mirror of Holding registers.

FC06: Preset Single Register

- HEX <8001> is echoed back when attempting to write to a read only register.
- 2. If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit. It is also returned in the response.

FC08: Diagnostics

The following is sent upon FC08 request:

Module Address, 08 (FC code), 04 (byte count), "Total Comms" 2 byte count, "Total Good Comms" 2 byte count, checksum of the string

"Total Comms" is the total number of messages received that were addressed to the PAXDP. "Total Good Comms" is the total messages received by the PAXDP with good address, parity and checksum. Both counters are reset to 0 upon response to FC08 and at power-up.

FC16: Preset Multiple Registers

- 1. No response is given with an attempt to write to more than 32 registers at a time.
- Block starting point cannot exceed the read and write boundaries (40001-41280).

- If a multiple write includes read only registers, then only the write registers will change.
- If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit.

FC17: Report Slave ID

The following is sent upon FC17 request:

a = "0"(none), "2", "4" SP card installed

b = "0"(none) or "1" Linear Card installed),

SUPPORTED EXCEPTION CODES

01: Illegal Function

Issued whenever the requested function is not implemented in the meter.

02: Illegal Data Address

Issued whenever an attempt is made to access a single register that does not exist (outside the implemented space) or to access a block of registers that falls completely outside the implemented space.

03: Illegal Data Value

Issued when an attempt is made to read or write more registers than the meter can handle in one request.

07: Negative Acknowledge

Issued when a write to a register is attempted with an invalid string length.

www.redlion.net

PAXDP FREQUENTLY USED MODBUS REGISTERS

Only frequently used registers are shown below. The entire Modbus Register Table can be found at www.redlion.net. The below limits are shown as Integers or HEX <> values. Read and write functions can be performed in either Integers or Hex as long as the conversion was done correctly. Negative numbers are represented by two's complement.

Note: The PAXDP should not be powered down while parameters are being changed. Doing so may corrupt the non-volatile memory resulting in checksum errors.

REGISTER ADDRESS ¹	REGISTER NAME	LOW LIMIT ²	HIGH LIMIT ²	FACTORY SETTING	ACCESS	COMMENTS
	FREQUENTLY USED REGISTERS					
40001	Input A Relative Value (Hi word)					Process value of present input level. This value is
40002	Input A Relative Value (Lo word)	N/A	N/A	N/A	Read Only	affected by InputType, Resolution, Scaling & Offset Value (Relative Value = Absolute Input Value + Offset Value)
40003	Input B Relative Value (Hi word)	NI/A	NI/A	N1/A	Dood Only	Process value of present input level. This value is
40004	Input B Relative Value (Lo word)	N/A	N/A	N/A	Read Only	affected by Input I ype, Resolution, Scaling & Offset Value (Relative Value = Absolute Input Value + Offset Value)
40005	Calculation Value (Hi word)					
40006	Calculation Value (Lo word)	N/A	N/A	N/A	Read Only	Calculation Result of Math Function
40007	Maximum Value (Hi word)					
40008	Maximum Value (Lo word)	-19999	99999	N/A	Read/Write	
40009	Minimum Value (Hi word)	40000		N1/A		
40010	Minimum Value (Lo word)	-19999	99999	N/A	Read/Write	
40011	Total Value (Hi word)	400000000		N1/A		
40012	Total Value (Lo word)	-199999000	999999000	N/A	Read/write	
40013	Setpoint 1 Value (Hi word)	40000	00000	100		
40014	Setpoint 1 Value (Lo word)	-19999	99999	100	Read/white	
40015	Setpoint 2 Value (Hi word)	10000	00000	200	Pood/M/rito	
40016	Setpoint 2 Value (Lo word)	-19999	99999	200	Read/White	
40017	Setpoint 3 Value (Hi word)	10000	00000	200	Pood/M/rito	
40018	Setpoint 3 Value (Lo word)	-19999	99999	300	Read/White	
40019	Setpoint 4 Value (Hi word)	10000	00000	400	Pood/M/rito	
40020	Setpoint 4 Value (Lo word)	-19999	33333	400	Read/White	
40021	Setpoint Output Register (SOR)	0	15	N/A	Read/Write See Note	Status of Setpoint Outputs: Bit State: $0=Off$, $1=On$, Bit $3=SP1$, Bit $2=SP2$, Bit $1=SP3$, Bit $0=SP4$ Outputs can only be activated/reset with this register when respective bits in Manual Mode (MMR) register are set
40022	Manual Mode Register (MMR)	0	31	0	Read/Write	Bit State: 0=Auto Mode, 1=Manual Mode Bit 4 = SP1, Bit 3 = SP2, Bit 2 = SP3, Bit 1 = SP4, Bit 0 = Linear Output
40023	Reset Output Register	0	15	0	Read/Write	Bit State: 1= Reset Output; Bit is returned to zero following reset processing Bit 3 = SP1, Bit 2 = SP2, Bit 1 = SP3, Bit 0 = SP4
40024	Analog Output Register (AOR)	0	4095	0	Read/Write	Functional only if Linear Output is in manual mode (MMR bit 0 = 1). Linear Output Card is written to only if Linear Out (MMR bit 0) is set
40025	Input A Absolute Value (Hi word)					Gross value of present Input A level. This value is
40026	Input A Absolute Value (Lo word)	N/A	N/A	N/A	Read Only	affected by Input Type, Resolution, Scaling, but not affected by Offset Value
40027	Input B Absolute Value (Hi word)	N/A	N/A	N/A	Read Only	Gross value of present Input B level. This value is
40028	Input B Absolute Value (Lo word)	1077	1071	1071	riddd only	affected by Offset Value
40029	Input A Offset Value (Hi word)	_10000	00000	0	Read/M/rito	Relative Input Value (standard meter value) is sum of
40030	Input A Offset Value (Lo word)	-19999	99999	0	Read/White	Input Offset Value and Input Absolute Value
40031	Input B Offset Value (Hi word)	-10000	00000	0	Read/M/rite	Relative Input Value (standard meter value) is sum of
40032	Input B Offset Value (Lo word)	-13333	33333		Tread/White	Input Offset Value and Input Absolute Value
40033	Main Setpoint 1 Value (Hi word)	_10000	00000	100	Read/Write	Setpoint List A
40034	Main Setpoint 1 Value (Lo word)	10000				
40035	Main Setpoint 2 Value (Hi word)	-19999	99999	200	Read/Write	Setpoint List A
40036	Main Setpoint 2 Value (Lo word)					
40037	Main Setpoint 3 Value (Hi word)	-19999	99999	300	Read/Write	Setpoint List A
40038	Main Setpoint 3 Value (Lo word)					• •
40039	Main Setpoint 4 Value (Hi word)	-19999	99999	400	Read/Write	Setpoint List A
40040	Main Setpoint 4 Value (Lo word)					
40041	Alternate Setpoint 1 Value (Hi word)	-19999	99999	100	Read/Write	Setpoint List B
40042	Alternate Setpoint 1 Value (Lo word)		-			

¹ For Input Registers, replace the 4xxxx with a 3xxxx in the above register address. The 3xxxx are a mirror of the 4xxxx Holding Registers.

² An attempt to exceed a limit will set the register to its high or low limit value.

E

REGISTER ADDRESS ¹	REGISTER NAME	LOW LIMIT ²	HIGH LIMIT ²	FACTORY SETTING	ACCESS	COMMENTS
	FREQUENTLY USED REGISTERS (Continued)					
40043	Alternate Setpoint 2 Value (Hi word)	10000	00000	200	Dood/M/rito	Sotopint Lipt P
40044	Alternate Setpoint 2 Value (Lo word)	-19999	99999	200	Read/white	
40045	Alternate Setpoint 3 Value (Hi word)	-19999 99999	9999 300 Read/Write	Deed/M/rite	Setpoint List B	
40046	Alternate Setpoint 3 Value (Lo word)			Reau/White		
40047	Alternate Setpoint 4 Value (Hi word)	10000	00000	400	Dood/M/rito	Cotnoint List D
40048	Alternate Setpoint 4 Value (Lo word)	-19999	99999	400	Reau/Write	

¹ For Input Registers, replace the 4xxxx with a 3xxxx in the above register address. The 3xxxx are a mirror of the 4xxxx Holding Registers.

² An attempt to exceed a limit will set the register to its high or low limit value.

SERIAL RLC PROTOCOL COMMUNICATIONS

RLC Communications requires the Serial Communications Type Parameter ($\verb+LypE)$ be set to $\verb+LE.$

SENDING SERIAL COMMANDS AND DATA

When sending commands to the meter, a string containing at least one command character must be constructed. A command string consists of a command character, a value identifier, numerical data (if writing data to the meter) followed by a the command terminator character * or \$.

Command Chart

COMMAND	DESCRIPTION	NOTES
N	Node (Meter) Address Specifier	Address a specific meter. Must be followed by a one or two digit node address. Not required when address = 0.
Т	Transmit Value (read)	Read a register from the meter. Must be followed by register ID character
V	Value Change (write)	Write to register of the meter. Must be followed by register ID character and numeric data.
R	Reset	Reset a register or output. Must be followed by register ID character.
Р	Block Print Request (read)	Initiates a block print output. Registers are defined in programming.

Command String Construction

The command string must be constructed in a specific sequence. The meter does not respond with an error message to invalid commands. The following procedure details construction of a command string:

- 1. The first characters consist of the Node Address Specifier (N) followed by a 1 or 2 character address number. The address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
- 2. After the address specifier, the next character is the command character.
- 3. The next character is the Register ID. This identifies the register that the command affects. The P command does not require a Register ID character. It prints according to the selections made in print options.
- 4. If constructing a value change command (writing data), the numeric data is sent next.
- 5. All command strings must be terminated with the string termination characters * or \$. The meter does not begin processing the command string until this character is received. See Timing Diagram figure for differences between terminating characters.

Register Identification Chart

ID	VALUE DESCRIPTION	REGISTER NAME ¹	COMMAND SUPPORTED ²
А	Input A Relative Value	INA	T, R (reset command zeros or tares input)
В	Input B Relative Value	INB	T, R (reset command zeros or tares input)
С	Calculation Value	CLC	Т
D	Total	TOT	T, R (reset command zeros Total)
E	Min	MIN	T, R (reset command loads current reading)
F	Max	MAX	T, R (reset command loads current reading)
G	Input A Absolute (Gross) Value	ABA	т
н	Input B Absolute (Gross) Value	ABB	т
I	Input A Offset	OFA	T, V
J	Input B Offset	OFB	T, V
М	Setpoint 1	SP1	T, V, R (reset command resets setpoint output)
0	Setpoint 2	SP2	T, V, R (reset command resets setpoint output)
Q	Setpoint 3	SP3	T, V, R (reset command resets setpoint output)
S	Setpoint 4	SP4	T, V, R (reset command resets setpoint output)
U	Auto/Manual Register	MMR	T, V
W	Analog Output Register	AOR	Τ, V
Х	Setpoint Register	SOR	T, V

1. Register Names are also used as Register Mnemonics during full transmission.

2. The registers associated with the P command are set up in Print Options (Module 7). Unless otherwise specified, the Transmit Details apply to both T and V Commands.

Command String Examples:

- 1. Address = 17, Write 350 to Setpoint 1 String: N17VM350*
- 2. Address = 5, Read Input A value String: N5TA*

3. Address = 0, Reset Setpoint 4 output String: RS*

Transmitting Data To the Meter

Numeric data sent to the meter must be limited to Transmit Details listed in the Register Identification Chart. Leading zeros are ignored. Negative numbers must have a minus sign. The meter ignores any decimal point and conforms the number to the scaled resolution. (ie. The meter's scaled decimal point position is set for 0.0 and 25 is written to a register. The value of the register is now 2.5. In this case, write a value of 250 to equal 25.0).

Note: Since the meter does not issue a reply to value change commands, follow with a transmit value command for readback verification.

www.redlion.net

Transmitting Data From the Meter

Data is transmitted from the meter in response to either a transmit command (T), a print block command (P) or User Function print request. The response from the meter is either a full field transmission or an abbreviated transmission. See Abbreviated Printing (**Rbr**u) parameter.

Full Transmission

Byte Description

- 1, 2 2 byte Node (Meter) Address field [00-99]
- 3 <SP> (Space)
- 4-6 3 byte Register Mnemonic field
- 7-18 12 byte numeric data field: 10 bytes for number, one byte for sign, one byte for decimal point
- 19 <CR> (Carriage return)
- 20 <LF> (Line feed)
- 21 <SP> (Space)[☆]
- 22 <CR> (Carriage return)³
- 23 <LF> (Line feed)☆

* These characters only appear in the last line of a block print.

The first two characters transmitted (bytes 1 and 2) are the unit address. If the address assigned is 00, two spaces are substituted. A space (byte 3) follows the unit address field. The next three characters (bytes 4 to 6) are the register mnemonic. The numeric data is transmitted next.

The numeric field (bytes 7 to 18) is 12 characters long. When the requested value exceeds eight digits for count values or five digits for rate values. Byte 8 is always a space. The remaining ten positions of this field (bytes 9 to 18) consist of a minus sign (for negative values), a floating decimal point (if applicable), and eight positions for the requested value. The data within bytes 9 to 18 is right-aligned with leading spaces for any unfilled positions.

The end of the response string is terminated with $\langle CR \rangle$ (byte 19), and $\langle LF \rangle$ (byte 20). When a block print is finished, an extra $\langle SP \rangle$ (byte 21), $\langle CR \rangle$ (byte 22), and $\langle LF \rangle$ (byte 23) are used to provide separation between the transmissions.

Abbreviated Transmission

Byte Description

- 1-12 12 byte data field, 10 bytes for number, one byte for sign, one byte for decimal point
- 13 <CR> (Carriage return)
- 14 <LF> (Line feed)
- 15 <SP> (Space)[☆]
- 16 <CR> (Carriage return)[☆]
- 17 <LF> (Line feed)[☆]

* These characters only appear in the last line of a block print.

The abbreviated response suppresses the address and register mnemonics, leaving only the numeric part of the response.

Meter Response Examples:

1. Address = 17, full field response, Input A = 875

17 INA 875 <CR><LF>

2. Address = 0, full field response, Setpoint 2 = -250.5

3. Address = 0, abbreviated response, Setpoint 2 = 250, last line of block print 250<CR><LF><

Auto/Manual Mode Register (MMR) ID: U

This register sets the controlling mode for the outputs. In Auto Mode (0) the meter controls the setpoint and analog output. In Manual Mode (1) the outputs are defined by the registers SOR and AOR. When transferring from auto mode to manual mode, the meter holds the last output value (until the register is changed by a write). Each output may be independently changed to auto or manual. In a write command string (VU), any character besides 0 or 1 in a field will not change the corresponding output mode.

U abcde d = SP4 c = SP3 b = SP2a = SP1

Example: VU00011 places SP4 and Analog in manual.

Analog Output Register (AOR) ID: W

This register stores the present signal value of the analog output. The range of values of this register is 0 to 4095, which corresponds to the analog output range per the following chart:

	Output Signal*			
Register value	0-20 mA	4-20 mA	0-10V	
0	0.000	4.000	0.000	
1	0.005	4.004	0.0025	
2047	10.000	12.000	5.000	
4094	19.995	19.996	9.9975	
4095	20.000	20.000	10.000	

*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (0-20 mA, 4-20 mA or 0-10 V).

Writing to this register (VW) while the analog output is in the Manual Mode causes the output signal level to update immediately to the value sent. While in the Automatic Mode, this register may be written to, but it has no effect until the analog output is placed in the manual mode. When in the Automatic Mode, the meter controls the analog output signal level. Reading from this register (TW) will show the present value of the analog output signal.

Example: VW2047 will result in an output of 10.000 mA, 12.000 mA or 5.000V depending on the range selected.

Setpoint Output Register (SOR) ID: X

This register stores the states of the setpoint outputs. Reading from this register (TX) will show the present state of all the setpoint outputs. A "0" in the setpoint location means the output is off and a "1" means the output is on.

Χа	abcd	
		d = SP4
		c = SP3
		b = SP2
		a = SP1

In Automatic Mode, the meter controls the setpoint output state. In Manual Mode, writing to this register (VX) will change the output state. Sending any character besides 0 or 1 in a field or if the corresponding output was not first in manual mode, the corresponding output value will not change. (It is not necessary to send least significant 0s.)

Example: VX10 will result in output 1 on and output 2 off.

COMMAND RESPONSE TIME

The meter can only receive data or transmit data at any one time (half-duplex operation). When sending commands and data to the meter, a delay must be imposed before sending another command. This allows enough time for the meter to process the command and prepare for the next command.

At the start of the time interval t1, the computer program prints or writes the string to the com port, thus initiating a transmission. During t1, the command characters are under transmission and at the end of this period, the command terminating character (*) is received by the meter. The time duration of t1 is dependent on the number of characters and baud rate of the channel.

t1 = (10 * # of characters) / baud rate

At the start of time interval t2, the meter starts the interpretation of the command and when complete, performs the command function. This time interval t2 varies from 2 msec to 15 msec. If no response from the meter is expected, the meter is ready to accept another command.

