# TEMPERATURE CONTROLLERS



## The Trusted Source for Innovative Control Solutions

463

|                                |                                                                                                           | Temperature                                                                                | e Controllers                                                                           |                                                                                                                             |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                | CONTROL                                                                                                   | INDICATION                                                                                 | CONT                                                                                    | ROL                                                                                                                         |
|                                | CUB5RT/TC                                                                                                 | PAXLRT/TC                                                                                  | PAXLT                                                                                   | DP5T                                                                                                                        |
|                                |                                                                                                           | 608. / °F<br>PAR I V red Iĝin                                                              | DEP PAR FIA FOX RET<br>red ign                                                          | DEP PAR PIA PAY RET<br>red iğn                                                                                              |
| Description                    | RTD/Thermocouple Meter With<br>Output Option Card Capability                                              | 1/8 DIN RTD/Thermocouple<br>Indicator                                                      | RTD and Thermocouple Meter<br>With Setpoint Capability                                  | 1/8 DIN RTD and Thermocouple<br>Temperature Indicator                                                                       |
| Dimensions<br>(Height)x(Width) | 39 mm (H) x 75 mm (W)                                                                                     | 50 mm (H) x 97 mm (W)                                                                      | 50 mm (H) x 97mm (W)                                                                    | 50 mm (H) x 97mm (W)                                                                                                        |
| Display                        | 5 Digit, .48" (12mm) Reflective<br>and Red Backlight LCD                                                  | 4 Digit, .56" (14mm) Red LED                                                               | 5 Digit, .56" (14mm) Red LED                                                            | 4 1/2 Digit, .56" (14mm) Red LED                                                                                            |
| Input Ranges                   | RTD (CUB5RT)<br>Pt385, Pt392, Ni672, and Cu427<br>Thermocouple (CUB5TC)<br>T, E, J, K, R, S, B, N, and mV | RTD (PAXLRT)<br>Pt385 and Pt392<br>Thermocouple (PAXLTC)<br>T, E, J, K, R, S, B, N, and mV | RTD<br>Pt385, Pt392, Ni672, and Cu427<br>Thermocouple<br>T, E, J, K, R, S, B, N, and mV | Thermocouple<br>T, E, J, K, R, S, B, N, and C<br>RTD<br>Pt385, Pt392, Ni672, and Cu427<br>Direct<br>10 Ohm, 100 Ohm, and mV |
| Control                        | Yes                                                                                                       | No                                                                                         | Yes                                                                                     | No                                                                                                                          |
| Outputs                        | Single Form C Relay<br>Dual Sinking                                                                       | No                                                                                         | Dual Form C                                                                             | No                                                                                                                          |
| Communications                 | RS232<br>RS485                                                                                            | No                                                                                         | No                                                                                      | No                                                                                                                          |
| Other Features/<br>Options     | User Input<br>Min/Max Memory<br>Custom Units Indicato                                                     | Programmable Offset,<br>Peak/Valley Memory,<br>Custom Units Overlay                        | User Input<br>Min/Max Memory,<br>Custom Units Overlay                                   | Min/Max Memory,<br>Integrator/Totalizer,<br>Custom Units Overlay                                                            |
| Power Source                   | 9 to 28 VDC                                                                                               | 85 to 250 VAC                                                                              | 50 to 250 VAC<br>21.6 to 250 VDC                                                        | 85 to 250 VAC<br>11 to 36 VDC<br>24 VAC                                                                                     |
| Page Number                    | Page 480/469                                                                                              | Page 499/491                                                                               | Page 506                                                                                | Page 516                                                                                                                    |

\*See website for product information.

+ Field Installable Option Card

|                                  | Temperature Controllers                                                                                                   |                                                                                                                                 |                                                                                                             |                                                                                                                 |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
|                                  | CON                                                                                                                       | TROL                                                                                                                            | PID CO                                                                                                      | NTROL                                                                                                           |  |  |  |
|                                  | PAXT                                                                                                                      | PAX2A                                                                                                                           | T16                                                                                                         | T48                                                                                                             |  |  |  |
| Description                      | 1/8 DIN RTD and Thermocouple<br>Temperature Indicator                                                                     | 1/8 DIN Dual Line RTD and<br>Thermocouple Temperature Meter<br>With Output Option Card<br>Capability                            | 1/16 DIN Temperature Controller                                                                             | 1/16 DIN Temperature Controller                                                                                 |  |  |  |
| Dimensions<br>(Height) x (Width) | 50 mm (H) x 97mm (W)                                                                                                      | 50 mm (H) x 97mm (W)                                                                                                            | 48 mm (H) x 48mm (W)                                                                                        | 48 mm (H) x 48mm (W)                                                                                            |  |  |  |
| Display                          | 4 1/2 Digit, .56" (14mm)<br>Standard Green or Sunlight<br>Readable Red LED,<br>Adjustable Intensity                       | Top Line: 6 Digit, .71" (18mm)<br>Tri-color Backlight<br>Bottom Line: 9 Digit, .35" (9mm)<br>Green Backlight                    | 2 x 4 Digit,<br>Main Display .3" (7mm) Red<br>Sec. Display .2" (5mm)<br>Green LED                           | 2 x 4 Digit,<br>Main Display .4" (10mm) Red<br>Sec. Display .3" (7mm)<br>Green LED                              |  |  |  |
| Input Ranges                     | Thermocouple<br>T, E, J, K, R, S, B, N, C, and mV<br>RTD<br>2 or 3 Wire 100 Ohm<br>(ALPHA = .00385, .00391 and<br>.00672) | Thermocouple<br>T, E, J, K, R, S, B, N, C, and mV<br>RTD<br>Pt385, Pt392, Ni672, and Cu427<br>Direct<br>10 Ohm, 100 Ohm, and mV | Thermocouple<br>T, E, J, K, R, S, B, N, and mV<br>RTD<br>2 or 3 Wire 100 Ohm<br>(ALPHA = .00385 and .00391) | Thermocouple<br>T, E, J, K, R, S, B, N, and mV<br>RTD<br>2, 3, or 4 Wire 100 Ohm<br>(ALPHA = .00385 and .00391) |  |  |  |
| Control                          | On/Off                                                                                                                    | On/Off                                                                                                                          | On/Off, PID                                                                                                 | On/Off, PID                                                                                                     |  |  |  |
| Outputs                          | Dual Form C<br>Quad Form A<br>Quad Sinking<br>Quad Sourcing                                                               | Dual Form C<br>Quad Form A<br>Quad Sinking<br>Quad Sourcing                                                                     | Main Control (Heat/Cool), Cooling<br>Output, Dual Alarms<br>(Relay, SSR Drive)                              | Main Control (Heat/Cool), Cooling<br>Output, Dual Alarms<br>(Relay, SSR Drive, Triac)<br>Field Replaceable      |  |  |  |
| Communications                   | RS232<br>RS485<br>Modbus<br>DeviceNet<br>Profibus<br>Ethernet w/ICM8                                                      | RS232<br>RS485<br>Modbus<br>DeviceNet<br>Profibus                                                                               | No                                                                                                          | RS485                                                                                                           |  |  |  |
| Other Features/<br>Options       | Analog Output*,<br>Min/Max Memory,<br>Integrator/Totalizer, Linearizer,<br>Custom Units Overlay                           | Analog Output*,<br>Min/Max Memory,<br>Integrator/Totalizer,<br>Linearizer,<br>Custom Units Display                              | Analog Output                                                                                               | Heater Current Monitor,<br>Analog Output,<br>Remote Setpoint                                                    |  |  |  |
| Power Source                     | 85 to 250 VAC<br>18 to 36 VDC<br>24 VAC                                                                                   | 50 to 250 VAC<br>21.6 to 250 VDC                                                                                                | 85 to 250 VAC<br>18 to 36 VDC<br>24 VAC                                                                     | 85 to 250 VAC<br>18 to 36 VDC<br>24 VAC                                                                         |  |  |  |
| Page Number                      | Page 517                                                                                                                  | Page 518                                                                                                                        | Page 519                                                                                                    | Page 542                                                                                                        |  |  |  |

\*See website for product information.

+ Field Installable Option Card

465

|                                  | Temperature Controllers                                                                                                                                                                        |                                                                                                                 |                                                                                                              |                                                                                   |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
|                                  |                                                                                                                                                                                                | PID CO                                                                                                          | NTROL                                                                                                        |                                                                                   |  |  |  |
|                                  | PAX2C                                                                                                                                                                                          | TCU                                                                                                             | TSC                                                                                                          | P16                                                                               |  |  |  |
|                                  |                                                                                                                                                                                                | 2 5.9<br>°E<br>© П                                                                                              | 25.4<br>°€<br>⊠ ■<br>©                                                                                       | a: 524<br>524<br>₩ @ • •                                                          |  |  |  |
| Description                      | 1/8 DIN Dual Line<br>Temperature/Process Controller<br>With Output Option Card<br>Capability                                                                                                   | 1/8 DIN Temperature Controller                                                                                  | 1/8 DIN Temperature Setpoint<br>Controller                                                                   | 1/16 DIN Process Controller                                                       |  |  |  |
| Dimensions<br>(Height) x (Width) | 50 mm (H) x 97mm (W)                                                                                                                                                                           | 96 mm (H) x 48mm (W)                                                                                            | 96 mm (H) x 48mm (W)                                                                                         | 48 mm (H) x 48mm (W)                                                              |  |  |  |
| Display                          | Dual Line 4 Digit<br>Tri-color Backlight<br>Vertical: Line 151" (13mm);<br>Line 244" (11.2mm)<br>Horiz.: Line 162" (15.7mm);<br>Line 247" (12.0mm)                                             | 2 x 4 Digit,<br>Main Display .4" (10mm) Red<br>Sec. Display .3" (7mm)<br>Green LED                              | 2 x 4 Digit,<br>Main Display .4" (10mm) Red<br>Sec. Display .3" (7mm)<br>Green LED                           | 2 x 4 Digit,<br>Main Display .3" (7mm) Red<br>Sec. Display .2" (5mm)<br>Green LED |  |  |  |
| Input Ranges                     | Thermocouple<br>T, E, J, K, R, S, B, N, C, and mV<br>RTD<br>Pt385, Pt392, Ni672, and Cu427<br>Direct: 10 or 100 Ohm, and mV<br>Process<br>Current: 250µADC - 2ADC<br>Voltage: 250mVDC - 200VDC | Thermocouple<br>T, E, J, K, R, S, B, N, and mV<br>RTD<br>2, 3, or 4 Wire 100 Ohm<br>(ALPHA = .00385 and .00391) | Thermocouple<br>T, E, J, K, R, S, B, N, and mV<br>RTD<br>2, or 3 Wire 100 Ohm<br>(ALPHA = .00385 and .00391) | Process Input<br>0 to 10 VDC or<br>0 to 20 mA                                     |  |  |  |
| Control                          | On/Off, PID                                                                                                                                                                                    | On/Off, PID                                                                                                     | On/Off, PID                                                                                                  | On/Off, PID                                                                       |  |  |  |
| Outputs                          | Main Control (Heat/Cool)<br>Cooling Output<br>Alarms                                                                                                                                           | Main Control (Heat/Cool), Cooling<br>Output, Dual Alarms<br>(Relay, SSR Drive, Triac)<br>Field Replaceable      | Main Control (Heat/Cool), Cooling<br>Output, Dual Alarms<br>(Relay, SSR Drive, Triac)<br>Field Replaceable   | Main Control (Direct/Reverse),<br>Secondary Output,<br>Dual Alarms                |  |  |  |
| Communications                   | RS232 or RS485<br>Modbus<br>DeviceNet<br>Profibus                                                                                                                                              | RS485                                                                                                           | RS485                                                                                                        | No                                                                                |  |  |  |
| Other Features/<br>Options       | Analog Output                                                                                                                                                                                  | Heater Current Monitor,<br>Analog Output,<br>Remote Setpoint                                                    | Analog Output                                                                                                | Analog Output                                                                     |  |  |  |
| Power Source                     | 50 to 250 VAC<br>21.6 to 250 VDC                                                                                                                                                               | 115/230 VAC                                                                                                     | 115/230 VAC                                                                                                  | 85 to 250 VAC<br>18 to 36 VDC<br>24 VAC                                           |  |  |  |
| Page Number                      | Page 550                                                                                                                                                                                       | Page 602                                                                                                        | Page 611                                                                                                     | Page 618                                                                          |  |  |  |

\*See website for product information.