If the meter is to reply with data, the time interval t2 is controlled by the use of the command terminating character and the Serial Transmit Delay parameter (*dELRY*). The standard command line terminating character is '*'. This terminating character results in a response time window of the Serial Transmit Delay time (*dELRY*) plus 15msec. maximum. The *dELRY* parameter should be programmed to a value that allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with '\$' results in a response time window (12) of 2 msec minimum and 15 msec maximum. The response time of this terminating character requires that sending drivers release within 2 msec after the terminating character is received.

At the beginning of time interval t3, the meter responds with the first character of the reply. As with t1, the time duration of t3 is dependent on the number of characters and baud rate of the channel.

t3 = (10 * # of characters) / baud rate.

At the end of t3, the meter is ready to receive the next command. The maximum serial throughput of the meter is limited to the sum of the times t1, t2 and t3.

Timing Diagrams

NO REPLY FROM METER

RESPONSE FROM METER

COMMUNICATION FORMAT

Data is transferred from the meter through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character.

The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

LOGIC	INTERFACE STATE	RS232*	RS485*	
1	mark (idle)	TXD,RXD; -3 to -15 V	a-b < -200 mV	
0	space (active)	TXD,RXD; +3 to +15 V	a-b > +200 mV	
* Voltage levels at the Receiver				

Data is transmitted one byte at a time with a variable idle period between characters (0 to ∞). Each ASCII character is "framed" with a beginning start bit, an optional parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the meter.

Start bit and Data bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted.

Parity bit

After the data bits, the parity bit is sent. The transmitter sets the parity bit to a zero or a one, so that the total number of ones contained in the transmission (including the parity bit) is either even or odd. This bit is used by the receiver to detect errors that may occur to an odd number of bits in the transmission. However, a single parity bit cannot detect errors that may occur to an even number of bits. Given this limitation, the parity bit is often ignored by the receiving device. The PAX meter ignores the parity bit of incoming data and sets the parity bit to odd, even or none (mark parity) for outgoing data.

Stop bit

The last character transmitted is the stop bit. The stop bit provides a single bit period pause to allow the receiver to prepare to re-synchronize to the start of a new transmission (start bit of next byte). The receiver then continuously looks for the occurrence of the start bit. If 7 data bits and no parity is selected, then 2 stop bits are sent from the PAXDP.

 ∇ - An analog output card must be installed in order to access this module.

ANALOG TYPE

	SELE
חר	0-1
- Ľ Ü	4-1

ESP

R5 (N

ПОЛЕ

SELECTION	RANGE
0-20	0 to 20 mA
4-20	4 to 20 mA
0-10	0 to 10 V

Enter the analog output type. For 0-20 mA or 4-20 mA use terminals 18 and 19. For 0-10 V use terminals 16 and 17. Only one range can be used at a time.

ANALOG ASSIGNMENT

	ΠΟΠΕ	R-rEL	R-R65	b-rEL	
ן ר	6-865	ERLE	tot	H 1	L 0
	Enter the	source for	the analog	output to i	etransmit:

rEL = Relative (net) Input Value. The Relative Input Value is the Absolute Input Value that includes the Display Offset Value.

*R***b5** = Absolute (gross) Input Value. The Absolute Input

Value is based on Module 1 **d5P** and **INP** entries.

- **ERLE** = Calculation Value
- **Lot** = Totalizer Value
- **LI** = Minimum Display Value
- H I = Maximum Display Value

ANALOG LOW SCALE VALUE

- 19999 to 99999

Enter the Display Value that corresponds to 0 mA (0-20 mA) , 4 mA (4-20 mA) or 0 VDC (0-10 VDC).

ANALOG HIGH SCALE VALUE

Enter the Display Value that corresponds to 20 mA (0-20 mA) , 20 mA (4-20 mA) or 10 VDC (0-10 VDC).

ANALOG UPDATE TIME

0.0 to **10.0**

Enter the analog output update rate in seconds. A value of 0.0 allows the meter to update the analog output at the ADC Conversion Rate.

6.9 MODULE 9 - FACTORY SERVICE OPERATIONS (9-FE5)

PARAMETER MENU

DISPLAY INTENSITY LEVEL

Enter the desired Display Intensity Level (0-15) by using the arrow keys. The display will actively dim or brighten as the levels are changed. This parameter also appears in Quick Programming Mode when enabled.

RESTORE FACTORY DEFAULTS

Use the arrow keys to display **[Idf 55** and press **PAR**. The meter will display **r £5£** and then return to **[Idf 50**. Press **DSP** key to return to Display Mode. This will overwrite all user settings with the factory settings.

CALIBRATION

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed in Module 1. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter.

When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment. Calibration does not change any user programmed parameters. However, it may affect the accuracy of the input signal values previously stored using the Apply (*RPLY*) Scaling Style.

Calibration may be aborted by disconnecting power to the meter before exiting Module 9. In this case, the existing calibration settings remain in effect.

ED4E 48

INPUT CALIBRATION

WARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better and an external meter with an accuracy of 0.005% or better.

Before starting, verify that the Input Ranger Jumper is set for the range to be calibrated. Also verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. **#1** and **PAR** can be chosen to exit the calibration mode without any changes taking place. Then perform the following procedure:

- 1. Use the arrow keys to display (**[Ode 48**) and press **PAR**.
- 2. Choose the input channel/range to be calibrated by using the arrow keys and press **PAR**. (**#J** and **PAR** can be chosen to exit the calibration mode without any changes taking place.)
- 3. When the zero range limit appears on the display, apply the appropriate: - Voltage range: dead short applied
 - Current range: open circuit
- 4. Press **PAR** and the top range limit will appear on the display after approximately 1 second.
- 5. With the top range limit on the display, apply the appropriate: - Voltage range: 10 VDC
 - Current range: 20 mADC
- 6. Press **PAR** and **LRL**. **AD** will appear on the display after approximately 1 second.
- 7. When *nu* appears, press **PAR** twice.
- 8. If the meter is not field scaled, then the input display should match the value of the input signal.
- 9. Repeat the above procedure for each input range to be calibrated.

ANALOG OUTPUT CARD CALIBRATION

Before starting, verify that the precision voltmeter (voltage output) or current meter (current output) is connected and ready. Perform the following procedure: 1. Use the arrow keys to display **LUGE 4B** and press **PAR**.

- 2. Use the arrow keys to choose **DUL** and press **PAR**.
- 3. Using the chart below, step through the five selections to be calibrated. At each prompt, use the PAX arrow keys to adjust the external meter display to match the selection being calibrated. When the external reading matches, or if this range is not being calibrated, press **PAR**.

	P		
4	ACTION	EXTERNAL METER	SELECTION
, press PAR	Adjust if necessary,	0.00	0 <u>.</u> 0 _ R
, press PAR	Adjust if necessary,	4.00	4 <u>.0</u> _ R
, press PAR	Adjust if necessary,	20.00	20 <u>0</u> _R
, press PAR	Adjust if necessary,	0.00	0.0 .
, press PAR	Adjust if necessary,	10.00	10,0 u

4. When **#0** appears remove the external meters and press **PAR** twice.

www.redlion.net

TROUBLESHOOTING

PROBLEM	REMEDIES
NO DISPLAY	CHECK: Power level, power connections, Module 3 programming
PROGRAM LOCKED-OUT	CHECK: Active (lock-out) user input ENTER: Security code requested
DISPLAY LOCKED-OUT	CHECK: Module 3 programming
INCORRECT INPUT DISPLAY VALUE	CHECK: Module 1 programming, Input Jumper position, input connections, input signal level, Module 4 Display Offset is zero, press DSP for Input Display PERFORM: Module 9 Calibration (If the above does not correct the problem.)
"OLOL" in DISPLAY (SIGNAL HIGH)	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level
"ULUL" in DISPLAY (SIGNAL LOW)	CHECK: Module 1 programming, Input Range Jumper position, input connections, input signal level
JITTERY DISPLAY	INCREASE: Module 1 filtering, rounding, input range CHECK: Wiring is per EMC installation guidelines
MODULES or PARAMETERS NOT ACCESSIBLE	CHECK: Corresponding plug-in card installation
ERROR CODE (Err xxx or EE xxx)	PRESS: Reset KEY (If cannot clear contact factory.)

For further assistance, contact technical support at the appropriate company numbers listed.

MODEL PAXLSG - PAX LITE STRAIN GAGE METER / MILLIVOLT METER

3 1/2-DIGIT, 0.56" (14.2 mm) HIGH RED LED READOUT

HIGH SENSITIVITY, 10 mV FULL SCALE

WIDE RANGE GAIN AND OFFSET ADJUSTMENTS

BUILT-IN EXCITATION 5 OR 10 VDC

APPLICABLE AS REGULAR MILLIVOLT INDICATOR (Single-ended or Differential Input)

SELECTABLE DECIMAL POINTS

OVER-RANGE INDICATION

NEMA 4X/IP65 SEALED FRONT BEZEL OPTIONAL CUSTOM UNITS OVERLAY WITH BACKLIGHT

CE

GENERAL DESCRIPTION

The Model PAXLSG expands the PAX Lite capabilities into the indication of pressure, load, force, and other parameters measured with strain gages. The unit features broad range scaling and can be used with a wide variety of strain gage resistances and bridge configurations. A built-in excitation source is jumper selectable for 5 or 10 VDC @ 120 mA maximum, and can power up to four full 350 Ω bridges in load averaging applications. Although designed primarily for strain-gage indication, the PAXLSG is also ideal for single-ended or differential millivolt input applications, with full-scale input ranges from 0 to 10 mV thru 0 to 2 VDC. Adjustable scaling and offset allow direct readout in nearly any engineering unit.

The meter has a NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, allowing the meter to provide a tough yet reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

CAUTION: Risk of electric shock.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

TABLE OF CONTENTS

Ordering Information	.2
General Meter Specifications	. 3
Accessories	. 3
Installing the Meter	.4
Setting the Jumpers and Switches	.4

Wiring the Meter
Scaling the Meter
Calibrating the Meter7
Applications

ORDERING INFORMATION

Meter Part Numbers

Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
Accessories PAXLBK		Units Label Kit Accessory	PAXLBK30

425

GENERAL METER SPECIFICATIONS

- 1. DISPLAY: 3 1/2-digit, 0.56" (14.2 mm) high, 7-segment red LED, (-) minus IECEE CB Scheme Test Certificate # UL/8843A/UL sign displayed when voltage is negative. Decimal points inserted before 1st, 2nd, or 3rd least significant digits by DIP switch selection. 2. OVER-RANGE INDICATION: Indicated by blanking 3 least significant digits. 3. POWER: AC Power: 85 to 250 VAC. 50/60 HZ. 6 VA Isolation: 2300 Vrms for 1 min. to all inputs. 4. INPUT SIGNAL: Single-ended or differential input, ±2.0 V max. Gain (Sensitivity) is adjustable from 200 Units of Numerical Readout/millivolt input (gives full scale readout of 1999 at 10 mV input), to less than 1 Unit of Numerical Readout/mV (gives full scale readout of 1999 at 2.0 V input). Electrostatic discharge Maximum common mode voltage swing with respect to signal ground, 0 to 7 V. Note: Absolute maximum voltage that can be applied between the two input terminals or between input and signal common is 50 VDC. 5. ΙΝΡUT ΙΜΡΕDΑΝCE: 100 ΜΩ 6. LINEARITY: ±(0.05% ±1 digit) 7. LOW FREQUENCY NOISE REJECTION: Normal Mode Rejection: 84 dB @ 50/60 Hz Common Mode Rejection: 50 dB with respect to excitation common; 110 dB with respect to earth ground. 8. **RESPONSE TIME**: 2.0 seconds to settle from step input. 9. READING RATE: 2.5 updated readings/second, nominal. 10. EXCITATION SUPPLY: Jumper Selectable: 5 VDC @ 60 mA max., ±2% 10 VDC @ 120 mA max., ±2% **Temperature coefficient (ratio metric)**: 20 ppm/°C max. 11. ENVIRONMENTAL CONDITIONS: Operating Temperature: 0° to 60°C Storage Temperature: -40° to 80°C Notes: Operating and Storage Humidity: 85% max. relative humidity (noncondensing) Span Temperature Coeff.: 100 PPM/°C recovers Offset Temperature Coeff.: 100 PPM/°C Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours 2g Shock According to IEC 68-2-27: Operational 30 g, 11 msec in 3 directions. Altitude: Up to 2000 meters 12. CERTIFICATIONS AND COMPLIANCES: SAFETY UL Recognized Component, File # E179259, UL61010A-1, CSA C22.2 No. 61010-1 Recognized to U.S. and Canadian requirements under the Component
 - Recognition Program of Underwriters Laboratories, Inc. UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50

- CB Scheme Test Report # 04ME11209-20041018 Issued by Underwriters Laboratories, Inc. IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment
 - for measurement, control, and laboratory use, Part 1. IP65 Enclosure rating (Face only), IEC 529
 - IP20 Enclosure rating (Rear of unit), IEC 529

ELECTROMAGNETIC COMPATIBILITY

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

Criterion A

Immunity to Industrial Locations: EN 61000-4-2

Electrostatic discharge		4 kV contact discharge
Electromagnetic RF fields	EN 61000-4-3	8 KV air discharge
		10 V/m
Fast transients (burst)	EN 61000-4-4	Criterion B
		2 kV power
		2 kV signal
Surge	EN 61000-4-5	Criterion A
		1 kV L-L,
		2 kV L&N-E power
		1 kV signal
RF conducted interference	EN 61000-4-6	Criterion A
		3 V/rms
Power frequency magnetic fields	EN 61000-4-8	Criterion A
		30 A/m
Voltage dip/interruptions	EN 61000-4-11	Criterion A
		0.5 cycle
Emissions:		~ ~
Emissions	EN 55011	Class B

- 1. Criterion A: Normal operation within specified limits.
- 2. Criterion B: Temporary loss of performance from which the unit self-
- 13. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm)
 - Wire Gage: 30-14 AWG copper wire
 - Torque: 4.5 inch-lbs (0.51 N-m) max.
- 14. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Panel gasket and mounting clip included.
- 15. WEIGHT: 0.65 lbs (0.24 kg)

ACCESSORIES

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled by a DIP switch.

1.0 INSTALLING THE METER

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

2.0 SETTING THE SWITCHES AND JUMPERS

The meter has switches that must be checked and/or changed prior to applying power. To access the switches, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Excitation Range Jumper

A jumper is used for selection of the 5 or 10 volt range. It is important that only one jumper position is used at a time.

Set-Up DIP Switches

SW

Two banks of DIP switches are located inside the meter. The 9 position bank of switches is used for calibrating the meter. The values of these switches is discussed in section 5.0 Calibrating the Meter.

The bank of 4 switches located near the front display are used for the selection of decimal points and backlight annunciator. Selecting "ON" position enables the function.

ІТСН	FUNCTION
1	Decimal Point 1 (000.0)
2	Decimal Point 2 (00.00)
3	Decimal Point 3 (0.000)
4	Backlight Annunciator for Units Label

PAXLSG Jumper Selection

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

3.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long

3.1 POWER WIRING

and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.

- Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC #FCOR0000) TDK # ZCAT3035-1330A Steward #28B2029-0A0 Line Filters for input power cables: Schaffner # FN2010-1/07 (RLC #LFIL0000) Schaffner # FN670-1.8/07 Corcom #1VR3

Note: Reference manufacturer's instructions when installing a line filter.

- Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
- 6. Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI.

Snubber: RLC#SNUB0000.

-FXC

DEADLOAD COMPENSATION

In some cases, the combined deadload and liveload output may exceed the range of the input. To use this range, the output of the bridge can be offset a small amount by applying a fixed resistor across one arm of the bridge. This shifts the electrical output of the bridge downward to within the operating range of the meter. A 100 K ohm fixed resistor shifts the bridge output approximately -10 mV (350 ohm bridge, 10 V excitation).

Connect the resistor between +SIG and -SIG. Use a metal film resistor with a low temperature coefficient of resistance.

BRIDGE COMPLETION RESISTORS

For single strain gage applications, bridge completion resistors must be employed externally to the meter. Only use metal film resistors with a low temperature coefficient of resistance.

-FXC

Load cells and pressure transducers are normally implemented as full resistance bridges and do not require bridge completion resistors.

www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

4.0 SCALING THE METER

PAXLSG SCHEMATIC

DESCRIPTION OF OPERATION

The Pax Lite Strain Gage Indicator (PAXLSG) consists of a digital voltmeter combined with a high-gain, differential input amplifier that has provision for wide range scaling adjustment (shown above). The unit also incorporates an excitation power supply (5 or 10 VDC) that delivers up to 120 mA. In the simplified schematic above, K1, K2, and K3 form a high-gain, high-stability, differential input preamplifier with a single ended output. The gain of this preamplifier is set up by coarse gain select switches S5 through S9. These switches can be turned on in combination to provide discrete steps of gain-range adjustment. The output of the preamplifier (K3 output) is applied to the summing amplifier (K4) through coarse and fine adjustable potentiometers. These adjustable potentiometers provide final vernier gain adjustment over a range of slightly more than 2:1. An adjustable offset voltage signal is also added in at the input of K4 for zero.

GAIN ADJUSTMENTS

Gain is defined as the Units of Numerical change seen on the display per mV (millivolt) of input signal change (disregarding display decimal points). In effect, gain determines the slope of the transfer curve and is expressed in Units/mV.

```
GAIN = (Max. Num. Readout) - (Min. Num. Readout)
(Max. mV Input Sig.) - (Min. mV Input Sig.)
```

Note: Disregarded Decimal Points in Readout.

For example, if an PAXLSG is to display 50.0 @ 2 mV (min.) and 169.0 @ 19 mV (max.), the required gain will be:

$$\frac{\text{GAIN}}{19 \text{ mV} - 2 \text{ mV}} = 70 \text{ Units/mV}$$

Note: Remember, display decimal points are disregarded.

To establish this gain, the settings of the coarse gain select switches must first be determined. These switches establish the maximum end of the 2:1 adjustment range of the coarse and fine vernier gain adjustments.

COARSE GAIN SELECT SWITCHES

Each of the coarse gain select switches is marked with the amount of maximum gain it will contribute when turned on. They are turned on singly or in combination (adding up each of their gain contributions), to arrive at a maximum gain value that is just above the desired gain value. To achieve the desired gain of 70 Units/mV in the example just given, the following switches would be turned on:

S6 (Gain 50) + S7 (Gain 16) + S8 (Gain 6.6) = 72.6 Units/mV

With these switches ON, the coarse and fine vernier adjustments cover a gain range from about 36 Units/mV ($\frac{1}{2}$ of max.) to 72.6 Units/mV. The required gain of 70 Units/mV falls within this adjustable range.

COARSE AND FINE GAIN ADJUSTMENTS

Once the gain select switches have been set, the final gain calibration is made with the Coarse and Fine Gain adjustments. Both of these adjustments are 15-Turn, screwdriver adjustable potentiometers that increase gain with clockwise rotation. The Coarse adjustment has a 2:1 range. The Fine adjustment has a range of 5-10% (depending on the setting of the Coarse adjustment). Both pots are located at the rear of the meter.

OFFSET ADJUSTMENTS

Offset adjustments move the transfer curve up-and-down along the vertical axis without changing the slope (Gain). They are used to "balance" the output of transducers or to intentionally introduce an offset, such as tare-load compensation. The Fine Offset Adjustment is a 15-turn screwdriver adjustable potentiometer, located at the rear of the meter. It has a range of ± 125 Numerical Units of offset which is sufficient for balancing the output of most transducers.

The Coarse Offset Switches (S2, 3, and 4) can be used to add additional steps of offset. Like the coarse gain select switches, the offset switches are marked with the approximate value of offset contributed by each switch, and they can be turned on in combinations with each switch, contributing its value to the total. Switch S1 selects the polarity of the offset signal and can be set to either add or subtract the offset contribution of the switches. The maximum offset that can be obtained with all switches ON and the Fine Offset at its maximum is ± 1000 , which is one half of the full scale readout.

429

5.0 CALIBRATING THE METER

There are three different methods that can be used to calibrate the PAXLSG, and the method chosen depends largely on the nature of the application. The three methods are:

VOLTAGE CALIBRATION

In this method, the transducer signal is simply replaced with an accurately measured input voltage that can be varied through the range normally delivered by the transducer (See Voltage Calibration Circuit, below). The PAXLSG is then adjusted to provide the proper readout.

SYSTEM CALIBRATION

In this method, the transducer is connected to the input of the PAXLSG in the final installation, or in a bench set-up simulating the actual installation. Accurately known inputs are then applied to the transducer (i.e. load, pressure, force, etc.), and the PAXLSG adjustments are made to provide the desired indication. This method is usually preferable to the Voltage Calibration method since it calibrates both the transducer and the PAXLSG as a combination, and reduces the inherent risk of inaccuracy or errors accumulated by separate calibration. However, it can only be used in applications where the parameter to be indicated can be easily varied and accurately measured or established. It is also very awkward to use if an offset or transducer unbalance must be dealt with because of Offset/Gain adjustment interaction.

COMBINATION VOLTAGE/SYSTEM CALIBRATION

In applications where tare-load, offset, or substantial transducer unbalance exists and where high accuracy is required in the final indication, it may be desirable to voltage calibrate the unit first to get it very close to its final settings. Then, after final installation, the unit can be "tweaked" to its final settings while using accurately known inputs to the system. These various factors make it impossible to set up one calibration procedure to cover all applications. However, using the following information on Voltage Calibration together with the examples given should provide a good basis for handling virtually any calibration requirement.

CALIBRATION EXAMPLE

"Voltage Calibration" can be easily performed for any application, using the calibration circuit shown below.

VOLTAGE CALIBRATION CIRCUIT

This 350 Ohms "Dummy Bridge" circuit delivers calibration voltages in ranges of 0 to ± 22 mV, 0 to ± 44 mV, or 0 to ± 44 mV, depending on the setting of R2. The range can be increased or decreased by adjusting the value of R3 (shown as 40 K). An accurate reference millivoltmeter is used to set up the calibration voltage, and a "Zero Switch" facilitates balancing without readjusting the calibration voltage. High-stability metalized resistors (1% tol.) should be used. The use of a dummy bridge insures a common-mode voltage during calibration that is very similar to that of the actual transducer.

SET-UP:

Ε

Before starting the procedure, the Input Swing Voltage (Vs), the Readout Span (Rs) and the required GAIN must be determined.

WHERE:

Rs = (Max. Numerical Display) - (Min. Numerical Display) *Disregard Decimal Points* Vs = (mV in @ Max. Display) - (mV in @ Min. Display) GAIN = Rs = Units/mV

Vs

- **EXAMPLE**: Readout is to be 5.00 Units @ 2 mV minimum, and 15.00 Units @ 18 mV maximum. The transducer is a 350 Ω strain-gage bridge requiring 10 VDC excitation.
 - Rs = 1500 500 = 1000 Units
 - Vs = 18 mV 2 mV = 16 mV
 - $GAIN = \frac{1000}{16} = 62.5 \text{ Units/mV}$

Note: While most strain gage readout applications are zero-based (i.e. zero readout @ zero input) this example was intentionally chosen because it included an offset reading at zero input. It will be used in the Calibration Procedure below to illustrate the most convenient way to handle offset situations without excessive interaction of gain and offset adjustments. If a zero-based example had been given, the minimum readout and input voltage would have both been zero. Rs and Vs would then simply be the maximum values of readout and input voltage respectively, gain would just be the ratio of (Max. Readout/Max. Input mV), and Steps 7 and 8 of the procedure below could be eliminated.

CALIBRATION PROCEDURE

1. Set the Coarse Gain Select Switches, S5 through S9 to establish a maximum range just exceeding the required gain. Referring to the example given, the required gain was calculated to be 62.5 Units/mV. Setting switches S6 and S7 ON gives 50 + 16 = 66 Units/mV, which is just above the required amount. The following chart gives an approximate gain adjustment value for each switch:

SWITCH NUMBER	SPAN VALUE
5	140
6	50
7	16
8	6.6
9	3.3

All offset switches, S2, 3, and 4, should be off.

- 2. Connect the unit to the Calibration Circuit as shown. Set the excitation voltage range jumper to the 10 V position.
- Place unit in the case and turn power on to the unit. Allow 10 minutes of warm-up time for stabilization.
- 4. Close the "Zero Switch" of the calibration circuit to obtain zero input voltage. Adjust the fine offset control to get a zero readout.
- 5. Open the "Zero Switch" of the calibrating circuit and set the input voltage to the calculated swing voltage, Vs. (Vs is 16 mV in the example given.) Now, adjust the Gain Coarse and Fine Controls to get a readout equal to the Readout Span.

(Rs = 1000 Units in the example given.)

- Repeat Step 4 and readjust zero if required. If zero readjustment was needed, repeat Step 5, then back to Step 4, etc., until Zero and Rs readings are acceptable.
- *7. Set the calibration voltage to the minimum input level (2 mV in this example). Record the meter reading (125 in this example). Power the meter down and remove it from the case. Set the Coarse Offset Select Switches to get the corresponding minimum readout (add the switch offset value(s) to the recorded meter reading). In the example given, the minimum readout was 500 units @ 2 mV, therefore setting switches 3 and 4 gives us 125 (meter reading) + 125 (SW4) + 250 (SW3) = 500. The following chart gives an approximate offset adjustment value for each switch.

SWITCH NUMBER	OFFSET VALUE
2	500
3	250
4	125

*8. Place unit in the case and turn power on to the unit. Use the fine offset adjustment to fine tune the desired minimum reading (500 in this example). Vary the input from the minimum to maximum levels and check the corresponding readouts. Fine-tune if necessary by readjusting the fine gain adjustment at the maximum end and the fine offset adjustment at the minimum end. (In the example, readout is 500 @ 2 mV min. and 1500 @ 18 mV max.) Alternate between minimum and maximum inputs as required until readout is within desired tolerance at the extremes.9. Set appropriate decimal point switch (S2 for the example given).

The unit is now ready for installation.

* Steps 7 and 8 are not required in zero-based applications.

www.redlion.net

6.0 APPLICATIONS

EXAMPLE #1 PRESSURE READOUT & SYSTEM CALIBRATION

This illustration depicts a common application using an PAXLSG with a strain-gage pressure transducer for pressure indication. The gain required to display 150 Units @ 20 mV is 150/20, or 7.5 Units/mV. Setting the Coarse Gain Select Switches S8 and S9 ON, gives a gain range of 6.6 + 3.3, or 9.9 Units/mV maximum, which brackets the required gain. The transducer curve is zero-based (*i.e. zero readout at zero input*), and can be easily System Calibrated. A variable pressure input is applied to the transducer with a "*Dead-Weight Tester*" and the Fine Offset is adjusted to give a readout of zero with no pressure applied. Then 150 PSI is applied, the Coarse and Fine Gain controls are adjusted for a readout of 150. Pressure is removed, zero is checked and readjusted with the Fine Offset control if needed. Pressure is varied between zero and maximum, with the Fine Gain and Offset adjustments retrimmed as needed until the readout is within tolerance.

EXAMPLE #2 THE MODEL PAXLSG AS A MILLIVOLT METER

The PAXLSG can be used as a scaleable millivolt meter and will accept either single-ended or differential inputs when connected as shown. Input signals are referenced to the negative (common) side of the excitation supply (Terminal 3). Maximum common-mode voltage (for differential input) is 0 to +7 VDC.

EXAMPLE #3 MULTIPLE LOAD-CELL INPUT, AVERAGE READING

The 120 mA excitation output capability of the PAXLSG allows it to operate multiple strain gage bridges. In this example, it is used to indicate the quantity of granular material held in a hopper that is supported by three load cells in a tripod mounting arrangement. The tare-weight of the empty hopper is about 30% of the full weight, requiring a significant offset for a zero readout when empty. The PAXLSG is first Voltage-Calibrated (using the known output of the load cells at the empty and full conditions). Then the unit is installed and fine trimmed (System Calibration) using known loads.

1

(2)

CIRCUIT COMMO

3 (-) EXC

(4) (+) EXC.

-(5) (+) SIG

6 (-) SIG

1

+/- SIGNA

CIRCUIT COMMON

(4) (+) EXC

5 (+) SIG.

6 (-) SIG.

MODEL PAXS - STRAIN GAGE INPUT

This is a brief overview of the PAXS. For complete specifications and programming information, see the **PAX Analog Input Panel Meters Bulletin** starting on **page 301**.

- DUAL RANGE INPUT: ±24 mV OR ±240 mV
- SELECTABLE 5 VDC OR 10 VDC BRIDGE EXCITATION
- PROGRAMMABLE AUTO-ZERO TRACKING

CE

PAXS SPECIFICATIONS

SENSOR INPUTS:

INPUT RANGE	ACCURACY* (18 to 28 °C)	CCURACY* ACCURACY* 8 to 28 °C) (0 to 50 °C)		MAX CONTINUOUS OVERLOAD	RESOLUTION
±24 mVDC	0.02% of reading +3 μV	0.07% of reading +4 μV	100 Mohm	30 V	1 μV
±240 mVDC	0.02% of reading +30 μV	0.07% of reading +40 μV	100 Mohm	30 V	10 μV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28 °C and 10 to 75% RH environment; and accuracy over a 0 to 50 °C and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to 50 °C range includes the temperature coefficient effect of the meter.

CONNECTION TYPE: 4-wire bridge (differential) 2-wire (single-ended) COMMON MODE RANGE (w.r.t. input common): 0 to +5 VDC Rejection: 80 dB (DC to 120 Hz) BRIDGE EXCITATION : Jumper Selectable: 5 VDC @ 65 mA max., ±2% 10 VDC @ 125 mA max., ±2%

Temperature coefficient (ratio metric): 20 ppm/°C max.

MODEL PAX2S – 1/8 DIN STRAIN GAGE INPUT PANEL METER

DESCRIPTION

The PAX2S Strain Gage Panel Meter offers many features and performance capabilities to suit a wide range of industrial applications. The PAX2S has a strain gage input to handle various types of bridge configurations including load cell, pressure and torque sensors. The optional plug-in output cards allow the opportunity to configure the meter for present applications, while providing easy upgrades for future needs.

Highlighting the PAX2S is a dual line, display with a large 0.71", tri-color 6 digit top display line and a 0.35", 9 digit green bottom display line. The meter also offers programmable units display, providing capability to tag the display with units of measure. Display color change capability provides machine operators a visual display of changing conditions, even when the operator is not close enough to read the actual display value. In addition, a universal power supply provides the ultimate in flexibility for both AC and DC power.

The meter provides a MAX and MIN reading memory with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events. The signal totalizer (integrator) can be used to compute a time-input product. This can be used to provide a readout of totalized weight or calculate service intervals of motors, pumps, etc.

The meter has up to four setpoint outputs, implemented on plug-in option cards. The plug-in cards provide dual FORM-C relays, quad FORM-A, or either quad sinking or quad sourcing open collector logic outputs. The setpoint alarms can be configured to suit a variety of control and alarm requirements.

The PAX2 can be programmed to utilize Modbus protocol. With Modbus, the user has access to all configuration parameters. Readout values and setpoint alarm values can be controlled through the bus. Additionally, the meter has a feature that allows a remote computer to directly control the outputs of the meter. Communication and bus capabilities are also available as option cards. These include RS232, RS485, DeviceNet, and Profibus-DP.

LOAD CELL, PRESSURE AND TORQUE BRIDGE INPUTS UNIVERSAL AC/DC POWER SUPPLY

SELECTABLE 5 VDC OR 10 VDC BRIDGE EXCITATION

PROGRAMMABLE AUTO-ZERO TRACKING

6 / 9 DIGIT DUAL LINE/TRI-COLOR DISPLAY WITH 0.71" & 0.35" DIGITS

PROGRAMMABLE UNITS DISPLAY

VARIABLE CONTRAST AND INTENSITY DISPLAY

UP TO 160 SAMPLES PER SECOND CONVERSION RATE

BUILT-IN USB PROGRAMMING PORT ENABLING UNIT CONFIGURATION WITH CRIMSON PROGRAMMING SOFTWARE

NEMA 4X/IP65 SEALED FRONT BEZEL

The PAX2 includes a built-in USB programming port. With a Windows[®] based program, made available by Red Lion Controls, configuration data can be downloaded to the PAX2 without the need of any additional option cards.

A linear DC output signal is available as an optional plug-in card. The card provides either 20 mA or 10 V signals. The output can be scaled independent of the input range and can track either the input, totalizer, max or min readings, or any setpoint value.

After the meter has been initially configured, the parameter programming may be locked out from further modification in its entirety, or allowing selected values accessible for quick entry.

The meter has been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects with regard to CE requirements, the meter provides a tough reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

TABLE OF CONTENTS

2
3
1
5
5
3
3
3

Line 2 Display Loops
Programming the PAX2S9
PAX2S Modbus Register Table24
Factory Service Operations28
Troubleshooting Guide
Parameter Value Chart
Programming Overview

ORDERING INFORMATION

Meter Part Numbers

MODEL NO.	DESCRIPTION	PART NUMBER
PAX2S	Strain Gage Input Panel Meter	PAX2S000

Option Card and Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
Optional Plug-In	PAXCDS	Dual Setpoint Relay Output Card	PAXCDS10
		Quad Setpoint Relay Output Card	PAXCDS20
		Quad Setpoint Sinking Open Collector Output Card	PAXCDS30
		Quad Setpoint Sourcing Open Collector Output Card	PAXCDS40
	PAXCDC ¹	RS485 Serial Communications Card with Terminal Block	PAXCDC10
		Extended RS485 Serial Communications Card with Dual RJ11 Connector	PAXCDC1C
Cards		RS232 Serial Communications Card with Terminal Block	PAXCDC20
		Extended RS232 Serial Communications Card with 9 Pin D Connector	PAXCDC2C
		DeviceNet Communications Card	PAXCDC30
		Profibus-DP Communications Card	PAXCDC50
	PAXCDL	Analog Output Card	PAXCDL10
Accessories	SFCRD ²	Crimson PC Configuration Software for Windows 2000, XP and Windows 7	SFCRD200
	CBLUSB	USB Programming Cable Type A-Mini B	CBLUSB01

Notes:

^{1.} For Modbus communications use RS485 Communications Output Card and configure communication (LyPE) parameter for Modbus.