+ Field Installable Option Card

### www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

|                                  | Temperature Controllers                                                            |                                                                                                                   |                                                                                                                   |                                                                                    |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
|                                  |                                                                                    | PID CONTROL                                                                                                       |                                                                                                                   | CONTROL                                                                            |  |  |  |
|                                  |                                                                                    | PCU<br>8 3.9<br>10 0.0<br>10 0.0<br>10 0.0                                                                        | PSC<br>3125<br>40.00                                                                                              |                                                                                    |  |  |  |
| Description                      | 1/16 DIN Process Controller                                                        | 1/8 DIN Process Controller                                                                                        | 1/8 DIN Process Setpoint<br>Controller                                                                            | 1/16 DIN Temperature Limit<br>Alarm                                                |  |  |  |
| Dimensions<br>(Height) x (Width) | 48 mm (H) x 48mm (W)                                                               | 96 mm (H) x 48mm (W)                                                                                              | 96 mm (H) x 48mm (W)                                                                                              | 48 mm (H) x 48mm (W)                                                               |  |  |  |
| Display                          | 2 x 4 Digit,<br>Main Display .4" (10mm) Red<br>Sec. Display .3" (7mm)<br>Green LED | 2 x 4 Digit,<br>Main Display .4" (10mm) Red<br>Sec. Display .3" (7mm)<br>Green LED                                | 2 x 4 Digit,<br>Main Display .4" (10mm) Red<br>Sec. Display .3" (7mm)<br>Green LED                                | 2 x 4 Digit,<br>Main Display .4" (10mm) Red<br>Sec. Display .3" (7mm)<br>Green LED |  |  |  |
| Input Ranges                     | Process Input<br>0 to 10 VDC or<br>0 to 20 mA                                      | Process Input<br>0 to 10 VDC or<br>0 to 20 mA                                                                     | Process Input<br>0 to 10 VDC or<br>0 to 20 mA                                                                     |                                                                                    |  |  |  |
| Control                          | On/Off, PID                                                                        | On/Off, PID                                                                                                       | On/Off, PID                                                                                                       | On/Off                                                                             |  |  |  |
| Outputs                          | Main Control (Direct/Reverse),<br>Secondary Output,<br>Dual Alarms<br>(Relay Only) | Main Control (Direct/Reverse),<br>Secondary Output, Dual Alarms<br>(Relay, SSR Drive, Triac)<br>Field Replaceable | Main Control (Direct/Reverse),<br>Secondary Output, Dual Alarms<br>(Relay, SSR Drive, Triac)<br>Field Replaceable | Limit Alarm<br>Relay<br>Alarm Output<br>Single or Dual Relay                       |  |  |  |
| Communications                   | RS485                                                                              | RS485                                                                                                             | RS485                                                                                                             | No                                                                                 |  |  |  |
| Other Features/<br>Options       | Dual Setpoint,<br>Remote Setpoint,<br>Analog Output                                | Motorized Valve Positioner,<br>Analog Output,<br>Remote Setpoint                                                  | Analog Output                                                                                                     | No                                                                                 |  |  |  |
| Power Source                     | 85 to 250 VAC<br>18 to 36 VDC<br>24 VAC                                            | 115/230 VAC                                                                                                       | 115/230 VAC                                                                                                       | 85 to 250 VAC<br>18 to 36 VDC<br>24 VAC                                            |  |  |  |
| Page Number                      | Page 619                                                                           | Page 624                                                                                                          | Page 632                                                                                                          | Page 639                                                                           |  |  |  |

\*See website for product information.

+ Field Installable Option Card

467

## **REPLACEMENT** Guide

| WHAT YOU'                   | RE USING NOW                                                                                                                                                                  | CURRENT PRODUCT                                     |                                                                                                                                                                                  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MODEL NUMBER                | FEATURES                                                                                                                                                                      | MODEL NUMBER                                        | FEATURES                                                                                                                                                                         |  |  |
| APLTC                       | <ul> <li>Display: 4 Digit, .56" (14 mm)<br/>Red LED</li> <li>Construction: Metal Front Bezel</li> <li>Power Source: 115/230 VAC</li> <li>Measurement: Thermocouple</li> </ul> | 608.1°F<br>PAXLTC                                   | <ul> <li>Display: 4 Digit, .56" (14 mm)<br/>Red LED</li> <li>Power Source: 85 to 250 VAC</li> <li>Measurement: Thermocouple</li> </ul>                                           |  |  |
| 3828 [<br>••• • #           | <ul> <li>Display: 4 Digit, .56" (14 mm)<br/>Red LED</li> <li>Construction: Metal Front Bezel</li> <li>Power Source: 115/230 VAC</li> <li>Measurement: RTD</li> </ul>          | SOULIC<br>FAR I I I I I I I I I I I I I I I I I I I | <ul> <li>Display: 6 Digit, .56" (14 mm)<br/>Red LED</li> <li>Power Source: 85 to 250 VAC</li> <li>Measurement: RTD</li> <li>Requires Appropriate Option Card</li> </ul>          |  |  |
| <u>ЗВ2В [</u><br>• • • • е. | <ul> <li>Display: 4 Digit, .56" (14 mm)<br/>Red LED</li> <li>Construction: Metal Front Bezel</li> <li>Power Source: 115/230 VAC</li> <li>Measurement: Thermocouple</li> </ul> | <b>500.4°</b><br>Mile Indign<br>PAXT                | <ul> <li>Display: 6 Digit, .56" (14 mm)<br/>Red LED</li> <li>Power Source: 85 to 250 VAC</li> <li>Measurement: Thermocouple</li> <li>Requires Appropriate Option Card</li> </ul> |  |  |
| CUB4TC                      | <ul> <li>Display: 5 Digit, .48" (12 mm)<br/>Reflective and Red Backlight LCD</li> <li>Power Source: 9 to 26 VDC</li> <li>Measurement: Thermocouple</li> </ul>                 | CUB5TC                                              | <ul> <li>Display: 5 Digit, .48" (12 mm)<br/>Reflective, Green and Red Backlight<br/>LCD</li> <li>Power Source: 9 to 28 VDC</li> <li>Measurement: Thermocouple</li> </ul>         |  |  |
| CUB4RT                      | <ul> <li>Display: 5 Digit, .48" (12 mm)<br/>Reflective and Red Backlight LCD</li> <li>Power Source: 9 to 26 VDC</li> <li>Measurement: RTD</li> </ul>                          | CUB5RT                                              | <ul> <li>Display: 5 Digit, .48" (12 mm)<br/>Reflective, Green and Red Backlight<br/>LCD</li> <li>Power Source: 9 to 28 VDC</li> <li>Measurement: RTD</li> </ul>                  |  |  |

Note: Refer to the current product literature, as some differences may exist.

### MODEL CUB5TC - MINIATURE ELECTRONIC 5-DIGIT THERMOCOUPLE METER

CE



- THERMOCOUPLE INPUTS Thermocouple types T, E, J, K, R, S, B, N, or mV
- PROGRAMMABLE TEMPERATURE OFFSET
- SELECTABLE °F or °C WITH 1 or 0.1 DEGREE RESOLUTION
- °F OR °C DISPLAY ANNUNCIATORS

- CONFORMS TO ITS-90 TEMPERATURE STANDARD
- COLD JUNCTION COMPENSATION (Enable/Disable)
- MINIMUM AND MAXIMUM DISPLAY CAPTURE
- LCD, REFLECTIVE OR GREEN/RED LED BACKLIGHTING
- 0.48" (12.2 mm) HIGH DIGITS
- OPTIONAL SETPOINT OUTPUT CARD
- OPTIONAL SERIAL COMMUNICATION CARD (RS232 or RS485)
- OPTIONAL USB PROGRAMMING CARD
- OPERATES FROM 9 TO 28 VDC POWER SOURCE
- FRONT PANEL OR CRIMSON PROGRAMMABLE
- DISPLAY COLOR CHANGE CAPABILITY AT SETPOINT OUTPUT
- NEMA 4X/IP65 SEALED FRONT BEZEL



### **GENERAL DESCRIPTION**

The CUB5 provides the user the ultimate in flexibility, from its complete user programming to the optional setpoint control and communication capability. The CUB5TC accepts a thermocouple input and provides a temperature display in Celcius or Farenheit. The meter also features minimum and maximum display capture, display offset, °F or °C indicator, and programmable user input. The display can be toggled either manually or automatically between the selected displays.

The CUB5 display has 0.48" (12.2 mm) high digits. The LCD is available in two versions, reflective and red/green backlight. The backlight version is user selectable for the desired color and also has variable display intensity.

The capability of the CUB5 can be easily expanded with the addition of option cards. Setpoint capability is field installable with the addition of the setpoint output cards. Serial communications capability for RS232 or RS485 is added with a serial option card.

The CUB5 can be powered from an optional Red Lion Micro-Line/Sensor Power Supply (MLPS), which attaches directly to the back of a CUB5. The MLPS is powered from 85 to 250 VAC and provides up to 400 mA to drive the unit and sensors.

### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter.

CAUTION: Risk of Danger. Read complete instructions prior to installationand operation of the unit.



CAUTION: Risk of electric shock.

### **DIMENSIONS** In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.15" (54.6) H x 3.00" (76.2) W.



### 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **ORDERING INFORMATION**

| TYPE                   | MODEL NO. | DESCRIPTION                                                                 | PART NUMBER |
|------------------------|-----------|-----------------------------------------------------------------------------|-------------|
| CLIRE                  | CURFTO    | Thermocouple Meter with Reflective Display                                  | CUB5TCR0    |
| COBS                   | COBSIC    | Thermocouple Meter with Backlight Display                                   | CUB5TCB0    |
|                        | CUB5RLY   | Single Relay Option Card                                                    | CUB5RLY0    |
|                        | CUB5SNK   | Dual Sinking Open Collector Output card                                     | CUB5SNK0    |
| Optional Plug-in Cards | CURECOM   | RS485 Serial Communications Card                                            | CUB5COM1    |
|                        | COBSCOM   | RS232 Serial Communications Card                                            | CUB5COM2    |
|                        | CUB5USB   | USB Programming Card                                                        | CUB5USB0    |
|                        |           | +12 VDC Micro-Line Power Supply, 85 to 250 VAC source, 400 mA max out       | MLPS1000    |
|                        | IVILP5    | +24 VDC Micro-Line Power Supply, 85 to 250 VAC source, 200 mA max out       | MLPS2000    |
| Accessories            | CBLPROG   | Programming Cable RS232 (RJ11-DB9)                                          | CBLPROG0    |
| Accessories            | CBPRO     | Programming Cable RS485 (RJ11-DB9)                                          | CBPRO007    |
|                        | SFCRD     | Crimson PC Configuration Software for Windows 98, ME, 2000, XP <sup>1</sup> | SFCRD200    |
|                        | CBLUSB    | USB Programming Cable                                                       | CBLUSB00    |

<sup>1</sup> Crimson software is a free download from http://www.redlion.net

## **GENERAL METER SPECIFICATIONS**

1. **DISPLAY**: 5 digit LCD 0.48" (12.2 mm) high digits

**CUB5TCR0**: Reflective LCD with full viewing angle **CUB5TCB0**: Transmissive LCD with selectable red or green LED backlight, viewing angle optimized. Display color change capability with output state

POWER: Input voltage range is +9 to +28 VDC with short circuit and input polarity protection. Must use an RLC model MLPS or an NEC Class 2 or

| polarity | protection. | Must    | use ar | RLC    | model   | MLPS | or an | NEC | Clas |
|----------|-------------|---------|--------|--------|---------|------|-------|-----|------|
| Limited  | Power Sou   | rce (LP | S) rat | ed pov | ver sup | ply. |       |     |      |

| MODEL<br>NO. | DISPLAY COLOR         | INPUT CURRENT<br>@ 9 VDC WITHOUT<br>CUB5RLY0 | INPUT CURRENT<br>@ 9 VDC WITH<br>CUB5RLY0 |
|--------------|-----------------------|----------------------------------------------|-------------------------------------------|
| CUB5TCR0     |                       | 10 mA                                        | 40 mA                                     |
| CUB5TCB0     | Red (max intensity)   | 85 mA                                        | 115 mA                                    |
| CUB5TCB0     | Green (max intensity) | 95 mA                                        | 125 mA                                    |

### 3. READOUT:

Resolution: 1 or 0.1 degrees Scale: °F or °C Offset Range: -999 to 9999 display units

4. THERMOCOUPLE INPUTS:

Isolation: TC+ and TC- terminals are not electrically isolated from the power supply or optional comms cards.

Open Sensor Display: DPER

Overrange/Underrange Input: DLDL/ULUL

Overrange/Underrange Display : "....."/"-....." Maximum Input Voltage: 30 VDC, TC+ to TC-

Maximum Input Voltage TC-: 3 VDC max. with respect to common

|        | TYPE RANGE @ 23°C @ -35 to 75°C  |                        | ACCURACY                 | WIRE 0                | COLOR                  |
|--------|----------------------------------|------------------------|--------------------------|-----------------------|------------------------|
| 101112 | NANGE                            | ±°C                    | ±°C ±°C                  |                       | BS 1843                |
| Т      | -200 to 400°C<br>-328 to 752°F   | 2.3                    | 5.8                      | (+) blue<br>(-) red   | (+) white<br>(-) blue  |
| E      | -200 to 871°C<br>-328 to 1600°F  | 2.7                    | 4.9                      | (+) purple<br>(-) red | (+) brown<br>(-) blue  |
| J      | -200 to 760°C<br>-328 to 1400°F  | 1.9                    | 4.3                      | (+) white<br>(-) red  | (+) yellow<br>(-) blue |
| к      | -200 to 1372°C<br>-328 to 2502°F | 2.3                    | 5.8                      | (+) yellow<br>(-) red | (+) brown<br>(-) blue  |
| R      | -50 to 1768°C<br>-58 to 3214°F   | 4.5                    | 15.0                     | no<br>standard        | (+) white<br>(-) blue  |
| S      | -50 to 1768°C<br>-58 to 3214°F   | 4.5                    | 15.0                     | no<br>standard        | (+) white<br>(-) blue  |
| В      | 200 to 1820°C<br>392 to 3308°F   | 9.1<540°C<br>4.5>540°C | 42.6<540°C<br>15.0>540°C | no<br>standard        | no<br>standard         |
| Ν      | -200 to 1300°C<br>-328 to 2372°F | 2.8                    | 8.1                      | (+) orange<br>(-) red | (+) orange<br>(-) blue |
| mV     | -10.00 to 65.00                  | 0.02 mV                | 0.08 mV                  | no<br>standard        | no<br>standard         |

\*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy at 23°C and 15 to 75% RH environment; and Accuracy over a -35 to 75°C and 0 to 85% RH (non condensing) environment. Accuracy specified over the -35 to 75°C operating range includes meter tempco and cold junction tracking effects. The specification includes the A/D conversion errors, linearization conformity,

and thermocouple cold junction compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

5. RESPONSE TIME: Display: 500 msec min.

**Output:** 800 msec max (with input filter setting of 0)

 USER INPUT (USR): Programmable input. Connect terminal to common (USR COMM) to activate function. Internal 10KΩ pull-up resistor to +9 to 28 VDC.