^{2.} Crimson software is available for free download from http://www.redlion.net/

GENERAL METER SPECIFICATIONS

1. DISPLAY: Positive image LCD

- Top Line 6 digit, 0.71" (18 mm), with tri-color backlight (red, green or orange), display range: -199,999 to 999,999;
- Bottom Line 9 digit, 0.35" (8.9 mm), with green backlight, display range: 199,999,999 to 999,999,999

2. POWER:

AC Power: 40 to 250 VAC, 50/60 Hz, 20 VA

DC Power: 21.6 to 250 VDC, 8 W

Isolation: 2300 Vrms for 1 min. to all inputs and outputs. 3. **ANNUNCIATORS**: Backlight color: Red

ANNUNCIATORS: Backing

1 - setpoint alarm 1 3 - setpoint alarm 3

2 - setpoint alarm 2 4 - setpoint alarm 4

- Line 1 Units Label programmable 3 digit units annunciator with tri-color backlight (red, green or orange)
- 4. KEYPAD: 2 programmable function keys, 4 keys total
- 5. A/D CONVERTER: 24 bit resolution

6. UPDATE RATES:

A/D conversion rate: programmable 5 to 160 readings/sec.

Step response:

Input Rate	5	10	20	40	80	160	Readings/ Sec
Response Time *	600	400	200	100	50	30	msec response time *

* - max. to within 99% of final readout value (digital filter disabled)

Display update rate: 1 to 20 updates/sec.

Setpoint output on/off delay time: 0 to 3275 sec.

Analog output update rate: 0 to 10 sec

Max./Min. capture delay time: 0 to 3275 sec.

7. DISPLAY MESSAGES:

"OLOL" - Appears when measurement exceeds + signal range. "ULUL" - Appears when measurement exceeds - signal range "....." - Appears when display values exceed + display range. "-...." - Appears when display values exceed - display range.

8. INPUT:

Connection Type: 4-wire bridge (differential); 2-wire (single-ended) Common Mode Range (with respect to input common): 0 to +5 VDC Rejection: 80 dB (DC to 120 Hz)

INPUT RANGE	ACCURACY* (18 to 28°C)	ACCURACY* (0 to 50°C)	IMPEDANCE/ COMPLIANCE	MAX CONT. OVERLOAD	** RESOLUTION
± 24 mVDC	0.02% of rdg + 3 μV	0.07% of rdg + 4 μV	100 Mohm	30 V	1 µV
± 240 mVDC	0.02% of rdg + 30 μV	0.07% of rdg + 40 μV	100 Mohm	30 V	10 µV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 10 to 75% RH environment; and accuracy over a 0 to 50°C and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to 50°C range includes the temperature coefficient effect of the meter.

** Higher resolution can be achieved via input scaling

- 9. EXCITATION POWER: Jumper selectable
 - +5 VDC @ 65 mADC max., +/-2%
- +10 VDC @ 125 mADC max., +/-2%

Temperature Coefficient (ratio metric): 20 ppm/°C max.

10. USER INPUTS: Three programmable user inputs

Max. Continuous Input: 30 VDC

Isolation To Sensor Input Common: Not isolated.

Response Time: 12 msec. max.

Logic State: User programmable (USrRLt) for sink/source (LU/H) logic

INPUT STATE (USrAEL)	LO/SINK	HI/SOURCE	
	20 K Ω pull-up to +3.3 V	20 K Ω pull-down	
Active	V _{IN} < 1.1 VDC	V _{IN} > 2.2 VDC	
Inactive	V _{IN} > 2.2 VDC	V _{IN} < 1.1 VDC	

11. TOTALIZER:

Time Base: second, minute, hour, or day Batch: Can accumulate (gate) input display from a user input Time Accuracy: 0.01% typical Decimal Point: 0 to 0.0000 Scale Factor: 0.001 to 65.000 Low Signal Cut-out: -199,999 to 999,999 Total: 6 digits on Line 1; 9 digits on Line 2

12. CUSTOM LINEARIZATION:

Data Point Pairs: Selectable from 2 to 16 Display Range: -199,999 to 999,999 Decimal Point: 0 to 0.0000

- MEMORY: Nonvolatile memory retains all programmable parameters and display values.
- 14. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range: 0 to 50 °C

Storage Temperature Range: -40 to 60 °C

Vibration to IEC 68-2-6: Operational 5-150 Hz, 2 g

Shock to IEC 68-2-27: Operational 25 g (10 g relay)

Operating and Storage Humidity: 0 to 85% max. RH non-condensing

- Altitude: Up to 2000 meters
- 15. CERTIFICATIONS AND COMPLIANCES:

CE Approved

EN 61326-1 Immunity to Industrial Locations

- Emission CISPR 11 Class A
- IEC/EN 61010-1
- **RoHS** Compliant

UL Listed: File #E179259

Type 4X Indoor Enclosure rating (Face only)

IP65 Enclosure rating (Face only)

IP20 Enclosure rating (Rear of unit)

- Refer to EMC Installation Guidelines section of the bulletin for additional information.
- 16. **CONNECTIONS**: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm)
- Wire Gauge Capacity: One 14 AWG (2.55 mm) solid, two 18 AWG (1.02 mm) or four 20 AWG (0.61 mm)
- CONSTRUCTION: This unit is rated NEMA 4X/IP65 for indoor use only. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/ case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.
- 18. WEIGHT: 8 oz. (226.8 g)

OPTIONAL PLUG-IN OUTPUT CARDS

WARNING: Disconnect all power to the unit before installing plug-in cards.

Adding Option Cards

The PAX2S meters can be fitted with up to three optional plug-in cards. The details for each plug-in card can be reviewed in the specification section below. Only one card from each function type can be installed at a time. The function types include Setpoint Alarms (PAXCDS), Communications (PAXCDC), and Analog Output (PAXCDL). The plug-in cards can be installed initially or at a later date.

COMMUNICATION CARDS (PAXCDC)

A variety of communication protocols are available for the PAX2S meter. Only one PAXCDC card can be installed at a time. *Note: For Modbus communications use RS485 Communications Output Card and configure communication* (LUPE) parameter for Modbus.

PAXCDC10 - RS485 Serial (Terminal)PAXCDC30 - DeviceNetPAXCDC1C - RS485 Serial (Connector)PAXCDC50 - Profibus-DPPAXCDC20 - RS232 Serial (Terminal)PAXCDC2C - RS232 Serial (Connector)

SERIAL COMMUNICATIONS CARD

Type: RS485 or RS232

- Communication Type: RLC Protocol (ASCII), Modbus RTU, and Modbus ASCII
- **Isolation To Sensor & User Input Commons**: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Data: 7/8 bits

Baud: 1200 to 38,400

- Parity: no, odd or even
- **Bus Address**: Selectable 0 to 99 (RLC Protocol), or 1 to 247 (Modbus Protocol), Max. 32 meters per line (RS485)

Transmit Delay: Selectable for 0 to 0.250 sec (+2 msec min)

DEVICENETTM CARD

Compatibility: Group 2 Server Only, not UCMM capable

Baud Rates: 125 Kbaud, 250 Kbaud, and 500 Kbaud

Bus Interface: Phillips 82C250 or equivalent with MIS wiring protection per DeviceNet[™] Volume I Section 10.2.2.

Node Isolation: Bus powered, isolated node

Host Isolation: 500 Vrms for 1 minute (50 V working) between DeviceNet[™] and meter input common.

PROFIBUS-DP CARD

Fieldbus Type: Profibus-DP as per EN 50170, implemented with Siemens SPC3 ASIC

Conformance: PNO Certified Profibus-DP Slave Device

Baud Rates: Automatic baud rate detection in the range 9.6 Kbaud to 12 Mbaud **Station Address:** 0 to 125, set by rotary switches.

Connection: 9-pin Female D-Sub connector

Network Isolation: 500 Vrms for 1 minute (50 V working) between Profibus network and sensor and user input commons. Not isolated from all other commons.

PROGRAMMING SOFTWARE

Crimson[®] software is a Windows[®] based program that allows configuration of the PAX[®] meter from a PC. Crimson offers standard drop-down menu commands, that make it easy to program the meter. The meter's program can then be saved in a PC file for future use. Crimson can be downloaded at www. redlion.net

SETPOINT CARDS (PAXCDS)

The PAX2S meter has 4 available setpoint alarm output plug-in cards. Only one PAXCDS card can be installed at a time. (Logic state of the outputs can be reversed in the programming.) These plug-in cards include:

PAXCDS10 - Dual Relay, FORM-C, Normally open & closed PAXCDS20 - Quad Relay, FORM-A, Normally open only PAXCDS30 - Isolated quad sinking NPN open collector PAXCDS40 - Isolated quad sourcing PNP open collector

DUAL RELAY CARD

Type: Two FORM-C relays

Isolation To Sensor & User Input Commons: 2000 Vrms for 1 min. Working Voltage: 240 Vrms

Contact Rating:

One Relay Energized: 5 amps @ 120/240 VAC or 28 VDC (resistive load). Total current with both relays energized not to exceed 5 amps

Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD RELAY CARD

Type: Four FORM-A relays

Isolation To Sensor & User Input Commons: 2300 Vrms for 1 min. Working Voltage: 250 Vrms

Contact Rating:

One Relay Energized: 3 amps @ 240 VAC or 30 VDC (resistive load). Total current with all four relays energized not to exceed 4 amps

Life Expectancy: 100K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD SINKING OPEN COLLECTOR CARD

Type: Four isolated sinking NPN transistors.

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons. Rating: 100 mA max @ $V_{SAT} = 0.7$ V max. $V_{MAX} = 30$ V

QUAD SOURCING OPEN COLLECTOR CARD

Type: Four isolated sourcing PNP transistors.

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Rating: Internal supply: 18 VDC unregulated, 30 mA max. total External supply: 30 VDC max., 100 mA max. each output

ALL FOUR SETPOINT CARDS

Response Time: See Update Rates step response specification on page 3; add 6 msec (typical) for relay card

LINEAR DC OUTPUT (PAXCDL)

Either a 0(4)-20 mA or 0-10 V retransmitted linear DC output is available from the analog output plug-in card. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing the scaling point positions.

PAXCDL10 - Retransmitted Analog Output Card

ANALOG OUTPUT CARD

Types: 0 to 20 mA, 4 to 20 mA or 0 to 10 VDC

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Accuracy: 0.17% of FS (18 to 28 °C); 0.4% of FS (0 to 50 °C) **Resolution**: 1/3500

Compliance: 10 VDC: 10 K Ω load min., 20 mA: 500 Ω load max. Powered: Self-powered

Step Response: See Update Rates step response specification on page 3. **Update time**: See ADC Conversion Rate and Update Time parameter

Ε

1.0 INSTALLING THE METER

Installation

The PAX2S meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not overtighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

PANEL CUT-OUT

2.0 SETTING THE JUMPERS

Bridge Excitation

This jumper is used to select bridge excitation voltage level. Use the 5 V excitation with high output (3 mV/V) bridges, so that the higher sensitivity 24 mV range can be used. Using the 5 V excitation also reduces bridge power consumption compared to the 10 V excitation. A maximum of four 350 ohm load cells can be driven by the internal bridge excitation voltage.

437

3.0 INSTALLING PLUG-IN CARDS

The plug-in cards are separately purchased optional cards that perform specific functions. These cards plug into the main circuit board of the meter. The plug-in cards have many unique functions when used with the PAX2S.

CAUTION: The plug-in card and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure (Pull wire to verify tightness). Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
 - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long

To Install:

- 1. With the meter removed from the case, locate the plug-in card connector for the card type to be installed. The types are keyed by position with different main circuit board connector locations. When installing the card, hold the meter by the rear terminals and not by the front display board.
 - If installing the Quad sourcing Plug-in Card (PAXCDS40), set the jumper for internal or external supply operation before continuing.

- 2. Install the plug-in card by aligning the card terminals with the slot bay in the rear cover. Be sure the connector is fully engaged and the tab on the plug-in card rests in the alignment slot on the display board.
- 3. Slide the meter base back into the case. Be sure the rear cover latches fully into the case.
- 4. Apply the plug-in card label to the bottom side of the meter in the designated area. Do Not Cover the vents on the top surface of the meter. The surface of the case must be clean for the label to adhere properly.

and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.

- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:

Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)

- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
 - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
 - b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

VisitRLC's website at http://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

www.redlion.net

4.1 POWER WIRING

AC Power

DC Power

The power supplied to the meter shall employ a 15 Amp UL approved circuit breaker for AC input and a 1 Amp, 250 V UL approved fuse for DC input. It shall be easily accessible and marked as a disconnecting device to the installed unit. This device is not directly intended for connection to the mains without a reliable means to reduce transient over-voltages to 1500 V.

4.2 INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper and Bridge Excitation Jumper should be verified for proper position.

4.3 USER INPUT WIRING

If not using User Inputs, then skip this section. User Input terminal does not need to be wired in order to remain in inactive state.

Sinking Logic (USrALL LD)

When the USrRL parameter is programmed to l_{0}^{0} , the user inputs of the meter are internally pulled up to +3.3 V with 20 K Ω resistance. The input is active when it is pulled low (<1.1 V).

Sourcing Logic (USr ALL HI)

When the U_{S} -RL parameter is programmed to H, the user inputs of the meter are internally pulled down to 0 V with 20 K Ω resistance. The input is active when a voltage greater than 2.2 VDC is applied.

4.4 SETPOINT (ALARMS) WIRING

- 4.5 SERIAL COMMUNICATION WIRING
- 4.6 ANALOG OUTPUT WIRING

See appropriate plug-in card bulletin for wiring details.

5.0 FRONT PANEL KEYS AND DISPLAY OVERVIEW

Programmable Units Display

KEY DISPLAY MODE OPERATION

- D Index Line 2 through enabled Line 2 display values
- P Enter full programming mode or access the parameter and hidden display loops; Press and hold to skip parameters and go directly to Code or Programming Menu
- (F) User programmable Function key 1; hold for 3 seconds for user programmable second function 1*
- ₩ User programmable Function key 2; hold for 3 seconds for user programmable second function 2*

*Factory setting for F1/F2 and second function F1/F2 is no mode

DISPLAY LINE 1

Line 1 is the large, 6-digit top line display. Values such as, Input, Gross, Tare, Max(HI), Min(LO), Total and setpoints, can be shown on Line 1. The 3-digit Units mnemonic characters can be used to indicate which Line 1 display value is shown. Standard or custom mnemonics are available for the Line 1 values. See Line 1 parameters in the Display Parameters programming section for configuration details.

Ε

LINE 2 DISPLAY LOOPS

The PAX2S offers three display loops to allow users quick access to needed information.

PROGRAMMING MODE OPERATION

Return to the previous menu level (momentary press) Quick exit to Display Mode (press and hold)

Access the programming parameter menu, store selected parameter and index to next parameter

Increment selected parameter value; Hold <u>Fi</u> and momentarily press key to increment next decade or **D** key to increment by 1000's

Decrement selected parameter value; Hold $\overline{\mathbb{W}}$ and momentarily press $\underline{\mathbb{F}}_{h}$ key to decrement next decade or **D** key to decrement by 1000's

DISPLAY LINE 2

Line 2 is the smaller, 9-digit bottom line display. Values such as Input, Gross, Tare, Max(HI), Min(LO), Total, setpoints, and parameter List A/B status can all be shown on the Line 2 display. The display loops described below are used to view, reset and modify the selected display values, based on the Line 2 Value Access setting programmed for each available value. See Line 2 parameters in the Display Parameters programming section for configuration details.

Main Display Loop

In the Main display loop, the D key is pressed to sequence through the selected Line 2 values. A left justified 2, 3 or 4-character mnemonic indicates which Line 2 value is currently shown. When in the Main display loop, the Function keys $\underline{F1}$ and $\underline{F2}$ perform the user functions programmed in the User Input parameter section.

Parameter and Hidden Parameter Display Loops

Display loops provide quick access to selected parameters that can be viewed and modified on Line 2 without having to enter Full Programming mode. These values include Parameter List A/B selection, setpoints, and display (color, intensity and contrast) settings. To utilize the Parameter or Hidden Parameter display loops, a security code (1-250) must be programmed. (See Programming Security Code in the Display Parameters programming section for details.)

The Parameter display loop is accessed by pressing the **P** key. The selected Parameter display loop values can be viewed and/or changed per the Line 2 Value Access setting programmed for each available value. The Hidden Parameter display loop follows the Parameter display loop, and can only be accessed when the correct security code is entered at the Code prompt. Combining the two parameter loops provides an area for parameters that require general access and/or protected or secure access depending on the application needs.

While in the Parameter and Hidden Parameter loops, pressing the **D** key will return the meter to the Main display loop. To directly access the Code prompt, press and hold the **P** key. This can be done from the Main display loop or at any point during the Parameter display loop. Also, to directly access Full Programming mode while in the Hidden Parameter loop, press and hold the **P** key to bypass any remaining Hidden Parameter loop values.
6.0 PROGRAMMING THE PAX2S

It is recommended that program settings be recorded as programming is performed. A blank Parameter Value Chart is provided at the end of this bulletin.

PROGRAMMING MODE ENTRY

The Programming Mode is entered by pressing the **P** key. Full Programming Mode will be accessible unless the meter is programmed to use the Parameter loop or Hidden Parameter display loop on the Line 2 display. In this case, programming access will be limited by a security code and/or a hardware program lock. (Refer to the previous section for details on Line 2 display loops and limited programming access.) Full Programming Mode permits all parameters to be viewed and modified. In this mode, the front panel keys change to Programming Mode Operations and certain user input functions are disabled.

MODULE ENTRY

The Programming Menu is organized into five modules. These modules group together parameters that are related in function. The $\overrightarrow{F1}$ and $\overrightarrow{F2}$ keys are used to select the desired module. The displayed module is entered by pressing the **P** key.

MODULE MENU

Upon entering a module, a parameter selection sub-menu is provided to choose the specific parameter type for programming. For example, this includes analog and user input under the Input Parameter menu. Use the $(\underline{F1})$ and $(\underline{F2})$ keys to select the desired parameter type, and press the **P** key to enter the parameter menu.

PARAMETER MENU

Upon entering the Parameter Menu, the **P** key is pressed to advance to a specific parameter to be changed. After completing the parameter menu, or upon pressing the **D** key, the display returns to the initial entry point for the parameter menu. For each additional press of the **D** key, the display returns to the previous level within the module until exiting the module entirely.

SELECTION/VALUE ENTRY

For each parameter, the top line display shows the parameter while the bottom line shows the selections/value for that parameter. The $\overline{F1}$ and $\overline{E2}$ keys are used to move through the selections/values for the parameter. Pressing the **P** key, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

Numerical Value Entry

If the parameter is programmed for enter (E n k r), the $\overline{F1}$ and $\overline{F2}$ keys are used to change the parameter values in any of the display loops.

The $\underline{F1}$ and $\overline{V2}$ keys will increment or decrement the parameter value. When the $\underline{F1}$ or $\overline{V2}$ key is pressed and held, the value automatically scrolls. The longer the key is held the faster the value scrolls.

For large value changes, press and hold the $\underline{f1}$ or $\underline{V2}$ key. While holding that key, momentarily press the opposite arrow key ($\underline{V2}$ or $\underline{f1}$) to shift decades (10's 100's, etc), or momentarily press the **D** key and the value scrolls by 1000's as the arrow key is held. Releasing the arrow key removes the decade or 1000's scroll feature. The arrow keys can then be used to make small value changes as described above.

PROGRAMMING MODE EXIT

To exit the Programming Mode, press and hold the **D** key (from anywhere in the Programming Mode) or press the **P** key with $P_{ro} \Pi B$ displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. If a parameter was just changed, the **P** key must be pressed to store the change before pressing the **D** key. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

PROGRAMMING TIPS

It is recommended to start with the Input Parameters and proceed through each module in sequence. If lost or confused while programming, press and hold the \mathbf{D} key to exit programming mode and start over. It is recommended that program settings be recorded as programming is performed. When programming is complete lock out programming with a user input or lock-out code.

Factory Settings may be completely restored in the Factory Service Operations module. This is useful when encountering programming problems. In Programming Menu:

* - Top line is green to indicate top level programming modules

** - Top line is orange to indicate module menu or sub-menu selection

*** - Top line is red to indicate a changeable parameter.

1-717-767-6511

INPUT PARAMETERS (1 11 P UL)

INPUT SELECT

TIPLIE AUAL DE

Pro

ANAL OG USEr

Select the Input to be programmed.

ANALOG INPUT PARAMETERS (ANALOS)

This section details the programming for the analog input.

INPUT RANGE 00240 0,240

Select the desired input range.

INPUT UPDATE RATE (/SEC)

5	10	20
40	80	160

Select the ADC conversion rate (conversions per second). The selection does not affect the display update rate, however it does affect setpoint and analog output response time. The default factory setting of 5 is recommended for most applications. Selecting a fast update rate may cause the display to appear very unstable.

ROUNDING INCREMENT

Rounding selections other than one, cause the Input Display to 'round' to the nearest rounding increment selected (ie. rounding of '5' causes 122 to round to 120 and 123 to round to 125). Rounding starts at the least significant digit of the Input Display. Remaining parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection.

- 19999 to 99999

The Display Tare(offset) Value is the difference between the Gross (absolute) Display value and the Relative (net) Display value for the same input level. The meter will automatically update this value after each Zero Display. The Display Tare Value can be directly keyed-in to intentionally add or remove display offset. See Relative/Gross Display and Zero Display explanations in the Input Parameters - User Input Module.

DIGITAL FILTERING

0.00 to 25.00 seconds

The input filter setting is a time constant expressed in hundredths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of '0' disables filtering.

FILTER BAND

0 to 2500 display units

The digital filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units. A band setting of '0' keeps the digital filter permanently engaged.

SCALING POINTS

2 to 16

Linear - Scaling Points (2)

For linear processes, only 2 scaling points are necessary. It is recommended that the 2 scaling points be at opposite ends of the input signal being applied. The points do not have to be the signal limits. Display scaling will be linear between and continue past the entered points up to the limits of the Input Signal Jumper position. Each scaling point has a coordinate-pair of Input Value (I IPUL n) and an associated desired Display Value (d 5PLY n).

Nonlinear - Scaling Points (Greater than 2)

For non-linear processes, up to 16 scaling points may be used to provide a piece-wise linear approximation. (The greater the number of scaling points used, the greater the conformity accuracy.) The Input Display will be linear between scaling points that are sequential in program order. Each scaling point has a coordinate-pair of Input Value (I MPUL n) and an associated desired Display Value (d' 5PLY n). Data from tables or equations, or empirical data can be used to derive the required number of segments and data values for the coordinate pairs. Several linearization equations are available within Crimson software.

Ε

APPL 4

key-in data apply signal

If Input Values and corresponding Display Values are known, the Key-in (*KEY*) scaling style can be used. This allows scaling without the presence of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (APPL Y) scaling style must be used.

INPUT VALUE FOR SCALING POINT 1

- 199999 to 999999

For Key-in ($\[\]E\]$), enter the known first Input Value by using the $\[\]Fi$ or $\[\]E\]$ arrow keys. (The Input Range selection sets up the decimal location for the Input Value). For Apply (RPPLY), the existing programmed value will appear. If this is acceptable, press the P key to save and continue to the next parameter. To update this value, apply the input signal that corresponds to Scaling Point 1, press 🔁 key and the actual signal value will be displayed. Then press the P key to accept this value and continue to the next parameter.

DISPLAY VALUE FOR SCALING POINT 1

- 199999 to 999999

Enter the first coordinating Display Value by using the arrow keys. This is the same for KEY and RPPLY scaling styles. The decimal point corresponds to the defendent selection

INPUT VALUE FOR SCALING POINT 2

- 199999 to 999999

For Key-in ($\forall E \forall$), enter the known second Input Value by using the $\underline{F1}$ or $\underline{F2}$ arrow keys. For Apply (*APPLY*), the existing programmed value will appear. If this is acceptable, press the P key to save and continue to the next parameter. To update this value, apply the input signal that corresponds to Scaling Point 2, press 12/ key and the actual signal value will be displayed. Then press the **P** key to accept this value and continue to the next parameter. (Follow the same procedure if using more than 2 scaling points.)

DISPLAY VALUE FOR SCALING POINT 2

- 199999 to 999999

Enter the second coordinating Display Value by using the $\underline{F1}$ or $\underline{F2}$ arrow keys. This is the same for KEY and RPPLY scaling styles. (Follow the same procedure if using more than 2 scaling points.)

USER INPUT / FUNCTION KEY PARAMETERS (USEr)

This section details the programming for the rear terminal User Inputs and front panel Function Keys. Three user inputs are individually programmable to perform specific meter control functions. While in the Display Mode, the function is executed when the user input transitions to the active state. (Refer to the user input specifications for response times.) Certain User input functions are disabled in Programming Mode. Two front panel function keys, *F*₁ and *F*₂, are also individually programmable to perform specific meter control functions. While in the Display Mode, the primary function is executed when the key is pressed. Holding the *F*1 or 🗹 function key for three seconds executes a secondary function. It is possible to program a secondary function without a primary function. The front panel key functions are disabled while in Programming Mode.

In most cases, if more than one user input and/or function key is programmed for the same function, the maintained (level trigger) actions will be performed while at least one of those user inputs or function keys are activated. The momentary (edge trigger) actions are performed every time any of those user inputs or function keys transition to the active state.

The List user function has a value assignment sublist, which appears when the P key is pressed and U 5 t is selected. The function will only be performed for the assignment values selected as 425. If a user input or function key is configured for a function with a sublist, then that sublist will need to be scrolled through each time to access the remaining user inputs or function keys following the sublist.

Note: In the following explanations, not all selections are available for both user inputs and front panel function keys. Displays are shown with each selection. Those selections showing both displays are available for both. If a display is not shown, it is not available for that selection. In the parameter explanations, USEr -n represents all user inputs. Fn represents both function keys and second function keys.

USER INPUT ACTIVE STATE HI

Select the desired active state for the User Inputs. Select L 1 for sink input, active low. Select #1 for source input, active high.

LO

1 П

No function is performed if activated. This is the factory setting for all user inputs and function keys.

1-717-767-6511

E

FNE

PROGRAMMING MODE LOCK-OUT

Programming Mode is locked-out, as long as activated (maintained action). A security code can be configured to allow programming access during lock-out.

ZERO (TARE) DISPLAY

The Zero (Tare) Display provides a way to zero the Input Display value at various input levels, causing future relative input display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), rESEE flashes and the Display is set to zero. At the same time, the Display value (that was on the display before the Zero Display) is subtracted from the Display Tare Value and is automatically stored as the new Display Tare Value. If another Zero (tare) Display is performed, the display again changes to zero and the Display Tare Value shifts accordingly.

RESET TARE VALUE

FNE r-EArE

The Reset Tare provides a way to zero the Display Tare (offset) value, eliminating the Tare (offset) from the relative display. When activated (momentary action), rESEE flashes and the Display Tare value is set to zero. Following a Reset Tare, the Input display (relative) value will match the Gross (absolute).

RELATIVE/GROSS (ABSOLUTE) VALUE

This function will switch the Input Display between Relative and Gross (Absolute) value. The Relative is a net value that includes the Display Tare (Offset)Value. The Input Display will show the Relative unless switched by this function. The Gross is an absolute value (based on Input (Analog) Module d5P and I TP entries) without the Display Tare (Offset) Value. The Gross value is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input display switches back to Relative value. 5r055 (gross) or rEL (relative) is momentarily displayed at transition to indicate which value is being displayed.

HOLD DISPLAY

The active display is held but all other meter functions continue as long as activated (maintained action).

HOLD ALL FUNCTIONS

The meter disables processing the input, holds all display contents, and locks the state of all outputs as long as activated (maintained action). The serial port continues data transfer.

SYNCHRONIZE METER READING

The meter suspends all functions as long as activated (maintained action). When the user input is released, the meter synchronizes the restart of the A/D converter input sampling with other processes or timing events.

STORE BATCH READING IN TOTALIZER

The Input Display value is added (batched) to the Totalizer when activated (momentary action) and the display flashes battle. The Totalizer retains a running sum of each batch operation until the Totalizer is reset. When this function is selected, the normal operation of the Totalizer is overridden and only batched Input Display values accumulate in the Totalizer.

SELECT TOTALIZER DISPLAY

The Totalizer appears on Line 2 as long as activated (maintained action). When the user input is released, the

previously selected display is returned. The $\boldsymbol{\mathsf{D}}$ or $\boldsymbol{\mathsf{P}}$ keys override and disable the active user input. The Totalizer continues to function including associated outputs independent of the selected display.

RESET TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer then continues to operate as it is configured. This selection functions independent of the selected display.

RESET AND ENABLE TOTALIZER

When activated (momentary action), rESEE flashes and the Totalizer resets to zero. The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

ENABLE TOTALIZER

The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

SELECT MAXIMUM DISPLAY

The Maximum display appears on Line 2 as long as activated (maintained). When the user input is released, the previously selected display is returned. The D or P

kevs override and disable the active user input. The Maximum continues to function independent of the selected display.

RESET MAXIMUM DISPLAY

When activated (momentary action), r E 5 E flashes and the Maximum resets to the present Input Display value. The Maximum function then continues from that value. This selection functions independent of the selected display.

SELECT MINIMUM DISPLAY

The Minimum display appears on Line 2 as long as activated (maintained). When the user input is released, the previously selected display is returned. The **D** or **P**

keys override and disable the active user input. The Minimum continues to function independent of the selected display.

FNE

FNE

When activated (momentary action), rESEE flashes and the Minimum resets to the present Input Display value. The Minimum function then continues from that value. This selection functions independent of the selected display.

RESET MAXIMUM AND MINIMUM DISPLAY

When activated (momentary action), rESEL flashes and the Maximum and Minimum readings are set to the present Input Display value. The Maximum and Minimum function then continues from that value. This selection functions independent of the selected display.

SELECT LINE 1 DISPLAY

When activated (momentary action), the display advances to the next Line 1 display that has been made available (in the Display Module, Line 1/Select submenu).

SELECT LINE 2 DISPLAY

FNE ŀη 12

When activated (momentary action), the display advances to the next Line 2 display that has been made available (in the Display Module, Line 2/Access sub-menu).

ADJUST DISPLAY INTENSITY

When activated (momentary action), the display intensity changes to the next intensity level.

CHANGE DISPLAY COLOR

When activated (momentary action), Line 1 will change color green to red, red to orange, orange to green.

SELECT PARAMETER LIST

Two lists of values are available to allow the user to either switch between two sets of setpoints, or setpoints and scaling parameters and/or Line 1 & 2 mnemonics (if enabled).

The two lists are named L15E-A and L15E-b. If a user input is used to select the list then $L \mid 5E - R$ is selected when the user input is not active and $L \mid 5E - b$ is selected when the user input is active (maintained action). If a front panel key is used to select the list then the list will toggle for each key press (momentary action). The display will indicate which list is active when the list is changed, at power-up, and when entering the Parameter loop (if enabled) or Programming menus.

To program the values for LI5E-A and LI5E-b, first complete the programming of all the parameters. Exit programming and switch to the other list. Re-enter programming and enter the desired values for various parameters included in the list.

Two sub-menus are used to select whether scaling parameters and the custom units mnemonics are included in the list function. When the 5cL15E sub-menu is selected as YE5, the following parameters are also included in the A/B parameter lists:

Scaling Points 1-16 Input Decimal Point Input Filter Band Input Rounding Factor Totalizer Scale Factor Totalizer Decimal point

When the list is changed, the Offset (tare) value and internal Auto-zero buffer value (if Number of scaling points = 2) are also converted to the new units.

When the Units sub-menu is selected as YE5, the Custom Units mnemonics are included in A/B parameter list. Using the L15E function and enabling 5cl/5e & UNIES provides the ability to use the PAX2 meter to read-out and display in 2 different engineering units (i.e., pounds and kilograms).

SUB-MENU	DESCRIPTION	FACTORY
Sell SE	Include Scaling Parameters	ПО
101+5	Include Units mnemonics	по

SETPOINT SELECTIONS

- r 1 -Reset Setpoint 1 (Alarm 1) r - 2 -
 - Reset Setpoint 2 (Alarm 2)
- r] -Reset Setpoint 3 (Alarm 3)
- c 4 -Reset Setpoint 4 (Alarm 4)
- r 34 -Reset Setpoint 3 & 4 (Alarm 3 & 4)
- r 234 -Reset Setpoint 2, 3 & 4 (Alarm 2, 3 & 4)
- r-ALL -Reset All Setpoints (Alarms 1-4)

PRINT REQUEST

Pr int The meter issues a block print through the serial port when activated, and the serial type is set to rLL. The data transmitted during a print request and the serial type is programmed in Port (Serial) module. If the user input is still active after the transmission is complete (about 100 msec), an additional transmission occurs. As long as the user input is held active, continuous transmissions occur.

FNE

OUTPUT PARAMETERS (DULPUL)

OUTPUT SELECT

SELPAL

SEEPNE ANALOG

Select the Setpoint or Analog output to be programmed. The Analog output selection only appears if an analog output plug-in card is installed in the meter.

SETPOINT OUTPUT PARAMETERS (SELPILL)

This section details the programming for the setpoints. To have output capabilities, a setpoint Plug-in card needs to be installed into the PAX2S (see Ordering Information). Depending on the card installed, there will be two or four setpoint outputs available. If no output card is installed, programming for the setpoints is still available. An Exchange Parameter Lists feature for setpoint values is explained in User Input programming.