Threshold Levels:  $V_{IL} = 0.7 \text{ V}$  max;  $V_{IH} = 2.4 \text{ V}$  min;  $V_{MAX} = 28 \text{ VDC}$ 

Response Time: 5 msec typ.; 50 msec debounce (activation and release)

### 7. CERTIFICATIONS AND COMPLIANCES

CE Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A IEC/EN 61010-1 RoHS Compliant

- UL Recognized Component: File #E179259
- UL Listed: File #E137808

Type 4X Outdoor Enclosure rating (Face only)

- IP65 Enclosure rating (Face only)
- IP20 Enclosure rating (Rear of unit)
- *Refer to EMC Installation Guidelines for additional information.* **MEMORY**: Nonvolatile E<sup>2</sup>PROM memory retains all programming
- parameters and max/min values when power is removed. 9. **CONNECTIONS**: Wire clamping screw terminals

Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire Torque: 5 inch-lbs (0.565 N-m) max.

10. ENVIRONMENTAL CONDITIONS:

**Operating Temperature Range for CUB5TCR0**: -35 to 75°C

Operating Temperature Range for CUB5TCB0 depends on display color and intensity level as per below:

| 1               |                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------|
| INTENSITY LEVEL | TEMPERATURE                                                                             |
| 1 & 2           | -35 to 75°C                                                                             |
| 3               | -35 to 70°C                                                                             |
| 4               | -35 to 60°C                                                                             |
| 5               | -35 to 50°C                                                                             |
| 1 & 2           | -35 to 75°C                                                                             |
| 3               | -35 to 65°C                                                                             |
| 4               | -35 to 50°C                                                                             |
| 5               | -35 to 35°C                                                                             |
|                 | INTENSITY LEVEL<br>1 & 2<br>3<br>4<br>5<br>1 & 2<br>3<br>4<br>5<br>1 & 2<br>3<br>4<br>5 |

Storage Temperature: -35 to 85°C

**Operating and Storage Humidity**: 0 to 85% max. relative humidity (noncondensing)

Vibration to IEC 68-2-6: Operational 5-500 Hz, 5 g

Shock to IEC 68-2-27: Operational 30 g

Altitude: Up to 2000 meters

 CONSTRUCTION: This unit is rated for NEMA 4X/IP65 requirements for outdoor use. Installation Category I, Pollution Degree 2. High impact plastic case with clear viewing window. Panel gasket and mounting clip included.
 WEICHT: 2.2 or (100 c)

12. WEIGHT: 3.2 oz (100 g)

### www.redlion.net

### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **OPTIONAL PLUG-IN CARDS**

### ADDING OPTION CARDS

The CUB5 meters can be fitted with optional output cards and/or serial communications cards. The details for the plug-in cards can be reviewed in the specification section below. The plug-in cards, that are sold separately, can be installed initially or at a later date.



### WARNING: Disconnect all power to the unit before installing Plug-in card.

### SINGLE RELAY CARD

Type: Single FORM-C relay Isolation To Sensor & User Input Commons: 1400 Vrms for 1 min. Working Voltage: 150 Vrms

**Contact Rating**: 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive **Life Expectancy**: 100,000 minimum operations

### DUAL SINKING OUTPUT CARD

 $\label{eq:states} \begin{array}{l} \textbf{Type: Non-isolated switched DC, N Channel open drain MOSFET}\\ \textbf{Current Rating: 100 mA max.}\\ \textbf{V_{DS ON}\text{: } 0.7 V @ 100 mA}\\ \textbf{V_{DS MAX}\text{: } 30 VDC}\\ \textbf{Offstate Leakage Current: } 0.5 mA max. \end{array}$ 

### **RS485 SERIAL COMMUNICATIONS CARD**

Type: RS485 multi-point balanced interface (non-isolated)

Note: Non-grounded (isolated) thermocouple probes must be used when multiple units are connected in an RS485 network, or measurement errors will occur.

### Baud Rate: 300 to 38.4k

Data Format: 7/8 bits; odd, even, or no parity Bus Address: 0 to 99; max 32 meters per line Transmit Delay: Selectable (refer to CUB5COM bulletin)

### **RS232 SERIAL COMMUNICATIONS CARD**

Type: RS232 half duplex (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity

### USB PROGRAMMING CARD

Type: USB virtual comms port Connection: Type B Baud Rate: 300 to 38.4k Unit Address: 0 to 99

## **1.0 INSTALLING THE METER**

### INSTALLATION

The meter meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel.

The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the



farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approx. 28 to 36 in-oz [0.202 to 0.26 N-m]). Do not over-tighten the screws.

### INSTALLATION ENVIRONMENT

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.



## **2.0 INSTALLING PLUG-IN CARDS**



**WARNING:** Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.



**CAUTION:** The Plug-in cards and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

### **REMOVING THE REAR COVER**

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

The Plug-in cards are separately purchased option cards that perform specific functions. The cards plug into the main circuit board of the meter.



## **3.0 WIRING THE METER**

### WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

### **EMC INSTALLATION GUIDELINES**

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
  - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
  - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.

- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:

- Schaffner # FN2010-1/07 (RLC part number LFIL0000)
- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
  - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
  - b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000
    - Varistor: ILS11500 or ILS23000
- 7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

VisitRLC's website at http://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

### 3.1 POWER WIRING

DC Power



### 3.2 USER INPUT WIRING

### Sinking Logic

USR COMM USR Connect external switching device between the User Input terminal and User Input Common.

The user input of the meter is internally pulled up to +9 to +28 V with 10 K resistance. The input is active when it is pulled low (<0.7 V).





+9-28 VDC

### 3.3 INPUT WIRING

### Thermocouple



**CAUTION**: Power input common and sensor input common are NOT isolated from user input common. In order to preserve the safety of the meter application, the power input common and the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

### 3.4 SETPOINT (OUTPUT) WIRING



### 3.5 SERIAL COMMUNICATION WIRING



### 3.6 USB PROGRAMMING



1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

F

## **.0** REVIEWING THE FRONT BUTTONS AND DISPLAY



**ENTERING PROGRAM MODE** 

Press and hold for 2 seconds to activate

#### BUTTON **DISPLAY MODE OPERATION**

SEL Index display through enabled values

RST Resets values (MIN / MAX) or outputs

#### **OPERATING MODE DISPLAY DESIGNATORS**

MAX - Maximum display capture value MIN - Minimum display capture value

#### **PROGRAMMING MODE OPERATION**

Store selected parameter and index to next parameter Advances through the program menu Increments selected parameter value or selection

- "1" To the right of the display indicates setpoint 1 output activated.
- "2" To the right of the display indicates setpoint 2 output activated.

Pressing the SEL button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

# **PROGRAMMING THE METER**



### **PROGRAMMING MODE ENTRY (SEL BUTTON)**

It is recommended that all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the SEL button. If it is not accessible then it is locked by either a security code, or a hardware lock.

### MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between Pro and the present module. The RST button is used to select the desired module. The displayed module is entered by pressing the SEL button.

### MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The SEL button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro-ΠΠ Programming may continue by accessing additional modules.

### **SELECTION / VALUE ENTRY**

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The RST button is used to move through the selections/values for that parameter. Pressing the SEL button, stores and activates the displayed selection/value. This also advances the meter to the next parameter

For numeric values, press the RST button to access the value. The right hand most digit will begin to flash. Pressing the RST button again increments the digit by one or the user can hold the RST button and the digit will automatically scroll. The SEL button will advance to the next digit. Pressing and holding the SEL button will enter the value and move to the next parameter.

### PROGRAMMING MODE EXIT (SEL BUTTON)

The Programming Mode is exited by pressing the SEL button with Pro NO displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

#### **PROGRAMMING TIPS**

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

#### FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

Pressing both the SEL and the RST button on power-up will also load the factory settings and display rESEL. This allows operation in the event of a memory failure or corrupted data.

### ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter's Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

| Indicates Program Mode Alternating Display |        |    |                 |  |  |
|--------------------------------------------|--------|----|-----------------|--|--|
| Parameter                                  | USr IN | কি |                 |  |  |
|                                            | ₹\$    | ПО | Selection/Value |  |  |
| Factory Settings are shown.                |        |    |                 |  |  |

### www.redlion.net

### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## 5.1 MODULE 1 - SIGNAL INPUT PARAMETERS ( 1- 10)



### THERMOCOUPLE TYPE

| FAbe               | ক্রি     | SELECTION | TC TYPE | SELECTION | TC TYPE |
|--------------------|----------|-----------|---------|-----------|---------|
| Ц. Г               | <u> </u> | էս-է      | Т       | Łc-5      | S       |
| $\bigtriangledown$ | [[]]     | Łc-E      | Е       | էշ-թ      | В       |
|                    |          | £c∙J      | J       | £c.u      | N       |
|                    |          | £c-Y      | K       | UOLE      |         |
|                    |          | fe.r      | R       |           |         |

Select the thermocouple type used for the application. The appropriate curve will be automatically loaded for the selected type.

Selecting ULL displays the millivolt input signal with 10 µV resolution.



This parameter enables or disables internal cold junction compensation. For most applications, cold junction compensation should be enabled (YES). This parameter does not appear if LYPE = UOLL.



### **TEMPERATURE SCALE**

°Ľ °٢

Select the temperature scale. This selection applies for the Input, MAX and MIN displays. This parameter does not appear if EYPE = UOLE.



### **DISPLAY DECIMAL POINT**

0 0.0

Select the decimal point location for the desired display resolution. This selection applies for the Input, MAX and MIN displays. This parameter does not appear if EYPE = UOLE or for types R, S or B thermocouples which have a fixed 1 degree resolution.



### **DISPLAY OFFSET VALUE**



The temperature display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer.



If the displayed temperature is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.



### 00 to 199 display units

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the filter permanently engaged at the filter level selected above.

|          | USER INPL                                   | JT FUNCTION                                                                                                  |
|----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| USr IN   | ি<br>শ্বি                                   |                                                                                                              |
| \$       | nO                                          |                                                                                                              |
| DISPLAY  | MODE                                        | DESCRIPTION                                                                                                  |
| ND       | No Function                                 | User Input disabled.                                                                                         |
| P·Loc    | Program Mode Lock-out                       | See Programming Mode Access chart (Module 3).                                                                |
| rESEE    | Reset (Edge triggered)                      | Resets the assigned value(s) to the current input value.                                                     |
| q-Xrq    | Display Hold                                | Holds the assigned display, but all other meter functions continue as long as activated (maintained action). |
| 9-2EF    | Display Select<br>(Edge Triggered)          | Advance once for each activation.                                                                            |
| q.ren    | Display Intensity Level<br>(Edge Triggered) | Increase intensity one level for each activation (backlight version only).                                   |
| [OLOr    | Backlight Color<br>(Edge Triggered)         | Change backlight color with each activation (backlight version only).                                        |
| Pr int   | Print Request                               | Serial transmit of the active parameters selected in the Print Options menu (Module 5).                      |
| PorSt    | Print and Reset                             | Same as Print Request followed by a momentary reset of the assigned value(s)                                 |
| r 56 - 1 | Setpoint 1 Reset                            | Resets setpoint 1 output.                                                                                    |
| r 56 - 2 | Setpoint 2 Reset                            | Resets setpoint 2 output.                                                                                    |
| r 5£ 12  | Setpoint 1 and 2 Reset                      | Reset both setpoint 1 and 2 outputs.                                                                         |
|          |                                             |                                                                                                              |

### **USER INPUT ASSIGNMENT**

| U-} | 75N | _ ^ি | ЖI | HI-LI |
|-----|-----|------|----|-------|
| ₿   |     | dSP  | LD | dSP   |

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, display hold, or print and reset is selected in the User Input Function menu.

### 1-717-767-6511

### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## 5.2 MODULE 2 - Secondary Function Parameters (2-581)



### MAX DISPLAY ENABLE



ΠΠ YES EodE P

প্ম

48

CALIBRATION The CUB5TC uses stored voltage calibration and cold

junction temperature values to provide accurate temperature and voltage measurements. Over time, the electrical characteristics of the components inside the meter could

slowly change. The result is that the stored calibration values may no longer accurately define the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the CUB5TC involves a voltage calibration and a cold junction calibration. It is recommended that both calibrations be performed. The voltage calibration MUST precede the cold junction calibration. Allow 30 minute warm up before performing any calibration related procedure. The following procedures should be performed at an ambient temperature of 15 to 35 °C (59 to 95 °F).

Calibration should only be performed by individuals experienced in calibrating electronic equipment.

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the CUB5TC.

### Input Voltage Calibration

- 1. Connect a precision DC voltage source with an accuracy of 0.01% or better to the TC+ (positive) and the TC- (negative) terminals of the CUB5TC. Set the output of the voltage source to zero.
- 2. With the display at Lode 48, press and hold the SEL button for 2 seconds. Unit will display CAL NO.
- 3. Press the RST button to select INP.
- 4. Press the SEL button. Display reads 00u.
- 5. With the voltage source set to zero, press SEL. Display reads [RL[ for about eight seconds.
- 6. When display reads 600u, apply 60.000 mV input signal. Press SEL. Display reads [RL[ for about eight seconds.
- 7. When display reads [RL ND, press SEL twice to exit Module 2 and return to the normal display mode.
- 8. Proceed to Cold Junction Calibration.

### **Cold Junction Calibration**

- 1. Install all option cards needed for your application and the rear cover, or invalid results will occur.
- 2. The ambient temperature must be within 20°C to 30°C.
- 3. Connect a thermocouple (types T, E, J, K, or N only) with an accuracy of 1°C or better to the meter.
- 4. Enter programming mode and verify the following settings in Module 1: EYPE = thermocouple type connected to the unit CJC = YES; SCRLE = °C; dECPL = QO; OFSEL = O
- 5. Place the thermocouple in close thermal contact to a reference thermometer probe. (Use a reference thermometer with an accuracy of 0.25°C or better.) The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (A calibration bath of known temperature could be used in place of the thermometer.)
- 6. Compare the unit display with the reference temperature indicator (or calibration bath). If a difference of more than ±1.0 °C exists, note the difference (CJ error) and continue with cold junction calibration. CJ Error = Reference Temperature - Unit Display.
- 7. Enter programming mode. Step through Module 2 to the Service Access Code parameter and select LodE 48. Press and hold the SEL button until the unit displays [AL NO. Press the RST button to select [J[.
- 8. Press SEL. Display reads [J[ followed by the current cold junction value. Calculate a new cold junction value as follows:
  - New cold junction = Current cold junction + CJ Error (noted above)
- 9. Press RST and set the display to the new cold junction value. Press and hold SEL. Display reads [RL[ for about four seconds and then returns to [RL ND.
- 10. Press SEL twice to exit calibration and return to the normal display mode. Verify the input reading is correct. If not, repeat steps 6 through 10.

### MAX CAPTURE DELAY TIME



0.0 to 9999 seconds

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

YES



Enables the Minimum Display Capture capability.

#### 10-5 প্ম P 20

00 to 9999 seconds

MIN CAPTURE DELAY TIME

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

### FACTORY SERVICE OPERATIONS



Select ¥E5 to perform either of the Factory Service Operations shown below.

### **RESTORE FACTORY DEFAULT SETTINGS**



476

Entering Code 66 will overwrite all user settings with the factory settings. The meter will display rESEL and then return to LodE DD. Press SEL button to exit the module.

Pressing both the SEL and the RST button on power-up will also load the factory settings and display rESEL. This allows operation in the event of a memory failure or corruted data.

### www.redlion.net

F

### 5.3 MODULE 3 - DISPLAY AND FRONT PANEL BUTTON PARAMETERS (3-45P)



### 

d5H-F|≤D □ 05 1 2 seconds

This parameter sets the display update time in seconds.

### DISPLAY INTENSITY LEVEL (BACKLIGHT UNIT ONLY)



Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed. This parameter is active for backlight units only.

### FRONT PANEL DISPLAY SELECT ENABLE (SEL)

| SEL        | - ি কি |     | - 2 |
|------------|--------|-----|-----|
| $\swarrow$ | YES    | ያዩን | ΠU  |

Æ

The \$E5 selection allows the SEL button to toggle through the enabled displays.

### FRONT PANEL RESET ENABLE (RST)

| r St | ৰ্পন্ন | л <b>О</b> | LO    | dSP |
|------|--------|------------|-------|-----|
| \$   | dSP    | HI         | NI-LU |     |

This selection allows the RST button to reset the selected value(s).

### DISPLAY SCROLL ENABLE



The 45 selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds.

00

### **DISPLAY COLOR (BACKLIGHT UNIT ONLY)**



Enter the desired display color, red or green. This parameter is active for backlight units only.

### **PROGRAMMING SECURITY CODE**



The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (p-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the LodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the LodE prompt appears (see chart).

| USER INPUT<br>FUNCTION | USER INPUT<br>STATE | SECURITY<br>CODE | MODE WHEN "SEL"<br>BUTTON IS PRESSED | FULL PROGRAMMING<br>MODE ACCESS                                           |
|------------------------|---------------------|------------------|--------------------------------------|---------------------------------------------------------------------------|
|                        |                     | 0                | Full Programming                     | Immediate Access                                                          |
| not <sup>p</sup> -Loc  |                     | 1-99             | Quick Programming                    | After Quick<br>Programming with<br>correct code entry at<br>LodE prompt * |
|                        |                     | 100-999          | CodE prompt                          | With correct code entry<br>at [odE prompt *                               |
|                        |                     | 0                | Programming Lock                     | No Access                                                                 |
| Pelos                  | Active              | 1-99             | Quick Programming                    | No Access                                                                 |
| ,                      |                     | 100-999          | CodE prompt                          | With correct code entry<br>at [odE prompt *                               |
|                        | Not Active          | 0-999            | Full Programming                     | Immediate Access                                                          |

\* Entering Code 222 allows access regardless of security code.

## 5.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-5PL)



The Setpoint Output Parameters are only active when an optional output module is installed in the meter.





Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to 5P5EL. Repeat steps for each setpoint to be programmed. Select no to exit the module. The number of setpoints available is setpoint output card dependent.

### **SETPOINT 2 ENABLE**

ПΟ



Select ¥E5 to enable Setpoint 2 and access the setup parameters. If NO is selected, the unit returns to SPSEL and setpoint 2 is disabled.



SETPOINT ACTION

LD-PT

HI-PF

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

XI-UP

LO-Ub



5P£ • n ናከ 100

·9999 to 99999

SETPOINT VALUE

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

### HYSTERESIS VALUE



₽

1 to 59999

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

#### **ON TIME DELAY**



00 to 5999 seconds

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

### OFF TIME DELAY



to 5999 seconds

0.0

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

### **OUTPUT RESET ACTION**



l AF [ H L-977

Enter the reset action of the output. See figure for details.

 $R_{uba}$  = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The "on" output may be manually reset (off) immediately by the front panel RST button or user input. The output remains off until the trigger point is crossed again.

LREEM = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input manual reset, serial reset command or meter power cycle.

#### SF OFF OFF OFF ON OUTPUT STATE TRIGGER POINTS TRIGGER POINTS

478

OUTPUT STATE

High Acting (Unbalanced Hys) = #1-116

### www.redlion.net

OFF

Low Acting (Unbalanced Hys) = LI-Ub

Hvs

### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

F

When the user input or **RST** button is activated (momentary action), the corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

L·dL<sup>y</sup> = Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST** button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous L·dL<sup>y</sup> reset if it is not activated at power up.)



### OUTPUT RESET WITH DISPLAY RESET



This parameter enables the **RST** button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to  $d5^{p}$  and the Input value must be displayed. If these conditions are not met, the output will not reset.

### STANDBY OPERATION



s disabled (after a power up) until the

YES

When  $\frac{1}{5}$ , the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and OutputReset Action.

### PROBE BURN-OUT ACTION



Enter the probe burn-out action. In the event of a temperature probe failure (open), the output can be programmed to be on or off.

### CHANGE DISPLAY COLOR w/OUTPUT STATE



This parameter enables the backlight CUB5 to switch the backlight color when the output state changes. This parameter is only active for the backlight version.



The Serial Setup Parameters are only active when one of the optional serial communications/programming cards is installed in the meter. Refer to the CUB5COM bulletin for details and setup for the CUB5 RS232 or RS485 serial communications. Refer to the CUB5USB bulletin for details on the CUB5 USB programming and programming requirements.

### **MODEL CUB5RT - MINIATURE ELECTRONIC 5-DIGIT RTD METER**



- MINIMUM AND MAXIMUM DISPLAY CAPTURE
- LCD, REFLECTIVE OR GREEN/RED LED BACKLIGHTING
- 0.48" (12.2 mm) HIGH DIGITS
- OPTIONAL SETPOINT OUTPUT CARD
- OPTIONAL SERIAL COMMUNICATION CARD (RS232 or RS485)
- OPTIONAL USB PROGRAMMING CARD
- OPERATES FROM 9 TO 28 VDC POWER SOURCE
- FRONT PANEL OR CRIMSON PROGRAMMABLE
- DISPLAY COLOR CHANGE CAPABILITY AT SETPOINT OUTPUT
- NEMA 4X/IP65 SEALED FRONT BEZEL

- RTD INPUTS RTD types Pt385, Pt392, Ni672, Cu427
- PROGRAMMABLE TEMPERATURE OFFSET
- SELECTABLE °F or °C WITH 1 or 0.1 DEGREE RESOLUTION
- °F OR °C DISPLAY ANNUNCIATORS

# CUL US LISTED

### **GENERAL DESCRIPTION**

The CUB5 provides the user the ultimate in flexibility, from its complete user programming to the optional setpoint control and communication capability. The CUB5RT accepts an RTD input and provides a temperature display in Celcius or Farenheit. The meter also features minimum and maximum display capture, display offset, °F or °C indicator, and programmable user input. The display can be toggled either manually or automatically between the selected displays.

The CUB5 display has 0.48" (12.2 mm) high digits. The LCD is available in two versions, reflective and red/green backlight. The backlight version is user selectable for the desired color and also has variable display intensity.

The capability of the CUB5 can be easily expanded with the addition of option cards. Setpoint capability is field installable with the addition of the setpoint output cards. Serial communications capability for RS232 or RS485 is added with a serial option card.

The CUB5 can be powered from an optional Red Lion Micro-Line/Sensor Power Supply (MLPS), which attaches directly to the back of a CUB5. The MLPS is powered from 85 to 250 VAC and provides up to 400 mA to drive the unit and sensors.

### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter.

 $\bigwedge$ 

CAUTION: Risk of Danger. Read complete instructions prior to installationand operation of the unit.



CAUTION: Risk of electric shock.

### **DIMENSIONS** In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.15" (54.6) H x 3.00" (76.2) W.



480

F

### www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **ORDERING INFORMATION**

| TYPE                      | MODEL NO. | DESCRIPTION                                                                 | PART NUMBER |
|---------------------------|-----------|-----------------------------------------------------------------------------|-------------|
| CLIDE                     | CUREDT    | RTD Meter with Reflective Display                                           | CUB5RTR0    |
| COBS                      | COBSRI    | RTD Meter with Backlight Display                                            | CUB5RTB0    |
|                           | CUB5RLY   | Single Relay Output Card                                                    | CUB5RLY0    |
|                           | CUB5SNK   | Dual Sinking Output Card                                                    | CUB5SNK0    |
| Optional Plug-in<br>Cards |           | RS485 Serial Communications Card                                            | CUB5COM1    |
|                           | COBSCOM   | RS232 Serial Communications Card                                            | CUB5COM2    |
|                           | CUB5USB   | USB Programming Card                                                        | CUB5USB0    |
|                           | MLDS      | +12 VDC Micro-Line Power Supply, 85 to 250 VAC source, 400 mA max out       | MLPS1000    |
|                           | IVILP5    | +24 VDC Micro-Line Power Supply, 85 to 250 VAC source, 200 mA max out       | MLPS2000    |
| Accessories               | CBLPROG   | RS232 Programming Cable (DB9-RJ11)                                          | CBLPROG0    |
|                           | CBPRO     | Crimson PC Configuration Software for Windows 98, ME, 2000, XP <sup>1</sup> | SFCRD200    |
|                           | CBLUSB    | USB Programming Cable                                                       | CBLUSB00    |

<sup>1</sup> Crimson software is a free download from http://www.redlion.net/

## **GENERAL METER SPECIFICATIONS**

1. DISPLAY: 5 digit LCD 0.48" (12.2 mm) high digits

CUB5RTR0: Reflective LCD with full viewing angle

**CUB5RTB0**: Transmissive LCD with selectable red or green LED backlight, viewing angle optimized. Display color change capability with output state when using an output module.

 POWER: Input voltage range is +9 to +28 VDC with short circuit and input polarity protection. Must use an RLC model MLPS or a NEC Class 2 or Limited Power Source (LPS) rated power supply.

| MODEL<br>NO. | DISPLAY COLOR         | INPUT CURRENT<br>@ 9 VDC WITHOUT<br>CUB5RLY0 | INPUT CURRENT<br>@ 9 VDC WITH<br>CUB5RLY0 |
|--------------|-----------------------|----------------------------------------------|-------------------------------------------|
| CUB5RTR0     |                       | 10 mA                                        | 40 mA                                     |
| CUB5RTB0     | Red (max intensity)   | 85 mA                                        | 115 mA                                    |
| CUB5RTB0     | Green (max intensity) | 95 mA                                        | 125 mA                                    |

### 3. READOUT:

Resolution: 1 or 0.1 degrees

Scale: °F or °C

Offset Range: -19999 to 19999 display units

### 4. RTD INPUTS:

**Isolation**: Input and EXC terminals are not electrically isolated from the power supply or optional comms cards.

Failed Sensor Display: OPER or Shart

Overrange/Underrange Input: 0L0L/ULUL

Overrange/Underrange Display : "....."/"-....."

### Maximum Input Voltage: 30 VDC

Type: 2, 3 or 4 wire

Excitation current: 100 ohm range: 165 µA 10 ohm range: 2.5 mA

Lead resistance: 100 ohm range: 10 ohm/lead max. 10 ohm range: 3 ohms/lead max.

Balanced Lead Resistance: Automatically compensated up to max per lead. Unbalanced Lead Resistance: Uncompensated.

| INPUT TYPE                       | RANGE         | ACCURACY*<br>(18 to 28°C) | ACCURACY*<br>(0 to 50°C) | STANDARD                |
|----------------------------------|---------------|---------------------------|--------------------------|-------------------------|
| 100 ohm Pt<br>alpha = .00385     | -200 to 850°C | 0.4°C                     | 1.6°C                    | IEC 751                 |
| 100 ohm Pt<br>alpha = .00392     | -200 to 850°C | 0.4°C                     | 1.6°C                    | no official<br>standard |
| 120 ohm Nickel<br>alpha = .00672 | -80 to 260°C  | 0.2°C                     | 0.5°C                    | no official<br>standard |
| 10 ohm Copper<br>alpha = .00427  | -100 to 260°C | 0.4°C                     | 0.9°C                    | no official standard    |

\*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy at 23°C and 15 to 75% RH environment; and Accuracy over a -35 to 75°C and 0 to 85% RH (non condensing) environment. Accuracy specified over the -35 to 75°C operating range includes meter tempco effects. The specification includes the A/D conversion errors and linearization conformity. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

5. RESPONSE TIME:

Display: 500 msec min.

- Output: 1.25 sec max (with input filter setting of 0)
- 6. USER INPUT (USR): Programmable input. Connect terminal to common (USR COMM) to activate function. Internal  $10K\Omega$  pull-up resistor to +9 to 28 VDC.