The Setpoint Assignment and Setpoint Output Action determine certain setpoint feature availability. The Setpoint Parameter Availability chart illustrates this.

51 52 53 54

Select the Setpoint output to be programmed. The "5n" in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display returns to the Setpoint Select menu. Repeat steps for each setpoint to be programmed.

The number of outputs available is setpoint output card dependent (2 or 4). If no output card is installed, programming is still available for all 4 setpoints. This allows the Line 1 color change feature to provide a visual indication when a setpoint value has been reached, even if no setpoint output is being used.

SETPOINT ASSIGNMENT

NONE rEL GrOSS EDEAL

AP-F0

dE - L D

totH ,

AU - HI

ьяла

Selects the meter value to be used to trigger the Setpoint Alarm. The r EL setting will cause the setpoint to trigger off of the relative (net) input value. The relative input value is the absolute input value plus the Display Tare (Offset) Value. The $\delta r D55$ setting will cause the setpoint to trigger off of the gross (absolute) input value. The gross input value is based on the Input (Analog) module dSP and $l \Pi P$ entries.

SETPOINT ACTION

00 AU-LO 50dLo	ЯЬ-НІ dE-НІ boble
011017	
	NO AU-LO BNdIn

Enter the action for the selected setpoint (alarm output). See Setpoint Alarm Figures for a visual detail of each action. The Setpoint Actions that pertains to the total is only active when the Setpoint Assignment is set to E B E R L.

= No Setpoint Action
= No Setpoint Action

- $R_b H_l$ = Absolute high, with balanced hysteresis
- Rb-LD = Absolute low, with balanced hysteresis
- RU HI = Absolute high, with unbalanced hysteresis
- $R \parallel L \square$ = Absolute low, with unbalanced hysteresis

d E - HI	= deviation high, with unbalanced hysteresis
d E - L O	= deviation low, with unbalanced hysteresis
ьяла	= Outside band, with unbalanced hysteresis
b∏dln	= Inside band, with unbalanced hysteresis
totlo	= Lower 6 digits of 9 digit Totalizer, with unbalanced hysteresis
ŁołHi	= Upper 6 digits of 9 digit Totalizer, with unbalanced hysteresis

SETPOINT VALUE

- 199999 to 999999

Enter desired setpoint alarm value. Setpoint values can also be entered in the Display Mode during Program Lockout when the setpoint is programmed as Entr in the Display (Line 2) Access parameters. The decimal point position is determined by the Setpoint Assignment value.

BAND/DEVIATION VALUE

- 199999 to 999999

This parameter is only available in band and deviation setpoint actions. Enter desired setpoint band or deviation value. When the Setpoint Action is programmed for Band, this value can only be a positive value.

HYSTERESIS VALUE

1 to 65000

Enter desired hysteresis value. See Setpoint Alarm Figures for visual explanation of how setpoint alarm actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints. Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

www.redlion.net

Setpoint Alarm Figures

With reverse output logic r Eu, the below alarm states are opposite.

ON TIME DELAY

00 to 32150 seconds

Enter the time value in seconds that the alarm is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is $r E_u$, this becomes off time delay. Any time accumulated at power-off resets during power-up.

OFF TIME DELAY

0.0 to 32750 seconds

Enter the time value in seconds that the alarm is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is r E u, this becomes on time delay. Any time accumulated at power-off resets during power-up.

OUTPUT LOGIC

Enter the output logic of the alarm output. The *nor* logic leaves the output operation as normal. The r E u logic reverses the output logic. In r E u, the alarm states in the Setpoint Alarm Figures are reversed.

RESET ACTION

Enter the reset action of the alarm output.

- $R_{ub}a$ = Automatic action; This action allows the alarm output to automatically reset at the trigger points per the Setpoint Action shown in Setpoint Alarm Figures. The "on" alarm may be manually reset immediately by a front panel function key or user input. The alarm remains reset until the trigger point is crossed again.
- L R E L h I = Latch with immediate reset action; This selection latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the corresponding "on" alarm output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)
- LRELA2 = Latch with delay reset action; This selection latches the alarm outputon at the trigger point per the Setpoint Action shown in Setpoint AlarmFigures. Latch means that the alarm output can only be turned off by frontpanel function key or user input manual reset, serial reset command or meterpower cycle. When the user input or function key is activated (momentary ormaintained), the meter delays the reset event until the corresponding "on"alarm output crosses the trigger off point. (Previously latched alarms are offif power up Display Value is lower than setpoint value. During a power cycle,the meter erases a previous Latch 2 reset if it is not activated at power up.)

SETPOINT STANDBY OPERATION

9E 5

ПО

When 4E5, the alarm is disabled (at power up) until the trigger point is crossed.

LAFEP5

1-717-767-6511

SETPOINT ANNUNCIATOR

nor rEu FLASH OFF

The nor mode displays the corresponding setpoint annunciators of "on" alarm outputs. The $r E_{u}$ mode displays the corresponding setpoint annunciators of "off" alarms outputs. The FL B5H mode flashes the corresponding setpoint annunciators of "on" alarm outputs. The BFF mode disables display setpoint annunciators.

NO CHE GrEEN OrANEE rEd Grnore redore redern line i

This parameter allows the Line 1 Display to change color, or alternate between two colors, when the alarm is activated. When multiple alarms are programmed to change color, the highest numbered active alarm (S4-S1) determines the display color.

The ΠI [H E selection will maintain the color displayed prior to the alarm activation. The $L I \Pi E = I$ selection sets the display to the Display (Line 1) Color ($La \ lor$).

ANALOG OUTPUT PARAMETERS (RARLOS)

This section is only accessible with the optional PAXCDL Analog card installed (see Ordering Information).

ANALOG OUTPUT TYPE

4-20 0-10 0-20

Enter the analog output type. For 0-20 mA or 4-20 mA use terminals 18 and 19. For 0-10 V use terminals 16 and 17. Only one range can be used at a time.

ANALOG OUTPUT ASSIGNMENT

	ПОЛЕ	rEL	6r055	FOFUT	H}
none	LO	51	52	53	54

Enter the source for the analog output to retransmit:

- INTE = Manual Mode operation. (See Serial RLC Protocol in the Communications Port module).
- r EL = Relative (net) Input Value. The Relative Input Value is the Gross (Absolute) Input Value that includes the Display Tare (Offset) Value.
- br 0.55 = Gross (Absolute) Input Value. The Gross Input Value is based on the Input (Analog) module d5P and $l \Pi P$ entries.
- LOLAL = Totalizer Value
- HI = Maximum Display Value
- L 🛛 = Minimum Display Value
- 51-54 = Setpoint Values

ANALOG LOW SCALE VALUE

- 199999 to 999999

Enter the Display Value that corresponds to 0 mA (0-20 mA) , 4 mA (4-20 mA) or 0 VDC (0-10 VDC).

ANALOG HIGH SCALE VALUE

1778), 05#

- 199999 to 999999

Enter the Display Value that corresponds to 20 mA (0-20 mA) , 20 mA (4-20 mA) or 10 VDC (0-10 VDC).

ANALOG UPDATE TIME

Enter the analog output update rate in seconds. A value of 0.0 allows the meter to update the analog output at the ADC Conversion Rate.

DISPLAY PARAMETERS (dl 5PLY)

DISPLAY SELECT

Select the Display to be programmed.

LINE 1 PARAMETERS (L) THE 1)

This section details programming for the Line 1 (Top Line) Display. The Input, Gross, Tare, Total, Maximum (HI) and Minimum (LO) capture values and setpoints can be shown on the Line 1 display. The 3-digit Units mnemonic characters can be used to indicate which Line 1 display value is shown. Standard mnemonics are available for Setpoints 1-4. Standard or custom mnemonics are available for all other Line 1 values.

Main Display Loop

In the Main display loop, the selected values can be consecutively read on Line 1 by activating a user input or function key programmed as SEL L1. Each time the user input/function key is activated, Line 1 display will change to the next enabled Line 1 display value. Line 1 can also be programmed for Scroll, which will cause Line 1 to automatically scroll through all of the selected Line 1 display values.

Enter the desired Display Line 1 and programmable Units Display color.

DISPLAY INTENSITY LEVEL

dSP LE ч

ÌŪſ

GrEEN

Ln

0 to 4

Enter the desired Display Intensity Level (0-4) by using the arrow keys. The display will actively dim or brighten as the levels are changed. This parameter can also be accessed in the Parameter display loop when enabled.

DISPLAY CONTRAST LEVEL

0 to 15

Enter the desired Display Contrast Level (0-15) by using the arrow keys. The display contrast / viewing angle will actively adjust up or down as the levels are changed. This parameter can also be accessed in the Parameter display loop when enabled.

ПО 9E5

Enter YE5 to select which values will be shown on the Line 1 display. A submenu provides Yes/No selection for each available Line 1 value. Values set to YE5 in the sub-menu will be displayable on Line 1.

DISPLAY	DESCRIPTION	FACTO
і ПРИЕ	Input	9E 5
6r055	Gross (absolute)	ПО
E R r E	Tare	ПО
EOEAL	Total	ПО
H I	Max value	ПО
LD	Min value	ПО
51	Setpoint 1	ПО
52	Setpoint 2	ПО
53	Setpoint 3	ПО
54	Setpoint 4	ПО

ПП 1 to 15 seconds

If Line 1 Display Scrolling is desired, set the scroll time in seconds.

OFF

ПО

```
LINE 1 UNITS MNEMONIC(S)
```

EUSE

FAEF

Select the mode for Line 1 Units Mnemonic(s). See LINE 1 UNITS MNEMONIC DIAGRAM for programming details

LAPET

Enforme Birtore nu for programming details.			
SELECTION	MODE	DESCRIPTION	
OFF	OFF	No Line 1 mnemonic shown.	
LAPET	LABEL	Single programmable mnemonic shown for all Line 1 values.	
[11 5 E	CUSTOM	Custom programmable mnemonics shown for each Line 1 value.	
FACF	FACTORY	Factory default mnemonics shown for each Line 1 value.	

The characters available for the programmable modes include:

1-717-767-6511

LINE 2 PARAMETERS (LI TE 2)

This section details programming for the Line 2 (Bottom Line) Display. The Input, Gross, Tare, Total, Max, Min, Setpoint, Band/Deviation values and Parameter List A/B status can be shown on the Line 2 display. The display loops described below are used to view, reset and modify the selected display values, based on the Line 2 Value Access setting programmed for each available value.

Main Display Loop

In the Main display loop, the selected values can be consecutively read on Line 2 by pressing the D key. A left justified 2, 3 or 4-character mnemonic indicates which Line 2 value is currently shown. When in the Main display loop, the Function keys Fi and E perform the User functions programmed in the User Input program section.

Parameter Display Loop and Hidden Parameter Loop

These display loops provide quick access to selected parameters that can be viewed and modified on Line 2 without having to enter Full Programming Mode. These values include Parameter List A/B selection, Setpoints and Display Settings (color, intensity and contrast). To utilize the Parameter or Hidden Parameter display loops, a security code (1-250) must be programmed. (See Programming Security Code at the end of this section.)

The Parameter display loop is accessed by pressing the P key. The selected Parameter display loop values can be viewed and/or changed per the Line 2 Value Access setting programmed for each available value. The Hidden Parameter loop follows the Parameter display loop, and can only be accessed when the correct security code is entered at the Code prompt.

YE S

ПО

Select YE5 to program the Value Access setting for each available Line 2 parameter. Line 2 values can be made accessible in either the Main (D key), Parameter (P key) or Hidden (P key following code entry) display loops. When the List parameter is configured for an Entr setting, a List assignment submenu will follow. Refer to Input module, User sub-menu section for a description of the function.

Each parameter must be configured for one of the following settings. Not all settings are available for each parameter, as shown in the Parameter Value Access table.

SELECTION DESCRIPTION

LOC	Not viewed on Line 2 Display (Factory Default Setting)
d-rEAd	View in Main display loop. Cannot change or reset.
d-r5E	View and reset in Main display loop.
d-Entr	View and change in Main display loop
P-rEAd	View in Parameter display loop. Cannot change or reset.
P-Entr	View and change in Parameter display loop
Н , ЫЕ	View and change in Hidden Parameter display loop

Select YE5 to display the following list of functions that can be made available at the end of the Parameter (P - En Er) or Hidden (H + dE) display loops. Each Line 2 Function can be programmed for LOC, P-Entr, or HidE.

YE S

The more critical and frequently used functions should be first assigned to the User Inputs and User Function keys, however if more functions are needed than what can be obtained with user inputs and function keys, these will provide a means to provide that access. Refer to Input module, User sub-menu section for a description of the function.

SELECTION	DESCRIPTION
rEL	Zero (tare) display
r – Ł A r E	Reset Display Tare (offset) value
ЬЯЕ	Store batch reading in Totalizer
r-tot	Reset Totalizer
r - HI	Reset Maximum value
r - L O	Reset Minimum value
r-HL	Reset Max and Min values
r - 1	Reset Setpoint output 1

ПО

DISPLAY	DESCRIPTION	NOT VIEWED	NOT MAIN DISPLAY LOOP VIEWED (D KEY)			PARAMETER DISPLAY LOOP (P KEY)		HIDDEN LOOP
		LOC	d-rEAd	d-r5E	d-Entr	P-rERd	P-Entr	HıdE
І ПР ШЕ	Input	Х	X	X				
6r055	Gross (absolute)	Х	X					
ŁĦrE	Tare Value	Х	X		Х			
FOFUT	Total	Х	X	X				
H i	Max Value	Х	X	X				
Lo	Min Value	Х	X	X				
LI SE	Parameter List A/B	Х	X		Х	X	X	х
5n	Setpoint Value (S1-S4) *	Х	X		Х	X	X	х
bn-dn	Band/Deviation	Х	X		Х	X	X	х
Eo Ior	Line 1 Display Color	Х				X	X	х
d-LEU	Display Intensity Level	X				X	X	х
d-Cont	Display Contrast Level	X				X	X	Х

LINE 2 PARAMETER VALUE ACCESS

* Indicates multiple value entries.

www.redlion.net

SELECTION	DESCRIPTION
r - 2	Reset Setpoint output 2
r - 3	Reset Setpoint output 3
r - 4	Reset Setpoint output 4
r - 34	Reset Setpoint outputs 3 & 4
r - 234	Reset Setpoint outputs 2, 3 & 4
r-ALL	Reset all Setpoint outputs
Print	Print Request

LINE 2 DISPLAY SCROLL ENABLE/TIME

Scroll	
ПО	

1 to 15 seconds

If Line 2 Display Scrolling is desired, set the scroll time in seconds.

ПО

LINE 2 UNITS MNEMONIC(S)

FAEE	0 F F	LABEL	[U5E	FAEE
	L 6 - F A C	Li-fac	L6-[5E	Lb Ln I

Select the mode for Line 2 Units Mnemonic(s). See LINE 2 UNITS MNEMONIC DIAGRAM for programming details.

SELECTION	MODE	DESCRIPTION
0 F F	OFF	No Line 2 mnemonics shown.
LAPET	LABEL	Single programmable mnemonic shown as a separate item in the Line 2 Display loop. No individual mnemonics are shown with the other Line 2 Display values.
[USE	CUSTOM	Individual Custom programmable mnemonics shown with each value in the Line 2 Display loop.
FACF	FACTORY	Individual Factory default mnemonics shown with each value in the Line 2 Display loop.
LB-[5E	LABEL & CUSTOM	A programmable mnemonic shown as a separate item in the Line 2 Display loop. Also, individual Custom programmable mnemonics shown with each value in the Line 2 Display loop.
L6-FAC	LABEL & FACTORY	A programmable mnemonic shown as a separate item in the Line 2 Display loop. Also, individual Factory default mnemonics shown with each value in the Line 2 Display loop.
Lb Ln I	LINE 1 INDEXED LABELS	Individual programmable mnemonics, indexed to the Line 1 Display value, are shown as a separate item in the Line 2 Display loop. These same mnemonics are also shown with each value in the Line 2 Display loop.
L I-FAC	LINE 1 INDEXED LABELS & FACTORY	Individual programmable mnemonics, indexed to the Line 1 Display value, are shown as a separate item in the Line 2 Display loop. Also, individual Factory default mnemonics are shown with each value in the Line 2 Display loop.

The characters available for the programmable modes include:

A b [d E F F H I J L L M R D P 9 r S E U W Y 2 D I 2 3 4 5 5 7 8 9 3 c P 9 h i m n o u w - z [] r' blank Two character spaces are required to display this character.

PROGRAMMING SECURITY CODE

Ude d5P Π

000 to 250

To activate either the Parameter or Hidden Parameter display loops, a security code (1-250) must be entered. If a "0" security code is programmed, pressing the \mathbf{P} key takes you directly to the Full Programming Mode.

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (PLDL) in the User Input Function parameter (Input [User] module).

Two programming modes are available. Full Programming Mode allows all parameters to be viewed and modified. Parameter display loop mode provides access to those selected parameters, that can be viewed and/or modified without entering the Full programming mode.

The following chart indicates the levels of access based on various lod E and User Input *PLDI* settings.

SECURITY CODE	USER INPUT CONFIGURED	USER INPUT STATE	WHEN P KEY IS PRESSED	FULL PROGRAMMING MODE ACCESS
0	not PLOE		Full Programming	Immediate Access
0	PLOC	Not Active	Full Programming	Immediate Access
0	PLOC	Active	Enter Parameter Display Loop	No Access
>0	not PL DE		Enter Parameter Display Loop	After Parameter Display Loop with correct code # at [I]dE prompt.
>0	PLOC	Not Active	Full Programming	Immediate Access
>0	PLOC	Active	Enter Parameter Display Loop	After Parameter Display Loop with correct code # at [DdE prompt.

1-717-767-6511

SECONDARY FUNCTION PARAMETERS (56 Adr 9)

MAX (HI) CAPTURE ASSIGNMENT

rEL 6,055

Select the desired input value that will be assigned to the Max Capture.

MAX (HI) CAPTURE DELAY TIME

0.0 to 3275.0 seconds

When the Input value is above the present MAX value for the entered delay time, the meter will capture that value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN (LO) CAPTURE ASSIGNMENT

6r055

Select the desired input value that will be assigned to the Min Capture.

Ε

MIN (LO) CAPTURE TIME

0.0 to 32750 seconds

rEL

When the Input value is below the present MIN value for the entered delay time, the meter will capture that value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

DISPLAY UPDATE RATE

5

2

1

This parameter configures the display update rate. It does not affect the response time of the setpoint output or analog output option cards.

AUTO-ZERO TRACKING TIME

0 to 250 seconds

To disable Auto-zero tracking, set this value to 0.

10

20

updates/second

AUTO-ZERO TRACKING BAND

1 to 4095

The meter can be programmed to automatically compensate for zero drift. Drift may be caused by changes in the transducers or electronics, or accumulation of material on weight systems.

Auto-zero tracking operates when the readout remains within the tracking band for a period of time equal to the auto-zero tracking time. When these conditions are met, the meter re-zeroes the readout. After the re-zero operation, the meter resets and continues to auto-zero track.

The auto-zero tracking band should be set large enough to track normal zero drift, but small enough to not interfere with small process inputs.

For filling operations, the fill rate must exceed the auto-zero tracking rate. This avoids undesirable tracking at the start of the filling operation.

Fill Rate ≥ tracking band tracking time

Auto-zero tracking is disabled by setting the auto-zero tracking time parameter = 0.

TOTALIZER (INTEGRATOR) PARAMETERS (LULRL)

The totalizer accumulates (integrates) the Relative Input Display value using one of two modes. The first is using a time base. This can be used to provide an indication of total flow, usage or consumption over time. The second is through a user input or function key programmed for Batch (one time add on demand). This can be used to provide a readout of total weight, useful in weight based filling operations. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

TOTALIZER DECIMAL POINT

For most applications, this should match the Input Display Decimal Point (dELPRt). If a different location is desired, refer to Totalizer Scale Factor.

TOTALIZER TIME BASE

5EE-seconds (/1) 171 -minutes (/60)

This is the time base used in Totalizer accumulations. If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

_____ TOTALIZER SCALE FACTOR

5515785606 1000

0,00 / to 6 5,000

For most applications, the Totalizer reflects the same decimal point location and engineering units as the Input Display. In this case, the Totalizer Scale Factor is 1.000. The Totalizer Scale Factor can be used to scale the Totalizer to a value that is different than the Input Display. Common possibilities are:

1. Changing decimal point location (example tenths to whole)

2. Average over a controlled time frame.

Details on calculating the scale factor are shown later.

If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

Lo Luk

TOTALIZER LOW CUT VALUE

- 199999 to 999999

A low cut value disables Totalizer when the Input Display value falls below the value programmed.

TOTALIZER POWER UP RESET

Р), (-) (РЕОЕ П О

*Π*⁰ - do not reset buffer *Y*E5 - reset buffer

The Totalizer can be reset to zero on each meter power-up by setting this parameter to $\ensuremath{\texttt{yE5}}$.

TOTALIZER BATCHING

The Totalizer Time Base is overridden when a user input or function key is programmed for store batch (bRt). In this mode, when the user input or function key is activated, the Input Display reading is multiplied by the totalizer scale factor and then one time added to the Totalizer (batch). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. This is useful in weighing operations, when the value to be added is not based on time but after a filling event.

TOTALIZER USING TIME BASE

Totalizer accumulates as defined by:

$$Totalizer Scale Factor = \frac{Totalizer Display^*}{Input Display^*}$$

*Value indicated with decimal and all display units after the decimal; Prior to calculating, "drop" the decimal point leaving all trailing units.

Where:

Input Display = Fixed Input Display value.

Totalizer Display = Totalized value with Input Display constant during a period of time equal to the Totalizer Time Base.

Example: A PAX2S is monitoring the total weight of material on a 20 ft conveyor. The conveyor operates at a constant rate of 1 ft/sec. The Totalizer will calculate the total weight of material output from the conveyor. Although the PAX2S Input Display indicates lbs in whole units, the Totalizer will be programmed to display tons in 1/10 units. Note that this application requires a User Input to enable the Totalizer when the conveyor is running. Accuracy is dependent on the amount of material and position of material still on the conveyor. For accurate totalizer reading, the conveyor should be allowed to "empty" before taking a totalizer reading.

There are several factors to consider in this example. First, the material that clears the end of the conveyor in 1 second is only 1/20 of the weight being displayed at any given time (20 ft conveyor @ 1 ft/sec). Second, the Totalizer display is in tenths of tons, while the input is in pounds.

In order to calculate the Totalizer Scale Factor, choose a constant Input Display (100) value and then determine the Totalizer Display value that would result after the period of the Totalizer Time Base (1 hour) selected.

 $\frac{100 \text{ lb}}{20 \text{ sec}} = 5 \text{ lb/sec.} \rightarrow \text{With 100 lb on the conveyor, 5 lbs falls off}$ the end of the conveyor each second.

5 lb/sec x 3600 sec = 18,000 lb \rightarrow 3600 seconds of material passing the end of the conveyor in an hour.

 $\frac{18,000 \text{ lb}}{2000 \text{ lb}} = 9.0 \text{ tons} \rightarrow \text{Conversion of lbs to tons.}$

Conclusion: Input Display of 100 results in a Totalizer Display of 9.0 after 1 hour of constant and continuous operation. Place these values in the Totalizer Scale Factor formula as follows:

Totalizer Scale Factor = Totalizer Display* / Input Display* Totalizer Scale Factor = 9.0/100 Totalizer Scale Factor = 90/100 ** Totalizer Scale Factor = 0.9

* This value should include the decimal and all display units after the decimal. ** This step requires that the decimal be "dropped", but all other digits remain.

COMMUNICATIONS PORT PARAMETERS (Park)

To select 5Er / RL, an optional communication card must be installed.

PORT SELECT

SERLAL

Select the Communications Port to be programmed.

ИБЬ

USB PORT PARAMETERS (U5b)

USB CONFIGURATION

AULD SECLAL

- ANFO Meter automatically configures USB port settings to operate with Crimson configuration software. When a USB cable is attached to PAX2S and PC, the port is internally set to Modbus RTU protocol, 38400 baud, 8 bits, and Unit Address 247. The Serial Port settings programmed below will not change, or show this.
- SERIAL Configures USB port to utilize the Serial Port settings and protocol programmed below.

SERIAL PORT PARAMETERS (5Er / RL)

BAUD RATE SRL hHiid 1200 4800 19200 9600 2400 38400 38400

8

Set the baud rate to match the other serial communications equipment on the serial link. Normally, the baud rate is set to the highest value that all the serial equipment are capable of transmitting and receiving.

DATA BIT

7

Select either 7 or 8 bit data word lengths. Set the word length to match the other serial communications equipment on the serial link. For Mbrtu communication type, data bit setting is fixed at 8 bits.

La 247 - Modbus

Ło 99 - RLC Protocol

Select a Unit Address that does not match an address number of any other equipment on the serial link.

п

TRANSMIT DELAY

0.000 to 0.250 seconds

Following a Modbus command or RLC Transmit Value command, the PAX2S will wait this minimum amount of time in seconds before issuing a serial response

The following programming steps are only available when Communications Type (LMPE) is programmed for r L [.

ABBREVIATED PRINTING

ПО УЕ 5

Select YES for full print or Command T transmissions (meter address, mnemonics and parameter data) or NO for abbreviated print transmissions (parameter data only). This will affect all the parameters selected in the print options. If the meter address is 00, it will not be sent during a full transmission.

PRINT OPTIONS

ПО УЕ 5

925 - Enters the sub-menu to select the meter parameters to appear during a print request. For each parameter in the sub-menu, select 925 for that parameter information to be sent during a print request or 10 for that parameter information not to be sent. A print request is sometimes referred to as a block print because more than one parameter information (meter address, mnemonics and parameter data) can be sent to a printer or computer as a block.

DISPLAY	DESCRIPTION	FACTORY SETTING	MNEMONIC
i npul	Signal Input	9 E S	INP
6r055	Gross (absolute) Value	ПО	GRS
ERFE	Tare Value	ПО	TAR
EOERL	Total Value	ПО	тот
HI LO	Max & Min	ПО	MAX, MIN
SPNE	Setpoint Values	ПО	SP1-SP4

SERIAL COMMUNICATIONS

The PAX2S supports serial communications using the optional serial communication cards or via the USB programming port located on the side of the unit. When USB is being used (connected), the serial communication card is disabled. When using the standard RS232 and RS485 Pax option cards, the PAX2S supports both the RLC protocol and also supports Modbus communications. The PAX Modbus option card should not be used with the PAX2S, as the PAX2S internal Modbus protocol supports complete unit configuration, and is much more responsive.

USB

The USB programming port is primarily intended to be used to configure the PAX2S with the Crimson programming software. It can also be used as a virtual serial communications port following installation of the PAX2S USB drivers that are supplied with the Crimson software. When the USB port is being used, i.e. the USB cable is connected between PAX2S and PC, all serial communications with the serial option card (if used) is disabled.

USB Cable type required: USB A to Mini-B (not supplied)

PAX2S CONFIGURATION USING CRIMSON AND USB

- 1. Install Crimson software.
- 2. Supply power to PAX2S
- 3. Insure USB Configuration "[I][F] [5" in USB Port Parameters is set to "AULO" (factory default setting).
- 4. Attach USB cable (USB A to Mini-B) between PC and PAX2S.
- 5. Create a new file (File, New) or open an existing PAX2S database within Crimson.
- 6. Configure Crimson Link options (Link, Options) to the serial port which the USB cable is attached (in Step 4).

SERIAL MODBUS COMMUNICATIONS

Modbus Communications requires that the Serial Communication Type Parameter ($k \Psi E$) be set to " $\Pi^{a}br E u$ " or " $\Pi^{b}B S E$ ".

PAX2S CONFIGURATION USING CRIMSON AND SERIAL COMMUNICATIONS CARD

- 1. Install Crimson software.
- 2. Install RS232 or RS485 card and connect communications cable from PAX2S to PC.
- 3. Supply power to PAX2S
- 4. Configure serial parameters (5ER/ PL) to Modbus RTU """br Łu", 38,400 baud, address 247.
- 5. Create a new file (File, New) or open an existing PAX2S database within Crimson.
- 6. Configure Crimson Link options (Link, Options) to the serial port which the communication cable is attached (in step 2).

SUPPORTED FUNCTION CODES

FC03: Read Holding Registers

- 1. Up to 64 registers can be requested at one time.
- 2. HEX <8000> is returned for non-used registers.

FC04: Read Input Registers

- 1. Up to 64 registers can be requested at one time.
- 2. Block starting point can not exceed register boundaries.
- 3. HEX <8000> is returned in registers beyond the boundaries.
- 4. Input registers are a mirror of Holding registers.

FC06: Preset Single Register

- 1. HEX <8001> is echoed back when attempting to write to a read only register.
- 2. If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit. It is also returned in the response.

FC16: Preset Multiple Registers

- 1. No response is given with an attempt to write to more than 64 registers at a time.
- Block starting point cannot exceed the read and write boundaries (40001-41280).
- If a multiple write includes read only registers, then only the write registers will change.
- 4. If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit.

FC08: Diagnostics

The following is sent upon FC08 request:

- Module Address, 08 (FC code), 04 (byte count), "Total Comms" 2 byte count, "Total Good Comms" 2 byte count, checksum of the string
- "Total Comms" is the total number of messages received that were addressed to the PAX2. "Total Good Comms" is the total messages received by the PAX2S with good address, parity and checksum. Both counters are reset to 0 upon response to FC08 and at power-up.

FC17: Report Slave ID

The following is sent upon FC17 request:

- RLC-PAX2S ab<0100h><40h><10h>
- a = SP Card, "0"-No SP, "2" or "4" SP
- b = Linear Card "0" = None, "1" = Yes
- <0100> Software Version Number (1.00) <40h>Max Register Reads (64)
- <40h>Max Register Writes (64)
- <10h> Number Guid/Scratch Pad Regs (16)

SUPPORTED EXCEPTION CODES

01: Illegal Function

Issued whenever the requested function is not implemented in the meter.

02: Illegal Data Address

Issued whenever an attempt is made to access a single register that does not exist (outside the implemented space) or to access a block of registers that falls completely outside the implemented space.

03: Illegal Data Value

Issued when an attempt is made to read or write more registers than the meter can handle in one request.

07: Negative Acknowledge

Issued when a write to a register is attempted with an invalid string length.

1-717-767-6511

Ε

PAX2S MODBUS REGISTER TABLE

Only frequently used registers are shown below. The entire Modbus Register Table can be found at www.redlion.net. Values less than 65,535 will be in (LO word). Values greater than 65,535 will continue into (Hi word). Negative values are represented by two's complement of the combined (Hi word) and (LO word). Note 1: The PAX2S should not be powered down while parameters are being changed. Doing so may corrupt the non-volatile memory resulting in checksum errors.

REGISTER ADDRESS	TABLE INDEX	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS	
	FREQUENTLY USED REGISTERS							
40001	0	Input Relative Value (Hi word)	100000	000000	NI/A	Deed Only	Process value of present input level. This value is affected	
40002	1	Input Relative Value (Lo word)	-199999 9999999 N/A Real		Read Only	(Relative Value = Gross (Absolute) Input Value - Tare Value)		
40003	2	Maximum Value (Hi word)	100000	000000	NI/A	Bood/M/rito	Maximum Relative Input Capture Value obtained since	
40004	3	Maximum Value (Lo word)	-199999	999999	N/A	Read/write	having been reset.	
40005	4	Minimum Value (Hi word)	100000	000000	NI/A	Bood/M/rito	Minimum Relative Input Capture Value obtained since	
40006	5	Minimum Value (Lo word)	-199999	999999	N/A	Read/white	having been reset.	
40007	6	Total Value (Hi word)	100000	000000	0	Bood/M/rito	Tetalizar value	
40008	7	Total Value (Lo word)	-199999	999999	0	Reau/wille		
40009	8	Setpoint 1 Value (Hi word)	100000	000000	100	Pood/M/rito	Active List (A or P)	
40010	9	Setpoint 1 Value (Lo word)	-199999	999999	100	Reau/wille		
40011	10	Setpoint 2 Value (Hi word)	100000	000000	200	Bood/M/rito	Active List (A or P)	
40012	11	Setpoint 2 Value (Lo word)	-199999	999999	200	Reau/wille		
40013	12	Setpoint 3 Value (Hi word)	100000	000000	200	Deed	Active List (A or D)	
40014	13	Setpoint 3 Value (Lo word)	-199999	999999	300	Read/write	Active List (A of B)	
40015	14	Setpoint 4 Value (Hi word)	100000	000000	400	Deed	Active List (A or D)	
40016	15	Setpoint 4 Value (Lo word)	-199999	999999	400	Read/write		
40017	16	Setpoint 1 Band/Dev. Value (Hi word)	400000	000000		Deedalatite	Active List (A or B).	
40018	17	Setpoint 1 Band/Dev. Value (Lo word)	-199999	-199999 999999 0 Read/Write		Read/write	Applicable only for Band or Deviation Setpoint Action.	
40019	18	Setpoint 2 Band/Dev. Value (Hi word)	400000	000000		Deed	Active List (A or B).	
40020	19	Setpoint 2 Band/Dev. Value (Lo word)	-199999	-199999 999999 0 Read/W		Read/write	Applicable only for Band or Deviation Setpoint Action.	
40021	20	Setpoint 3 Band/Dev. Value (Hi word)	-100000	000000	0	Read/Write	Active List (A or B).	
40022	21	Setpoint 3 Band/Dev. Value (Lo word)	-133333	333333	0	Read/write	Applicable only for Band or Deviation Setpoint Action.	
40023	22	Setpoint 4 Band/Dev. Value (Hi word)	-199999	999999	0	Read/Write	Active List (A or B).	
40024	23	Setpoint 4 Band/Dev. Value (Lo word)					Applicable only for Band or Deviation Setpoint Action.	
40025	24	Setpoint Output Register (SOR)	0	15	0	Read/Write	Status of Setpoint Outputs. Bit State: $0 = Off$, $1 = On$. Bit $3 = SP1$, Bit $2 = SP2$, Bit $1 = SP3$, Bit $0 = SP4$. Outputs can only be activated/reset with this register when the respective bits in the Manual Mode Register (MMR) are set.	
40026	25	Manual Mode Register (MMR)	0	31	0	Read/Write	Bit State: 0 = Auto Mode, 1 = Manual Mode Bit 4 = SP1, Bit 3 = SP2, Bit 2 = SP3, Bit 1 = SP4, Bit 0 = Linear Output	
40027	26	Reset Output Register	0	15	0	Read/Write	Bit State: 1 = Reset Output, bit is returned to zero following reset processing; Bit 3 = SP1, Bit 2 = SP2, Bit 1 = SP3, Bit 0 = SP4	
40028	27	Analog Output Register (AOR)	0	4095	0	Read/Write	Functional only if Linear Output is in Manual Mode. (MMR bit 0 = 1) Linear Output Card written to only if Linear Out (MMR bit 0) is set.	
40029	28	Input Gross (Absolute) Value (Hi word)	-199999	999999	N/A	Read Only	Gross (absolute) value of present Input level. This value is	
40030	29	Input Gross (Absolute) Value (Lo word)					by Offset Value	
40031	30	Tare Value (Hi word)	-199999	999999	0	Read/M/rite	Relative Input Value (standard meter value) is the difference	
40032	31	Tare Value (Lo word)	199999	555555	0	i toau/wille	value, i.e. Relative = Gross - Tare	

SERIAL RLC PROTOCOL COMMUNICATIONS

RLC Communications requires the Serial Communications Type Parameter ($\pounds \Psi E$) be set to "rLE".