**Threshold Levels**:  $V_{IL} = 0.7 \text{ V}$  max;  $V_{IH} = 2.4 \text{ V}$  min;  $V_{MAX} = 28 \text{ VDC}$ **Response Time**: 5 msec typ.; 50 msec debounce (activation and release)

7. CERTIFICATIONS AND COMPLIANCES:

### CE Approved

EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A

- IEC/EN 61010-1
- RoHS Compliant
- UL Recognized Component: File #E179259
- UL Listed: File #E137808
- Type 4X Outdoor Enclosure rating (Face only)
- IP65 Enclosure rating (Face only)
- IP20 Enclosure rating (Rear of unit)
- Refer to EMC Installation Guidelines for additional information.
- 8. **MEMORY**: Nonvolatile E<sup>2</sup>PROM memory retains all programming
- parameters and max/min values when power is removed.
  9. CONNECTIONS: Wire clamping screw terminals
  Wire Strip Length: 0.3" (7.5 mm)
- Wire Gage: 30-14 AWG copper wire Torque: 5 incl-lbs (0.565 N-m) max. 10. ENVIRONMENTAL CONDITIONS:

#### **Operating Temperature Range for CUB5RTR0**: -35 to 75 °C **Operating Temperature Range for CUB5RTB0 depends on display color**

and intensity level as per below:

|               | INTENSITY LEVEL | TEMPERATURE |
|---------------|-----------------|-------------|
| Red Display   | 1 & 2           | -35 to 75°C |
|               | 3               | -35 to 70°C |
|               | 4               | -35 to 60°C |
|               | 5               | -35 to 50°C |
| Green Display | 1 & 2           | -35 to 75°C |
|               | 3               | -35 to 65°C |
|               | 4               | -35 to 50°C |
|               | 5               | -35 to 35°C |

Storage Temperature: -35 to 85 °C

**Operating and Storage Humidity**: 0 to 85% max. relative humidity (noncondensing)

Vibration to IEC 68-2-6: Operational 5-500 Hz, 5 g Shock to IEC 68-2-27: Operational 30 g

Altitude: Up to 2000 meters

 CONSTRUCTION: This unit is rated for NEMA 4X/IP65 requirements for outdoor use. Installation Category I, Pollution Degree 2. High impact plastic case with clear viewing window. Panel gasket and mounting clip included.
 WEIGHT: 3.2 oz (100 g)

1-717-767-6511

F

## **OPTIONAL PLUG-IN CARDS**

### ADDING OPTION CARDS

The CUB5 meters can be fitted with optional output cards and/or serial communications cards. The details for the plug-in cards can be reviewed in the specification section below. The plug-in cards, that are sold separately, can be installed initially or at a later date.



WARNING: Disconnect all power to the unit before installing Plug-in card.

### SINGLE RELAY CARD

Type: Single FORM-C relay
Isolation To Sensor & User Input Commons: 1400 Vrms for 1 min. Working Voltage: 150 Vrms
Contact Rating: 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive

**Contact Rating**: 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive **Life Expectancy**: 100,000 minimum operations

### DUAL SINKING OUTPUT CARD

Type: Non-isolated switched DC, N Channel open drain MOSFET Current Rating: 100 mA max. V<sub>DS ON</sub>: 0.7 V @ 100 mA V<sub>DS MAX</sub>: 30 VDC Offstate Leakage Current: 0.5 mA max.

### **RS485 SERIAL COMMUNICATIONS CARD**

Type: RS485 multi-point balanced interface (non-isolated)
Note: Non-grounded (isolated) RTD probes must be used when multiple units are connected in an RS485 network, or measurement errors will occur.
Baud Rate: 300 to 38.4k
Data Format: 7/8 bits; odd, even, or no parity
Bus Address: 0 to 99; max 32 meters per line
Transmit Delay: Selectable (refer to CUB5COM bulletin)

### **RS232 SERIAL COMMUNICATIONS CARD**

Type: RS232 half duplex (non-isolated) Baud Rate: 300 to 38.4k Data Format: 7/8 bits; odd, even, or no parity

### USB PROGRAMMING CARD

Type: USB virtual comms port Connection: Type B Baud Rate: 300 to 38.4k Unit Address: 0 to 99

## **1.0 INSTALLING THE METER**

3

### INSTALLATION

The meter meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel.

The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest



forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approx. 28 to 36 in-oz [0.202 to 0.26 N-m]). Do not over-tighten the screws.

### INSTALLATION ENVIRONMENT

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.



## **2.0 SETTING THE JUMPERS**

### INPUT RANGE JUMPER

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum input signal to avoid overloads. To access the jumper, remove the rear cover of the meter.



F

**Warning**: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

### REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.



### www.redlion.net

### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **3.0 INSTALLING PLUG-IN CARDS**



**WARNING:** Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.



**CAUTION:** The Plug-in cards and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

### REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will

provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.

The Plug-in cards are separately purchased option cards that perform specific functions. The cards plug in to the main circuit board of the meter.



## **4.0 WIRING THE METER**

### WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

### **EMC INSTALLATION GUIDELINES**

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
  - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
  - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:
  - Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:
    - Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)

- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
  - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
  - b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

#### Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

VisitRLC'swebsiteathttp://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

### 4.1 POWER WIRING

### DC Power





### 4.3 INPUT WIRING



### 4.4 SETPOINT (OUTPUT) WIRING

### 4.2 USER INPUT WIRING

### Sinking Logic

USR COMM Connect external switching device between the USR User Input terminal and User Input Common.

The user input of the meter is internally pulled up to +9 to +28 V with 10 K resistance. The input is active when it is pulled low (<0.7 V).





HP+

**CAUTION**: Power input common and sensor input common are NOT isolated from user input common. In order to preserve the safety of the meter application, the power input common and the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.



### 4.5 SERIAL COMMUNICATION WIRING



### 4.6 USB PROGRAMMING



F

## **5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY**



### BUTTON DISPLAY MODE OPERATION

SEL Index display through enabled values

RST Resets values (MIN / MAX) or outputs

#### **OPERATING MODE DISPLAY DESIGNATORS**

MAX - Maximum display capture value

MIN - Minimum display capture value

### ENTERING PROGRAM MODE

Press and hold for 2 seconds to activate

#### **PROGRAMMING MODE OPERATION**

Store selected parameter and index to next parameter Advances through the program menu Increments selected parameter value or selection

- "1" To the right of the display indicates setpoint 1 output activated.
- "2" To the right of the display indicates setpoint 2 output activated.

Pressing the **SEL** button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

# **6.0 PROGRAMMING THE METER**



### PROGRAMMING MODE ENTRY (SEL BUTTON)

It is recommended that all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the **SEL** button. If it is not accessible then it is locked by either a security code, or a hardware lock.

### **MODULE ENTRY (SEL & RST BUTTONS)**

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between  $P_{ro}$  and the present module. The **RST** button is used to select the desired module. The displayed module is entered by pressing the **SEL** button.

### MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The **SEL** button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro ND. Programming may continue by accessing additional modules.

### **SELECTION / VALUE ENTRY**

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The **RST** button is used to move through the selections/values for that parameter. Pressing the **SEL** button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the **RST** button to access the value. The right hand most digit will begin to flash. Pressing the **RST** button again increments the digit by one or the user can hold the **RST** button and the digit will automatically scroll. The **SEL** button will advance to the next digit. Pressing and holding the **SEL** button will enter the value and move to the next parameter.

### **PROGRAMMING MODE EXIT (SEL BUTTON)**

The Programming Mode is exited by pressing the **SEL** button with  $P_{ro}$   $\Pi \square$  displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

### PROGRAMMING TIPS

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

#### FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

Pressing both the **SEL** and the **RST** button on power-up will also load the factory settings and display rESEt. This allows operation in the event of a memory failure or corrupted data.

### ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter's Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

| Indicates | Program Mod     | le Alterr  | ating Display   |
|-----------|-----------------|------------|-----------------|
| Parameter | USr IN          | প্মি       |                 |
|           | ₹\$             | ΠΟ         | Selection/Value |
|           | Factory Setting | is are sho | own.            |

### 1-717-767-6511



RANGE JUMPERS

100 ohm

100 ohm

100 ohm

10 ohm



Select the RTD type used for the application. The appropriate curve will be automatically loaded for the selected type. The position of the Input Range Jumper must match the RTD type selected.



°F °Ľ

Select the temperature scale. This selection applies for the Input, MAX and MIN displays.



### **DISPLAY DECIMAL POINT**



Select the decimal point location for the desired display resolution. This selection applies for the Input, MAX and MIN displays.

| OFSEŁ | <u>କ</u> ୍ |
|-------|------------|
| \$    | 0          |

F

### **DISPLAY OFFSET VALUE**

· 19999 to 19999

The temperature display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer.



### FILTER SETTING

|--|

If the displayed temperature is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.



### FILTER BAND



The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the filter permanently engaged at the filter level selected in the previous parameter.

| USr | П | ি  |
|-----|---|----|
| K [ |   | ΠΠ |

### **USER INPUT FUNCTION**

| Ŷ        | 110                                         |                                                                                                              |
|----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| DISPLAY  | MODE                                        | DESCRIPTION                                                                                                  |
| nD       | No Function                                 | User Input disabled.                                                                                         |
| P·Loc    | Program Mode Lock-out                       | See Programming Mode Access chart (Module 3).                                                                |
| rESEE    | Reset (Edge triggered)                      | Resets the assigned value(s) to the current input value.                                                     |
| q-XFq    | Display Hold                                | Holds the assigned display, but all other meter functions continue as long as activated (maintained action). |
| 9-2EF    | Display Select<br>(Edge Triggered)          | Advance once for each activation.                                                                            |
| q.ren    | Display Intensity Level<br>(Edge Triggered) | Increase intensity one level for each activation (backlight version only).                                   |
| [OLOr    | Backlight Color<br>(Edge Triggered)         | Change backlight color with each activation (backlight version only).                                        |
| Pr int   | Print Request                               | Serial transmit of the active parameters<br>selected in the Print Options menu<br>(Module 5).                |
| P•r5Ł    | Print and Reset                             | Same as Print Request followed by a momentary reset of the assigned value(s).                                |
| r 52 - 1 | Setpoint 1 Reset                            | Resets setpoint 1 output.                                                                                    |
| r 52 - 2 | Setpoint 2 Reset                            | Resets setpoint 2 output.                                                                                    |
| r 5£ 12  | Setpoint 1 and 2 Reset                      | Reset both setpoint 1 and 2 outputs.                                                                         |
|          |                                             |                                                                                                              |

### USER INPUT ASSIGNMENT

| U-            | R5N 🕤 | нı | X I-LO |
|---------------|-------|----|--------|
| $\mathcal{C}$ | dSP   | LD | d2b    |

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, display hold, or print and reset is selected in the User Input Function menu.





নি

2.0

H 1-F

P



MAX CAPTURE DELAY TIME

00 to 9999 seconds

When the Input Display is above the present MAX value for the entered

delay time, the meter will capture that display value as the new MAX reading.

A delay time helps to avoid false captures of sudden short spikes.



প্ম

48

The CUB5RT uses stored resistance calibration values to provide accurate temperature measurements. Over time, the electrical characteristics of the components inside the meter could slowly change. The result is that the stored calibration values may no longer accurately

define the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the CUB5RT involves a resistance calibration. Allow 30 minute warm up before performing any calibration related procedure. The following procedures should be performed at an ambient temperature of 15 to 35 °C (59 to 95 °F).

Calibration should only be performed by individuals experienced in calibrating electronic equipment.

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the CUB5RT.

### 10 OHM RTD Range Calibration

- 1. Set the Input Range Jumper to 10 ohm.
- 2. With the display at Lode 48, press and hold the SEL button for 2 seconds. Unit will display CAL NO.
- 3. Press the RST button. Display reads [RL r 10.
- 4. Press the SEL button. Display reads ODr
- 5. Apply a direct short to terminals INP+, EXC, and COMM using a three wire link. Press SEL. Display reads [RL[ for about 15 seconds.
- 6. When the display reads 15.0r, apply a precision resistance of 15 ohms (with an accuracy of 0.01% or better) to terminals INP+, EXC, and COMM using a three wire link. Press SEL. Display reads [RL[ for about 15 seconds.
- 7. When display reads [RL ND, press the SEL button to exit calibration, or proceed to the 100 ohm RTD Range Claibration.

### 100 OHM RTD Range Calibration

- 1. Set the Input Range Jumper to 100 ohm.
- 2. With the display at Lode 48, press and hold the SEL button for 2 seconds. Unit will display CAL NO.
- 3. Press the RST button until the display reads [AL r 100.
- 4. Press the SEL button. Display reads ODr
- 5. Apply a direct short to terminals INP+, EXC, and COMM using a three wire link. Press SEL. Display reads [RL[ for about 15 seconds.
- 6. When the display reads 3000r, apply a precision resistance of 300 ohms (with an accuracy of 0.01% or better) to terminals INP+, EXC, and COMM using a three wire link. Press SEL. Display reads [RL[ for about 15 seconds.
- 7. When display reads [RL ND, press the SEL button to exit calibration.

### **RESISTANCE DISPLAY MODE**



Entering Code 85 will place the CUB5RT in a resistance display mode. This mode is useful for diagnostic purposes before and after calibration, or to display the measured resistance of a connected RTD probe. If the RTD type is set

for [u42] with the jumper set to the 10 ohm position, the display will read resistance in 0000 ohms resolution. For all other RTD types, with the jumper in the 100 ohm position, the display will read in 000 ohms resolution.

Re-entering code 85 toggles the display back to the temperature display mode without having to remove power from the meter. If power is removed, the display always returns to the temperature display mode when power is reapplied.



Enables the Minimum Display Capture capability.

#### MIN CAPTURE DELAY TIME LD-F ᠬ P 20

00 to 9999 seconds

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

### FACTORY SERVICE OPERATIONS

YES



Select YE5 to perform any of the Factory Service Operations shown below.

### **RESTORE FACTORY DEFAULT SETTINGS**



Entering Code 66 will overwrite all user settings with the factory settings. The meter will display rESEL and then return to LodE 00. Press SEL button to exit the module. Pressing both the SEL and the RST button on power-up

will also load the factory settings and display rESEL. This allows operation in the event of a memory failure or corruted data.