SENDING SERIAL COMMANDS AND DATA TO THE METER

When sending commands to the meter, a string containing at least one command character must be constructed. A command string consists of a command character, a value identifier, numerical data (if writing data to the meter) followed by a command terminator character * or . The <CR> is also available as a terminator when Counter C is in the SLAVE mode.

Command Chart

COMMAND	DESCRIPTION	NOTES
N	Node (Meter) Address Specifier	Address a specific meter. Must be followed by a two digit node address. Not required when address = 00.
Т	Transmit Value (read)	Read a register from the meter. Must be followed by register ID character
V	Value Change (write)	Write to register of the meter. Must be followed by register ID character and numeric data.
R	Reset	Reset a register or output. Must be followed by register ID character.
Р	Block Print Request	Initiates a block print output. Registers are defined in programming.

Command String Construction

The command string must be constructed in a specific sequence. The meter does not respond with an error message to invalid commands. The following procedure details construction of a command string:

- The first characters consist of the Node Address Specifier (N) followed by a 2 character address number. The address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
- 2. After the optional address specifier, the next character is the command character.
- 3. The next character is the Register ID. This identifies the register that the command affects. The P command does not require a Register ID character. It prints according to the selections made in print options.
- 4. If constructing a value change command (writing data), the numeric data is sent next.
- 5. All command strings must be terminated with the string termination characters *, \$ or when Counter C is set for slave mode <CR>. The meter does not begin processing the command string until this character is received. See Timing Diagram figure for differences between terminating characters.

Register Identification Chart

ID	VALUE DESCRIPTION	MNEMONIC	APPLICABLE COMMANDS/COMMENTS
A	Input (relative value)	INP	T, P, R (Reset command resets input to zero; tares)
В	Total	тот	T, P, R (Reset command resets total to zero)
С	Max Input	MAX	T, P, R (Reset command resets Max to current reading)
D	Min Input	MIN	T, P, R (Reset command resets Min to current reading)
E	Setpoint 1	SP1	T, P, V, R (Reset command resets
F	Setpoint 2	SP2	the setpoint output)
G	Setpoint 3	SP3	
Н	Setpoint 4	SP4	
I	Band/Deviation 1	BD1	T, V
J	Band/Deviation 2	BD2	T, V
K	Band/Deviation 3	BD3	T, V
L	Band/Deviation 4	BD4	T, V
М	Gross (Absolute) Input value	GRS	T, P
0	Tare (Offset) Value	TAR	T, P, R, V
U	Auto/Manual Register	MMR	Τ, V
W	Analog Output Register	AOR	Τ, V
Х	Setpoint Register	SOR	T, V

Command String Examples:

1. Node address = 17, Write 350 to Setpoint 1. String: N17VE350\$

- 2. Node address = 5, Read Input value. String: N5TA*
- 3. Node address = 0, Reset Setpoint 4 output. String: RH*

Sending Numeric Data

Numeric data sent to the meter must be limited to 6 digits (-199999 to 999999). Leading zeros are ignored. Negative numbers must have a minus sign. The meter ignores any decimal point and conforms the number to the scaled resolution. (For example: the meter's scaled decimal point position = 0.0 and 25 is written to a register. The value of the register is now 2.5.

Note: Since the meter does not issue a reply to value change commands, follow with a transmit value command for readback verification.

RECEIVING DATA FROM THE METER

Data is transmitted by the meter in response to either a transmit command (T), a print block command (P) or User Function print request. The response from the meter is either a full field transmission or an abbreviated transmission. The meter response mode is selected in Serial Port Parameters (Abru).

Full Field Transmission (Address, Mnemonic, Numeric data)

- Description Byte 2 byte Node Address field [00-99] 1, 2
- <SP> (Space) 3
- 3 byte Register Mnemonic field 4-6
- 2 byte data field, 10 bytes for number, one byte for sign, one byte for 7-18
- decimal point 19
- <CR> carriage return 20 <LF> line feed
- <SP>* (Space) 21
- <CR>* carriage return 22
- 23 <LF>* line feed

* These characters only appear in the last line of a block print.

The first two characters transmitted are the node address, unless the node address assigned = 0, in which case spaces are substituted. A space follows the node address field. The next three characters are the register mnemonic.

The numeric data is transmitted next. The numeric field is 12 characters long (to accommodate the 10 digit totalizer), with the decimal point position floating within the data field. Negative values have a leading minus sign. The data field is right justified with leading spaces.

The end of the response string is terminated with a carriage return <CR> and <LF>. When block print is finished, an extra <SP><CR> <LF> is used to provide separation between the blocks.

Abbreviated Transmission (Numeric data only)

- Byte Description
- 1-12 12 byte data field, 10 bytes for number, one byte for sign, one byte for decimal point
- 13 <CR> carriage return
- 14 <LF> line feed
- 15
- <SP>* (Space) <CR>* carriage return 16 17 <LF>* line feed

* These characters only appear in the last line of a block print.

Meter Response Examples:

- 1. Node address = 17, full field response, Input = 875 17 INP 875 <CR><LF>
- 2. Node address = 0, full field response, Setpoint 2 = -250.5
- SP2 -250.5<CR><LF>
- 3. Node address = 0, abbreviated response, Setpoint 2 = 250, last line of block print

250<CR><LF><SP><CR><LF>

Auto/Manual Mode Register (MMR) ID: U

This register sets the controlling mode for the outputs. In Auto Mode (0) the meter controls the setpoint and analog output. In Manual Mode (1) the outputs are defined by the registers SOR and AOR. When transferring from auto mode to manual mode, the meter holds the last output value (until the register is changed by a write). Each output may be independently changed to auto or manual. In a write command string (VU), any character besides 0 or 1 in a field will not change the corresponding output mode.

Example: VU00011 places SP4 and Analog in manual.

Analog Output Register (AOR) ID: W

This register stores the present signal value of the analog output. The range of values of this register is 0 to 4095, which corresponds to the analog output range per the following chart:

Register	Output Signal*			
Value	0-20 mA	4-20 mA	0-10 V	
0	0.00	4.00	0.000	
1	0.005	4.004	0.0025	
2047	10.000	12.000	5.000	
4094	19.995	19.996	9.9975	
4095	20.000	20.000	10.000	

*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (0-20 mA, 4-20 mA or 0-10 V).

Writing to this register (VW) while the analog output is in the Manual Mode causes the output signal level to update immediately to the value sent. While in the Automatic Mode, this register may be written to, but it has no effect until the analog output is placed in the manual mode. When in the Automatic Mode, the meter controls the analog output signal level. Reading from this register (TW) will show the present value of the analog output signal.

Example: VW2047 will result in an output of 10.000 mA, 12.000 mA or 5.000V depending on the range selected.

Setpoint Output Register (SOR) ID: X

This register stores the states of the setpoint outputs. Reading from this register (TX) will show the present state of all the setpoint outputs. A "0" in the setpoint location means the output is off and a "1" means the output is on.

X al	bed
	$ \square d = SP4$
	c = SP3
	b = SP2
L	a = SP1

In Automatic Mode, the meter controls the setpoint output state. In Manual Mode, writing to this register (VX) will change the output state. Sending any character besides 0 or 1 in a field or if the corresponding output was not first in manual mode, the corresponding output value will not change. (It is not necessary to send least significant 0s.)

Example: VX10 will result in output 1 on and output 2 off.

COMMAND RESPONSE TIME

The meter can only receive data or transmit data at any one time (half-duplex operation). When sending commands and data to the meter, a delay must be imposed before sending another command. This allows enough time for the meter to process the command and prepare for the next command.

At the start of the time interval t_1 , the computer program prints or writes the string to the com port, thus initiating a transmission. During t_1 , the command characters are under transmission and at the end of this period, the command terminating character (*) is received by the meter. The time duration of t_1 is dependent on the number of characters and baud rate of the channel.

$t_1 = (10 * \# of characters) / baud rate$

At the start of time interval t_2 , the meter starts the interpretation of the command and when complete, performs the command function. This time interval t_2 varies from 2 msec to 15 msec. If no response from the meter is expected, the meter is ready to accept another command.

If the meter is to reply with data, the time interval t_2 is controlled by the use of the command terminating character and the Serial Transmit Delay parameter (*dELRY*). The standard command line terminating character is "*". This terminating character results in a response time window of the Serial Transmit Delay time (*dELRY*) plus 15 msec. maximum. The *dELRY* parameter should be programmed to a value that allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with "\$" results in a response time window (t_2) of 2 msec minimum and 15 msec maximum. The response time of this terminating character requires that sending drivers release within 2 msec after the terminating character is received.

At the beginning of time interval t_3 , the meter responds with the first character of the reply. As with t_1 , the time duration of t_3 is dependent on the number of characters and baud rate of the channel.

 $t_3 = (10 * \# of characters) / baud rate.$

At the end of t_3 , the meter is ready to receive the next command. The maximum serial throughput of the meter is limited to the sum of the times t_1 , t_2 and t_3 .

Timing Diagrams

RESPONSE FROM METER

COMMUNICATION FORMAT

Data is transferred from the meter through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character.

The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

LOGIC	INTERFACE STATE	RS232*	RS485*	
1	mark (idle)	TXD,RXD; -3 to -15 V	a-b < -200 mV	
0	space (active)	TXD,RXD; +3 to +15 V	a-b > +200 mV	
* Voltage levels at the Receiver				

Data is transmitted one byte at a time with a variable idle period between characters (0 to ∞). Each ASCII character is "framed" with a beginning start bit, an optional parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the meter.

Start bit and Data bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted. Since the sending and receiving devices operate at the same transmission speed (baud rate), the data is read without timing errors.

Parity bit

After the data bits, the parity bit is sent. The transmitter sets the parity bit to a zero or a one, so that the total number of ones contained in the transmission (including the parity bit) is either even or odd. This bit is used by the receiver to detect errors that may occur to an odd number of bits in the transmission. However, a single parity bit cannot detect errors that may occur to an even number of bits. Given this limitation, the parity bit is often ignored by the receiving device. The PAX meter ignores the parity bit of incoming data and sets the parity bit to odd, even or none (mark parity) for outgoing data.

Stop bit

The last character transmitted is the stop bit. The stop bit provides a single bit period pause to allow the receiver to prepare to re-synchronize to the start of a new transmission (start bit of next byte). The receiver then continuously looks for the occurrence of the start bit. If 7 data bits and no parity is selected, then 2 stop bits are sent from the PAX meter.

FACTORY SERVICE OPERATIONS (FALLEY)

0-250

FACTORY SERVICE CODE

Enter the Service Code for the desired operation.

Use the $\not F h$ and $\not F h$ keys to display f h f h f h h and $\not F h$ here the will flash r f f h f h here the return to f h f h f h h here to return to Display Mode. This will overwrite all user settings with the factory settings. The only exception is the User Mnemonics which retain their programmed values (see Code 69).

RESTORE FACTORY DEFAULTS (w/Units Mnemonics)

Same as Code 66, except the User Mnemonics are also returned to the factory default settings (blank).

The meter will briefly display the model (P25) on Line 1, and the current firmware version (UEr x.xx) on Line 2, and then return to IDE 50.

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed in Input Parameters. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter. When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment. Calibration does not change any user programmed parameters. However, it will affect the accuracy of the input signal and the values previously stored using the Apply (*RPPLY*) Scaling Style.

Preparation for Voltage Input Calibration

Warning: Input Calibration of this meter requires a signal source capable of producing a signal greater than or equal to the range being calibrated with an accuracy of 0.01% or better.

Before starting, verify that the Input Range Jumper is set for the range to be calibrated. Verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. Selecting Π_{a} at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting Ψ_{E} 5 and pressing the **P** key will cause the unit to store new calibration settings for the range selected. Pressing **D** at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

Input Calibration Procedure

- 1. After entering $[adE \quad 4B$, in Factory Service Operations, select the input (DD2Du or D2Du) to be calibrated.
- Press the P key until the desired range along with ZEP is indicated on Line 1 of the meter.
- 3. Apply the zero input limit of the range indicated on Line 1 of the meter.
- 4. Press $\overline{F1}$ to select $\forall E5$.
- 5. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 6. Display will indicate the desired range along with FUL on Line 1 of the meter.
- 7. Apply the signal level indicated on Line 1 of the meter.
- 8. Press /F1 to select YE5.
- 9. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 10. Repeat Preparation and Calibration Procedure for the other Input Range if calibration for the other range is desired.

Analog Output Card Calibration

Before starting, verify that a precision meter with an accuracy of 0.05% or better (voltmeter for voltage output and/or current meter for current output) is connected and ready. Using the chart below, step through the five selections to be calibrated. At each prompt, use the PAX2S \underline{Ft} and $\underline{F2}$ keys to adjust the output so that the external meter display matches the selection being calibrated. When the external reading matches, or if the range is not being calibrated, press the **P** key to advance to the next range. When all the desired ranges have been calibrated, exit programming mode and remove the external meters.

DISPLAY	EXTERNAL METER	ACTION
0,000A	0.00 mA	Adjust if necessary, press P
0 <u>0</u> 048	4.00 mA	Adjust if necessary, press P
0,020A	20.00 mA	Adjust if necessary, press P
0,0 u	0.00 V	Adjust if necessary, press P
10,0 u	10.00 V	Adjust if necessary, press P

TROUBLESHOOTING

PROBLEM	REMEDIES
No Display At Power-Up	Check power level and power connections
No Display After Power-Up	Check Display Module: d-LEU, d-Eant, and LI RE I program settings.
Program Locked-Out	Check for Active User Input, programmed for PLOL. Deactivate User Input.
	Enter proper access code at []]dE]] prompt. (Universal access code = 222)
No Line 1 Display	Check program settings for Line 1 Display Value Select/Enable. Confirm at least one Line 1 Display Value is enabled (955).
No Line 2 Display	Check program settings for Line 2 Value Access. Confirm at least one Line 2 Parameter Value is enabled in Main Display Loop (d - r ERd, d - r 5t, d - Entr).
No Line 1 Units Mnemonic Display	Check program settings for Line 1 Units Mnemonic(s).
Display of <code>@L@L</code> , <code>WLWL</code> , or ""	See General Meter Specifications, Display Messages.
Incorrect Input Display Value	Check Input Jumper Setting, Input Level, and Input Connections.
	Verify Input - Analog program settings.
	Contact factory
Modules or Parameters Not Accessible	Check for corresponding plug-in option card.
	Verify parameter is valid in regard to previous program settings.
Error Code: ErrKEY	Keypad is active at power up. Check for depressed or stuck keypad. Press any key to clear Error Code.
Error Code: EE PAr Error Code: EE Pdn	Parameter Data Checksum Error. Press any key to clear Error Code, verify all program settings and cycle power. Contact factory if Error Code returns at next power-up.
Error Code: ErrPro	Parameter Data Validation Error. Press any key to clear Error Code, verify all program settings and cycle power. Contact factory if Error Code returns at next power-up.
Error Code: EE ERL	Calibration Data Validation Error. Contact factory.
Error Code: EE L in	Linear Output Card Data Validation Error. Press any key to clear Error Code and cycle power. If Error Code returns at next power-up, replace Linear Option Card or contact factory.

This page intentionally left blank.