### 6.3 MODULE 3 - DISPLAY AND FRONT PANEL BUTTON PARAMETERS (3-45P)



### DISPLAY UPDATE TIME

This parameter sets the display update time in seconds.

### DISPLAY INTENSITY LEVEL (BACKLIGHT UNIT ONLY)



Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed. This parameter is active for backlight units only.

### FRONT PANEL DISPLAY SELECT ENABLE (SEL)

| SEL        | ^   |     |    |  |
|------------|-----|-----|----|--|
| $\swarrow$ | YES | YES | NO |  |

The  $\Psi\!E\!5$  selection allows the SEL button to toggle through the enabled displays.

## FRONT PANEL RESET ENABLE (RST)

| ក ៦         | ברי <u>ו</u> בי | 110 | LU    |
|-------------|-----------------|-----|-------|
| ${\bf f} >$ | dSP             | H I | 81-LU |

This selection allows the  $\ensuremath{\mathsf{RST}}$  button to reset the selected value(s).

### **DISPLAY SCROLL ENABLE**



F

**F**1

¢



The  $rac{4}{5}$  selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds.

### DISPLAY COLOR (BACKLIGHT UNIT ONLY)



rEd Brn

Enter the desired display color, red or green. This parameter is active for backlight units only.

### PROGRAMMING SECURITY CODE



The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out ( $P \cdot Loc$ ) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the LodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the LodE prompt appears (see chart).

| USER INPUT<br>FUNCTION | USER INPUT<br>STATE  | SECURITY<br>CODE | MODE WHEN "SEL"<br>BUTTON IS PRESSED | FULL PROGRAMMING<br>MODE ACCESS                                           |
|------------------------|----------------------|------------------|--------------------------------------|---------------------------------------------------------------------------|
|                        |                      | 0                | Full Programming                     | Immediate Access                                                          |
| not <sup>p</sup> ·Loc  |                      | 1-99             | Quick Programming                    | After Quick<br>Programming with<br>correct code entry at<br>[odE prompt * |
|                        |                      | 100-999          | CodE prompt                          | With correct code entry<br>at [odE prompt *                               |
| P-Loc                  | Active<br>Not Active | 0                | Programming Lock                     | No Access                                                                 |
|                        |                      | 1-99             | Quick Programming                    | No Access                                                                 |
|                        |                      | 100-999          | CodE prompt                          | With correct code entry<br>at [odE prompt *                               |
|                        |                      | 0-999            | Full Programming                     | Immediate Access                                                          |

\* Entering Code 222 allows access regardless of security code.

onds. Enter the de

### 6.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-5PE)



The Setpoint Output Parameters are only active when an optional output module is installed in the meter.



Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to 595£L. Repeat steps for each setpoint to be programmed. Select nD to exit the module. The number of setpoints available is setpoint output card dependent.

5P-2





SPSEL

P

YES NO

Select 4E5 to enable Setpoint 2 and access the setup parameters. If R0 is selected, the unit returns to 5P5E1 and setpoint 2 is disabled.



Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

- HI-bL = High Acting, with balanced hysteresis
- LO-BL = Low Acting, with balanced hysteresis
- HI-Ub = High Acting, with unbalanced hysteresis
- LD-Ub = Low Acting, with unbalanced hysteresis



### SETPOINT VALUE



-9999 to 99999

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

### HYSTERESIS VALUE



1 to 59999

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

*Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.* 



ON TIME DELAY

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

£0F-n ↔

00 to 5999 Sec

OFF TIME DELAY

F

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

### OUTPUT RESET ACTION



Ruto

Enter the reset action of the output. See figure for details.

L'AFEX

L·dLY

Ruba = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The "on" output may be manually reset (off) immediately by the front panel **RST** button or user input. The output remains off until the trigger point is crossed again.

LRLEW = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST** button or user input manual reset, serial reset command or meter power cycle.

1-717-767-6511

When the user input or **RST** button is activated (momentary action), the corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

L·dLY = Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST** button or user input manual reset, serial reset command or meter power cycle. When the user input or **RST** button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous L·dLY reset if it is not activated at power up.)



### OUTPUT RESET WITH DISPLAY RESET



This parameter enables the **RST** button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to d5P and the Input value must be displayed. If these conditions are not met, the output will not reset.

### STANDBY OPERATION

ПΟ



YES

When  $\frac{1}{5}$ , the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and OutputReset Action.

### PROBE BURN-OUT ACTION



01

Enter the probe burn-out action. In the event of a temperature probe failure (open or short), the output can be programmed to be on or off.

OFF

### CHANGE DISPLAY COLOR w/OUTPUT STATE

| [h[ | ТЛ I | প্ম |    |     |
|-----|------|-----|----|-----|
| Ø   |      | ПΟ  | 00 | YES |

This parameter enables the backlight CUB5 to switch the backlight color when the output state changes. This parameter is only active for the backlight version.



The Serial Setup Parameters are only active when one of the optional serial communications/programming cards is installed in the meter. Refer to the CUB5COM bulletin for details and setup for the CUB5 RS232 or RS485 serial communications.

Refer to the CUB5USB bulletin for details on the CUB5 USB programming and programming requirements.

## **MODEL PAXLTC - PAX LITE THERMOCOUPLE METER**





- PROGRAMMABLE TC TYPE (T, E, J, K, R, S, B, N or mV SCALE)
- CONFORMS TO ITS-90 STANDARDS
- SELECTABLE °F OR °C WITH 0.1 OR 1 DEGREE DISPLAY RESOLUTION
- STATE-OF-THE-ART DIGITAL ELECTRONICS FOR GREATER ACCURACY AND RELIABILITY
- FULL 4-DIGIT, HIGH VISIBILITY, 0.56" (14.2 mm) HIGH RED LED DISPLAY
- PROGRAMMABLE TEMPERATURE OFFSET
- PROGRAMMABLE DIGITAL FILTERING ENHANCES STABILITY
- PEAK/VALLEY (HI/LO READING) MEMORY
- NEMA 4X/IP65 SEALED FRONT BEZEL
- CUSTOM UNITS OVERLAY WITH BACKLIGHT

### **GENERAL DESCRIPTION**

The Pax Lite Thermocouple Meter accepts inputs from standard thermocouples and precisely linearizes them. A full 4-digit display accommodates a wide range of temperature inputs. The unit automatically compensates for cold junction, NBS linearity and the meter's zero and span.

The meter features a readout choice of either Fahrenheit or Celsius with 0.1 or 1 degree resolution. English Style display prompts and front panel buttons aid the operator through set-up and operation. With a few simple steps the unit can be used as a millivolt meter by selecting "UOLE" for thermocouple type. This mode is useful in monitoring and displaying the actual voltage produced at the thermocouple probe junction and as an aid in troubleshooting for a faulty thermocouple probe.

The meter provides a Peak (HI) and Valley (LO) reading memory with selectable capture delay time. The capture delay is used to prevent detection of false Peak or Valley readings that may occur during start-up or unusual process events. The Peak and Valley readings are stored at power-down to allow monitoring the process limits over any length of time (shifts, days, etc.).

Programmable digital filtering enhances the stability of the reading. All setup data is stored in EEPROM, which will hold data for a minimum of 10 years without power. The meter has several built-in diagnostic functions to alert operators of any malfunction.

Extensive testing of noise interference mechanisms and full burn-in makes the indicator extremely reliable in industrial environments. The front bezel meets NEMA 4X/IP65 requirements for wash down applications.

### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so, can be potentially harmful to persons or equipment in the event of a fault to the unit.





instructions prior to installation and operation of the unit

### **DEFINITION OF TERMS**

**INSTALLATION CATEGORY** (overvoltage category) I:

Signal level, special equipment or parts of equipment, telecommunication, electronic, etc. with smaller transient overvoltages than Installation Category (overvoltage category) II.

INSTALLATION CATEGORY (overvoltage category) II:

Local level, appliances, portable equipment, etc. with smaller transient overvoltages than Installation Category (overvoltage category) III.

### **DIMENSIONS** In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5" (127) W.



### 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

F

## TABLE OF CONTENTS

| Ordering Information         |
|------------------------------|
| General Meter Specifications |
| Accessories                  |
| Installing the Meter         |
| Wiring the Meter             |

| Reviewing the Front Buttons and Display | 5 |
|-----------------------------------------|---|
| Programming the Meter                   | 6 |
| Calibrating the Meter                   | 7 |
| Troubleshooting                         | 8 |

## **ORDERING INFORMATION**

### **Meter Part Numbers**



### **Accessories Part Numbers\***

| TYPE        | MODEL NO. | DESCRIPTION               | PART NUMBERS |
|-------------|-----------|---------------------------|--------------|
| Accessories | PAXLBK    | Units Label Kit Accessory | PAXLBK30     |

\*This meter is shipped with °F and °C overlay labels. The label kit is only needed if another units label is desired.

## **GENERAL METER SPECIFICATIONS**

 DISPLAY: 4-digit, 0.56" (14.2 mm) high red LED, minus sign displayed for negative temperatures.

**Overrange/Underrange Input:** Flashing "DLDL" or "ULUL" **Overrange/Underrange Display:** "…" or "•…"

- POWER: 85 to 250 VAC, 50/60 Hz, 6 VA Isolation: 2300 Vrms for 1 min. between input and supply (300 V working voltage)
- CONTROLS: Three front panel push buttons for meter set-up. Rear terminal input for disabling the front panel.
- 4. THERMOCOUPLE TYPES: T, E, J, K, R, S, B, N or mV scale
- 5. RESOLUTION: 1 degree for all types, or 0.1 degree for T, E, J, K and N only

 THERMOCOUPLE RANGE AND ACCURACY: All errors include NBS conformity, cold junction effect and A/D conversion errors at 23°C after 60 minutes warm-up. Relative Humidity less than 85%.

| TC TYPE | RANGE                              | ACCURACY       | WIRE COLOR |
|---------|------------------------------------|----------------|------------|
| т       | -200 to +400°C<br>-328 to +752°F   | 0.8°C<br>1.4°F | blue       |
| E       | -200 to +1000°C<br>-328 to +1832°F | 0.8°C<br>1.4°F | purple     |
| J       | -200 to +760°C<br>-328 to +1400°F  | 0.8°C<br>1.4°F | white      |
| к       | -200 to +1250°C<br>-328 to +2282°F | 0.8°C<br>1.4°F | yellow     |
| R       | 0 to +1768°C<br>+32 to +3214°F     | 2.1°C<br>3.8°F | black      |
| S       | 0 to +1768°C<br>+32 to +3214°F     | 2.1°C<br>3.8°F | black      |
| В       | +150 to +1820°C<br>+302 to +3308°F | 2.3°C<br>4.1°F | grey       |
| Ν       | -200 to +1300°C<br>-328 to +2372°F | 0.8°C<br>1.4°F | orange     |
| mV      | -10.00 to +80.00 mV                | 0.01%          |            |

7. **INPUT IMPEDANCE**: 20 M $\Omega$ , all types

8. LEAD RESISTANCE EFFECT:  $20 \ \mu V/350 \ \Omega$ 

- Max Input Voltage Protection: 70 VDC continuous
- 9. OPEN THERMOCOUPLE DETECTION: Display Flashes: "OPER"
- 10. **COLD JUNCTION COMPENSATION**: Automatic, 0.02 degree/degree. Disabled for linear mV scale.
- 11. **READING RATE**: 2.5 readings/second
- RESPONSE TIME: 2 seconds to settle for step input (increases with programmable digital filtering)
- LOW FREQUENCY NOISE REJECTION: Normal Mode Rejection: 45 dB @ 50/60 Hz (may be improved by programmable digital filtering)
   Common Mode Rejection: 120 dB, DC to 50/60 Hz
- Common Widde Rejection: 120 dB, DC to 50/60 f

14. ENVIRONMENTAL CONDITIONS: Operating Temperature Range: 0 to 50 °C

Operating Temperature Range: 0 to 50 °C

Storage Temperature Range: -40 to 80 °C Operating and Storage Humidity: 85% max (non-condensing) from 0 to 50 °C

## Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2g's. Shock According to IEC 68-2-27: Operational 30 g, 11 msec in 3 directions.

Span Drift: 40 ppm/°C

**Zero Drift**: 1 µV/°C

Altitude: Up to 2000 meters.

15. CERTIFICATIONS AND COMPLIANCES:

SAFETY

UL Recognized Component, File # E179259, UL61010-1, CSA C22.2 No. 61010-1 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.

UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50

IECEE CB Scheme Test Report # 04ME11209-20041018 Issued by Underwriters Laboratories, Inc.

IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1. IP65 Enclosure rating (Face only), IEC 529

### ELECTROMAGNETIC COMPATIBILITY

Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

#### Immunity:

| immunity.                 |               |                                       |
|---------------------------|---------------|---------------------------------------|
| Electrostatic discharge   | EN 61000-4-2  | Criterion A<br>4 kV contact discharge |
|                           |               | 8 kV air discharge                    |
| Electromagnetic RF fields | EN 61000-4-3  | Criterion A                           |
|                           |               | 10 V/m                                |
| Fast transients (burst)   | EN 61000-4-4  | Criterion A                           |
| × ,                       |               | 2 kV power                            |
|                           |               | 2 kV signal                           |
| Surge                     | EN 61000-4-5  | Criterion A                           |
| Suige                     | 211 01000 10  | 1 kV I J                              |
|                           |               | 2  kV L & N-E power                   |
|                           |               | 1 kV signal                           |
|                           |               | i kv sigilal                          |
| RF conducted interference | EN 61000-4-6  | Criterion A                           |
|                           |               | 3 V/rms                               |
| Voltage dip/interruptions | EN 61000-4-11 | Criterion A                           |
|                           |               | 0.5 cycle                             |
| Emissions:                |               | -                                     |
| Emissions                 | EN 55011      | Class B                               |
|                           |               |                                       |

Note:

1. Criterion A: Normal operation within specified limits.

 CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. One piece bezel/case. Flame resistant. Panel gasket and mounting clip included.

17. CONNECTIONS: High compression cage-clamp terminal block

Wire Strip Length: 0.3" (7.5 mm)

Wire Gage: 30-14 AWG copper wire

Torque: 4.5 inch-lbs (0.51 N-m) max.

18. WEIGHT: 0.65 lbs. (0.24 Kg)

## Accessories

### UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled in the programming.

Each meter is shipped with °F and °C overlay labels which can be installed into the meter's bezel display assembly.

### 1-717-767-6511

# **1.0 INSTALLING THE METER**

### Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.



While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

### Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.



# **2.0 WIRING THE METER**

### POWER WIRING

Primary AC power is connected to Terminals 1 and 2. To reduce the chance of noise spikes entering the AC line and affecting the indicator, the AC power should be relatively "clean" and within the specified limits. Drawing power from heavily loaded circuits or circuits which also power loads that cycle on and off, (contactors, relays, motors, machinery, etc.) should be avoided.



### SIGNAL WIRING (TC SENSOR)

Remove power and connect the negative thermocouple lead (always red) to TC- (Terminal 6) and the positive lead to TC+ (Terminal 5). Be certain that connections are clean and tight. If the thermocouple probe is to be mounted away from the meter, thermocouple extension grade wire must be used (copper wire will not work). Use the correct type and observe the correct polarity. Always refer to the sensor manufacturer's instructions for probe wiring connections, if available. For multi-probe temperature averaging applications, two or more thermocouple probes may be connected at the meter. (Always use the same type.) In order to minimize the chances of coupling noise into the wires and subsequently causing bouncy and erroneous readings, proper guidelines for thermocouple wire routing must be followed.

### Thermocouple



### **PROGRAM DISABLE INPUT WIRING**

PGM.DIS. (Terminal 3) is a digital input that is active when connected to Comm (Terminal 4). Any form of mechanical switch or current sinking logic with less than 0.7 V saturation may be used. The use of shielded cable is recommended. Follow the EMC Installation Guidelines for shield connection.



Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

### WIRING OVERVIEW

F

### www.redlion.net

### **EMC INSTALLATION GUIDELINES**

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
  - a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
  - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.
  - c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly

grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.

- Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
- 5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC# FCOR0000) TDK # ZCAT3035-1330A Steward # 28B2029-0A0 Line Filters for input power cables: Schaffner # FN610-1/07 (RLC# LFIL0000) Schaffner # FN670-1.8/07

Corcom # 1 VR3

- Note: Reference manufacturer's instructions when installing a line filter.
- 6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.

## **3.0 REVIEWING THE FRONT BUTTONS AND DISPLAY**



KEY DISPLAY MODE OPERATION

- PAR Access Programming Mode or Display Input Reading
- Display Peak (HI) Reading
- Display Valley (LO) Reading

### **PEAK/VALLEY DETECTION**

The meter will automatically record the highest input reading (peak) and the lowest input reading (valley) for later recall. These values are stored at powerdown to allow monitoring the process limits over any length of time (shifts, days, etc.). A selectable capture delay time is used to prevent detection of false peak or valley readings caused by sudden short spikes or unusual process events.

The peak and valley readings can be viewed and reset using the front panel keys as described below.

View Peak, Valley and Input readings:

- To view Peak, press ▲. Meter displays ₩ℓ followed by the Peak reading.
- To view Valley, press ▼. Meter displays LB followed by the Valley reading. To view Input, press **PAR**. Meter displays *I***n***Pt* followed by the current Input reading.
- Note: The decimal point to the right of digit 1 flashes while the peak or valley reading is displayed.

#### PROGRAMMING MODE OPERATION

Store selected parameter and index to next parameter Increment value or change selection Decrement value or change selection

Reset Peak and/or Valley to the current Input reading:

- To reset Peak and Valley, press  $\blacktriangle$  and  $\blacktriangledown$  simultaneously.
- To reset Peak only, press and hold  $\blacktriangle$  then press **PAR**.
- To reset Valley only, press and hold  $\mathbf{\nabla}$  then press **PAR**.
- In each case, the meter displays **~5EE** followed by the current Input reading.

## **4.0 PROGRAMMING THE METER**



The Thermocouple Meter has up to seven programmable parameters that are entered in the sequence shown above, using the front panel push buttons. Depending on the thermocouple type selected, some parameters are not applicable and are bypassed in the sequence.

The last programming step offers the choice of entering calibration mode. From this mode, the user can restore the meter to factory default settings, or recalibrate the signal input and cold junction temperature if necessary. To prevent inadvertent entries, an access code must be keyed-in to perform any operations in calibration mode.

Note: Programming mode can be locked out using the Program Disable input terminal. With the PGM.DIS. terminal connected to COMM, the meter displays "LDC" when the **PAR** key is pressed, and will not enter programming mode.

### **PROGRAMMING MODE ENTRY**

Press the **PAR** key to enter Programming Mode. The meter briefly displays *Pro* followed by the first programming parameter described below.

### **PROGRAMMING MODE TIMEOUT**

The Programming Mode has an automatic time out feature. If no keypad activity is detected for approximately 60 seconds, the meter automatically exits Programming Mode. The meter briefly displays **End** and returns to the normal display mode. When automatic timeout occurs, any changes that were made to the parameter currently being programmed will not be saved.

#### **PROGRAMMING PARAMETERS**

In Programming Mode, the display alternates between the parameter and the current selection or value for that parameter. The dual display with arrows is used below to illustrate the alternating display. The selection choices or value range for each parameter is shown to the right of the alternating display.



Select the thermocouple type by pressing the arrow keys ( $\blacktriangle$  or  $\blacktriangledown$ ) to sequence through the selection list. When the desired selection is displayed, press the **PAR** key to save the selection and advance to the next parameter. Refer to the thermocouple range and accuracy specification for additional TC information.

#### **TEMPERATURE SCALE**



Select the desired temperature scale by pressing the up or down arrow keys. This setting does not change the Custom Units Overlay display (if installed). Press the **PAR** key to save the selection and advance to the next parameter.

### **DECIMAL POINT POSITION**



Select the decimal point position by pressing the up or down arrow keys. This sets the display resolution to 1 or 0.1 degree. This parameter is not available for thermocouple types R, S and B, where the display resolution is always 1 degree. When mV indicator mode is selected for thermocouple type, the display resolution is fixed at 0.01 mV (10  $\mu$ V).

Press the PAR key to save the selection and advance to the next parameter.

### TEMPERATURE DISPLAY OFFSET



The temperature display can be corrected with an offset value. This can be used to compensate for probe errors or errors due to variances in probe placement, or to adjust the readout to a reference thermometer. Set the desired display offset value by pressing (and/or holding) the up or down arrow keys. When the desired offset value is displayed, press the **PAR** key to save the selection and advance to the next parameter. The display resolution for the offset value is the same as the decimal point position programmed above. The display offset is not available when mV indicator mode is selected for thermocouple type.

#### DIGITAL FILTERING

#### 

This parameter sets the amount of digital filtering applied to the input signal. If the temperature display is difficult to read due to small variations or noise, increased levels of filtering will help to stabilize the display. Although the digital filter features a "moving window" to help minimize response time, higher levels of filtering will result in slightly longer response times.

| ۵ | - | no digital filtering | 2 | - | increased filtering |
|---|---|----------------------|---|---|---------------------|
| l | - | normal filtering     | 3 | - | maximum filtering   |

Set the desired level of input filtering by pressing the up or down arrow keys. Press the **PAR** key to save the selection and advance to the next parameter.

#### PEAK (HI)/ VALLEY (LO) CAPTURE DELAY TIME



When the Input display is above the present HI value or below the present LO value for the entered delay time, the meter will capture the Input display as the new HI or LO reading. A delay time helps to avoid false captures of sudden short spikes or Input display variations that may occur during start-up.

Set the desired capture delay time by pressing the up or down arrow keys. Press the **PAR** key to save the selection and advance to the next parameter.

F

### www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Ŀ,

UNITS LABEL BACKLIGHT



The Units Label Kit Accessory contains a sheet of custom unit overlays, which can be installed in the meter bezel display assembly. The unit of measure for the meter display is then visible when the label backlight is illuminated. The two most commonly used temperature unit labels (°F and °C) are supplied with the meter. Press the up or down arrow keys to select whether the units label backlight is illuminated. Press the **PAR** key to save the selection and advance to the next parameter.



Before exiting Programming Mode, the meter offers the choice of entering Calibration Mode. To exit Programming Mode without entering Calibration Mode, select  $\pi a$  and press the **PAR** key. The meter briefly displays End and returns to the normal display mode. All programmed selections are now transferred to non-volatile memory and are retained if power is removed from the meter.

(If power loss occurs during Programming Mode, verify parameter changes and reprogram, if necessary, when power is restored.)

## **5.0 CALIBRATING THE METER**



### **0** to **99**

To enter Calibration Mode, select LRL <> 9E5 at the end of Programming Mode, and press the **PAR** key. In Calibration Mode, the user can restore the meter to factory default settings or recalibrate the signal input if necessary.

**CALIBRATION MODE** 

To prevent inadvertent entries, an access code must be entered to perform any operation in Calibration Mode. Upon entering Calibration Mode, the meter initially displays Code 50. Press the up or down arrow keys to select the access code for the desired operation. If an access code other than those shown below is entered, the meter exits Calibration Mode and returns to normal display mode.

### **FACTORY SETTINGS**



The factory settings for the programming parameters are shown in the previous section in the alternating display illustrations. All programming parameters can be restored to the factory default settings by entering the access Code 66 and pressing the **PAR** key. The meter briefly displays r5Et and then returns to Code 50. This procedure resets only parameters that are accessed through Programming Mode. The Calibration Mode settings (input calibration levels) are not affected.





The meter has been fully calibrated at the factory. If the meter appears to be indicating incorrectly or inaccurately, refer to the troubleshooting section before attempting this procedure. When re-calibration is required *(generally every 2 years)*, the procedure should only be performed by qualified technicians using appropriate equipment. A precision thermometer (RTD, thermistor or similar type with an accuracy of  $\pm 0.3^{\circ}$  C) and an accurate voltage source (0.01%) are required. The procedure consists of setting the cold junction temperature and applying accurate voltages to the meter input in a series of three steps. Allow a 60-minute warm-up before starting calibration.

#### COLD JUNCTION TEMPERATURE CALIBRATION

- 1. Connect a calibrated thermocouple (types T, E, J, K or N only) to the panel meter. Select the thermocouple type used in programming.
- 2. Connect the reference thermometer to the measuring end of the thermocouple. The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (As an alternative, the PAXLTC thermocouple probe may be placed in a calibration bath of known temperature.)
- From the normal indicator display mode, compare the display temperature to that of the reference thermometer. Allow 10 minutes for the temperature to equalize. The meter and the reference thermometer should agree to within 1° F (0.6° C).
- 4. If cold junction re-calibration is necessary (temperature out of tolerance), enter meter calibration mode and enter access Code 48. The meter display will alternate between *LuL* and the old cold junction reading. At this point, key-in the new cold junction temperature according to the formula:

#### WHERE:

New Cold Junction Reading = Old Cold Junction Reading + Difference (Difference = Reference Thermometer Temperature - Meter Display Temperature)

Press PAR. The meter briefly displays ---- to acknowledge the new cold junction value.

#### VOLTAGE CALIBRATION

Following cold junction calibration, the display UCRL <> YE5/RD appears. Enter YE5 if input voltage calibration is desired. If RD is entered, the meter exits calibration and returns to normal display mode.

| DISPLAY       | PARAMETERS | DESCRIPTION/COMMENT                          |  |
|---------------|------------|----------------------------------------------|--|
| 0.000 mV      |            | Apply 0.000 mV, wait 20 seconds, press PAR.  |  |
| 30,0 u        | 30.000 mV  | Apply 30.000 mV, wait 20 seconds, press PAR. |  |
| 60 <u>0</u> u | 60.000 mV  | Apply 60.000 mV, wait 20 seconds, press PAR. |  |

The meter briefly displays *End* and returns to the normal display mode. Calibration is now complete.

It is recommended to check calibration by selecting mV indication mode for thermocouple type (kypt < > u0Lk) and verifying unit accuracy at various points over the range of the meter (-10 to +80 mV).

### TROUBLESHOOTING

The majority of all problems with the meter can be traced to improper connections or improper programming set-ups. Be sure all connections are clean and tight and check the programming set-ups for correct data.

For further technical assistance, contact technical support at the appropriate company numbers listed.

| PROBLEM                    | POSSIBLE CAUSE                                                                                                                                                     | REMEDIES                                                                                                                                                                                                    |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO DISPLAY                 | 1. Power off, improperly connected, or brown-out.                                                                                                                  | 1a. Check wiring.<br>1b. Verify power.                                                                                                                                                                      |
| "EEEE" IN DISPLAY          | 1. Program data error.                                                                                                                                             | 1. Press PAR and check data set-ups.                                                                                                                                                                        |
| "" or "" IN DISPLAY        | <ol> <li>Input display out of range.</li> <li>Loss of data set-ups.</li> </ol>                                                                                     | <ol> <li>Change display resolution to "1" degree.</li> <li>Reduce offset value.</li> <li>Check data set-ups.</li> <li>Check for electrical disturbance.</li> <li>Disconnect and reconnect power.</li> </ol> |
| DISPLAY WANDERS            | 1. Loss of data set-ups.                                                                                                                                           | <ol> <li>Check data set-ups.</li> <li>Disconnect and reconnect power.</li> <li>Check for electrical disturbance.</li> </ol>                                                                                 |
| JITTERY DISPLAY            | <ol> <li>Electrical "Noise" in process or sensor lines.</li> <li>Process inherently unstable.</li> <li>Corroded or dirty thermocouple wire connections.</li> </ol> | <ol> <li>Increase digital filtering.</li> <li>Re-route sensor wires.</li> <li>Dampen process to eliminate oscillations.</li> <li>Clean and tighten connections.</li> </ol>                                  |
| "OPEN" IN DISPLAY          | <ol> <li>Probe unconnected.</li> <li>Broken or burnout probe.</li> </ol>                                                                                           | <ol> <li>Connect probe.</li> <li>Repair or obtain new probe.</li> </ol>                                                                                                                                     |
| "OLOL" IN DISPLAY          | 1. Excessive positive probe temperature.                                                                                                                           | 1. Reduce temperature.                                                                                                                                                                                      |
| " <b>ULUL</b> " IN DISPLAY | 1. Excessive negative probe temperature.                                                                                                                           | 1. Increase temperature.                                                                                                                                                                                    |
## **MODEL PAXLRT - PAX LITE RTD METER**



- ACCEPTS STANDARD 3-WIRE 100 Ω RTD SENSORS (ALPHA = 0.00385 or ALPHA = 0.00392)
- CONFORMS TO ITS-90 STANDARDS
- SELECTABLE °F OR °C WITH 0.1 OR 1 DEGREE DISPLAY RESOLUTION
- STATE-OF-THE-ART DIGITAL ELECTRONICS FOR GREATER ACCURACY AND RELIABILITY
- FULL 4-DIGIT, HIGH VISIBILITY, 0.56" (14.2 mm) HIGH RED LED DISPI AY
- PROGRAMMABLE TEMPERATURE OFFSET
- PROGRAMMABLE DIGITAL FILTERING
- PEAK/VALLEY (HI/LO READING) MEMORY
- NEMA 4X/IP65 SEALED FRONT BEZEL
- CUSTOM UNITS OVERLAY WITH BACKLIGHT

### **GENERAL DESCRIPTION**

The Pax Lite RTD Meter accepts standard RTD inputs and precisely linearizes them into temperature readings. A full 4-digit display accommodates a wide range of temperature inputs. State-of-the-art digital circuitry virtually eliminates errors due to drift.

The meter features a readout choice of either Fahrenheit or Celsius with 0.1 or 1 degree resolution. English Style display prompts and front panel buttons aid the operator through set-up and operation. Programmable digital filtering enhances the stability of the reading. All set-up data is stored in EEPROM, which will hold data for a minimum of 10 years without power.

The meter provides a Peak (HI) and Valley (LO) reading memory with selectable capture delay time. The capture delay is used to prevent detection of false Peak or Valley readings that may occur during start-up or unusual process events. The Peak and Valley readings are stored at power-down to allow monitoring the process limits over any length of time (shifts, days, etc.).

The meter has several built-in diagnostic functions to alert operators of any malfunction. Extensive testing of noise interference mechanisms and full burn-in makes the meter extremely reliable in industrial environments. The front bezel meets NEMA 4X/IP65 requirements for wash down applications.

### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so, can be potentially harmful to persons or equipment in the event of a fault to the unit.





F

Read complete instructions prior to installation and operation of the unit

### DEFINITION OF TERMS

INSTALLATION CATEGORY (overvoltage category) I: Signal level, special equipment or parts of equipment, telecommunication, electronic, etc. with smaller transient overvoltages than Installation Category (overvoltage category) II.

### INSTALLATION CATEGORY (overvoltage category) II:

Local level, appliances, portable equipment, etc. with smaller transient overvoltages than Installation Category (overvoltage category) III.

### **DIMENSIONS** In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5" (127) W.



### 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

F

## TABLE OF CONTENTS

| Ordering Information         |
|------------------------------|
| General Meter Specifications |
| Accessories                  |
| Installing the Meter4        |
| Wiring the Meter4            |

| Reviewing the Front Buttons and Display | . 5 |
|-----------------------------------------|-----|
| Programming the Meter                   | . 6 |
| Calibrating the Meter                   | . 7 |
| Troubleshooting                         | .7  |

## **ORDERING INFORMATION**

### **Meter Part Numbers**



### **Accessories Part Numbers\***

| TYPE        | MODEL NO. | DESCRIPTION               | PART NUMBERS |
|-------------|-----------|---------------------------|--------------|
| Accessories | PAXLBK    | Units Label Kit Accessory | PAXLBK30     |

\*This meter is shipped with °F and °C overlay labels. The label kit is only needed if another units label is desired.

## **GENERAL METER SPECIFICATIONS**

- DISPLAY: 4-digit, 0.56" (14.2 mm) high red LED, minus sign displayed for negative temperatures.
   Overrange/Underrange Input: Flashing "BLBL" or "ULUL" Overrange/Underrange Display: "..." or "-..."
   POWER: 85 to 250 VAC, 50/60 Hz, 6 VA Isolation: 2300 Vrms for 1 min. between input and supply (300 V working voltage)
   CONTROLS: Three front panel push buttons for meter set-up. Rear terminal
- input for disabling the front panel.
- 4. RESOLUTION: 0.1 or 1 degree
- 5. RANGE: Decimal Point Dependent
   0.1° res: -199.9° to 850.0 °C (-199.9° to 999.9 °F);
   1° res: -200° to 850 °C (-328° to 1562 °F)
- 6. OPEN/SHORTED RTD DETECTION: Display flashes: "OPEN" or "5Hrt"
- 7. LEAD RESISTANCE EFFECT: 20  $\Omega$  max., 2.5 °C/ $\Omega$  error for V exc. and common lead unbalance
- 8. ACCURACY: 0.3 °C, @ 23 °C and 30 min. warm-up
- 9. READING RATE: 2.5 readings/second
- 10. **RESPONSE TIME**: 2 seconds to settle for step input (increases with programmable digital filtering)
- LOW FREQUENCY NOISE REJECTION: Normal Mode Rejection: 40 dB @ 50/60 Hz (may be improved by programmable digital filtering)
- Common Mode Rejection: 120 dB, DC to 50/60 Hz
- 12. CERTIFICATIONS AND COMPLIANCES:

#### SAFETY

- UL Recognized Component, File # E179259, UL61010A-1, CSA C22.2 No. 61010-1 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
- UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards Type 4X Enclosure rating (Face only), UL50
- IECEE CB Scheme Report # 04ME11209-20041018 Issued by Underwriters Laboratories, Inc.
  - IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
  - IP65 Enclosure rating (Face only), IEC 529

#### ELECTROMAGNETIC COMPATIBILITY

- Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.
- **Immunity:**

| Electrostatic discharge   | EN 61000-4-2  | Criterion A        |
|---------------------------|---------------|--------------------|
|                           |               | 8 kV air discharge |
| Electromagnetic RF fields | EN 61000-4-3  | Criterion A        |
| e                         |               | 10 V/m             |
| Fast transients (burst)   | EN 61000-4-4  | Criterion A        |
|                           |               | 2 kV power         |
|                           |               | 2 kV signal        |
| Surge                     | EN 61000-4-5  | Criterion A        |
|                           |               | 1 kV L-L,          |
|                           |               | 2 kV L&N-E power   |
|                           |               | 1 kV signal        |
| RF conducted interference | EN 61000-4-6  | Criterion A        |
|                           |               | 3 V/rms            |
| Voltage dip/interruptions | EN 61000-4-11 | Criterion A        |
|                           |               | 0.5 cycle          |
| Emissions:                |               |                    |
| Emissions                 | EN 55011      | Class B            |

Note:

Criterion A: Normal operation within specified limits.
 ENVIRONMENTAL CONDITIONS:

**Operating Temperature Range**: 0 to 50 °C

Storage Temperature Range: -40 to 80 °C

**Operating and Storage Humidity:** 85% max (non-condensing) from 0 to 50 °C

Span Drift: 50 ppm/ °C

Zero Drift: 0.001 °C/°C

Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2 g's.

Shock According to IEC 68-2-27: Operational 30 g's, 11 msec in 3 directions. Altitude: Up to 2000 meters.

- CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. One piece bezel/case. Flame resistant. Panel gasket and mounting clip included.
- CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm)
  - Wire Gage: 30-14 AWG copper wire
  - Torque: 4.5 inch-lbs (0.51 N-m) max.
- 16. WEIGHT: 0.65 lbs. (0.24 Kg)

## ACCESSORIES

### UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled in the programming.

Each meter is shipped with °F and °C overlay labels which can be installed into the meter's bezel display assembly.

## **1.0 INSTALLING THE METER**

### Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.



## **2.0 WIRING THE METER**

### **POWER WIRING**

Primary AC power is connected to Terminals 1 and 2. To reduce the chance of noise spikes entering the AC line and affecting the indicator, the AC power should be relatively "clean" and within the specified limits. Drawing power from heavily loaded circuits or circuits that also power loads that cycle on and off (contactors, relays, motors, machinery, etc.) should be avoided.



### SIGNAL WIRING (RTD SENSOR)

RTD sensors are used in applications where a high degree of accuracy is required. Most RTD sensors available are the 3-wire type. The 3rd additional wire is a sense lead for canceling the effects of lead resistance at the probe. The sense lead connects to Terminal 5 (RTD+), the common lead to Terminal 6 (RTD-), and the excitation lead to Terminal 4 (+ Excitation). The excitation and sense leads are generally the same color because they are functionally the same and may be interchanged at the meter. Four wire sensors have an additional sense lead connected (at the probe) to the common lead. Leave the extra sense lead disconnected when using a four wire probe with the PAXLRT meter. Always refer to the sensor manufacturer's instructions for probe wiring connections, if available. Two wire RTD sensors may be used with the PAXLRT by shorting Terminal 4 to Terminal 5, if the distance between sensor and meter is less than 30 feet. The total lead resistance can be used to predict the temperature error for 2-wire sensors, according to  $2.5^{\circ}C/\Omega$  of lead resistance.

Note: Extended cable runs can be made provided the lead resistance is less than 20  $\Omega$ /lead and the resistance is equal in each lead.



While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

### Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.



### **PROGRAM DISABLE INPUT WIRING**

PGM.DIS. (Terminal 3) is a digital input that is active when connected to RTD-(Terminal 6). Any form of mechanical switch or current sinking logic with less than 0.7 V saturation may be used. The use of shielded cable is recommended. Follow the EMC Installation Guidelines for shield connection.



### WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

### **EMC INSTALLATION GUIDELINES**

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

- 1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
  - a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
  - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.
  - c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.

- Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
- 5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RLC# FCOR0000) TDK # ZCAT3035-1330A Steward # 28B2029-0A0

Line Filters for input power cables: Schaffner # FN610-1/07 (RLC# LFIL0000) Schaffner # FN670-1.8/07 Corcom # 1 VR3

Note: Reference manufacturer's instructions when installing a line filter.

Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.

## **3.0 REVIEWING THE FRONT BUTTONS AND DISPLAY**



KEY DISPLAY MODE OPERATION

- PAR Access Programming Mode or Display Input Reading
- ▲ Display Peak (HI) Reading
- Display Valley (LO) Reading

### **PEAK/VALLEY DETECTION**

The meter will automatically record the highest input reading (peak) and the lowest input reading (valley) for later recall. These values are stored at powerdown to allow monitoring the process limits over any length of time (shifts, days, etc.). A selectable capture delay time is used to prevent detection of false peak or valley readings caused by sudden short spikes or unusual process events.

The peak and valley readings can be viewed and reset using the front panel keys as described below.

View Peak, Valley and Input readings:

- To view Peak, press ▲. Meter displays # I followed by the Peak reading.
- To view Valley, press ▼. Meter displays LB followed by the Valley reading. To view Input, press **PAR**. Meter displays *InPt* followed by the current Input reading.
- Note: The decimal point to the right of digit 1 flashes while the peak or valley reading is displayed.

#### PROGRAMMING MODE OPERATION

Store selected parameter and index to next parameter Increment value or change selection Decrement value or change selection

Reset Peak and/or Valley to the current Input reading:

- To reset Peak and Valley, press  $\blacktriangle$  and  $\checkmark$  simultaneously.
- To reset Peak only, press and hold  $\blacktriangle$  then press **PAR**. To reset Valley only, press and hold  $\blacktriangledown$  then press **PAR**.

In each case, the meter displays **~5E** followed by the current Input reading.

## **4.0 PROGRAMMING THE METER**



The RTD Meter has seven programmable parameters that are entered in the sequence shown above, using the front panel push buttons.

The last programming step offers the choice of entering calibration mode. From this mode, the user can restore the meter to factory default settings or recalibrate the signal input if necessary. To prevent inadvertent entries, an access code must be keyed-in to perform any operations in calibration mode.

Note: Programming mode can be locked out using the Program Disable input terminal. With the PGM.DIS. terminal connected to RTD-, the meter displays "LDC" when the **PAR** key is pressed, and will not enter programming mode.

### **PROGRAMMING MODE ENTRY**

Press the **PAR** key to enter Programming Mode. The meter briefly displays *Pra* followed by the first programming parameter described below.

### **PROGRAMMING MODE TIMEOUT**

The Programming Mode has an automatic timeout feature. If no keypad activity is detected for approximately 60 seconds, the meter automatically exits Programming Mode. The meter briefly displays **End** and returns to the normal display mode. When automatic timeout occurs, any changes that were made to the parameter currently being programmed will not be saved.

### **PROGRAMMING PARAMETERS**

In Programming Mode, the display alternates between the parameter and the current selection or value for that parameter. The dual display with arrows is used below to illustrate the alternating display. The selection choices or value range for each parameter is shown to the right of the alternating display.



Select the RTD type by pressing the up or down arrow keys ( $\blacktriangle$  or  $\blacktriangledown$ ). When the desired selection is displayed, press the **PAR** key to save the selection and advance to the next parameter.



**TEMPERATURE SCALE** 

Select the desired temperature scale by pressing the up or down arrow keys. This setting does not change the Custom Units Overlay display (if installed). Press the **PAR** key to save the selection and advance to the next parameter.

٥٢



F

# DECIMAL POINT POSITION

Select the decimal point position by pressing the up or down arrow keys. This sets the display resolution to 1 or 0.1 degree. Press the **PAR** key to save the selection and advance to the next parameter.





The temperature display can be corrected with an offset value. This can be used to compensate for probe errors or errors due to variances in probe placement, or to adjust the readout to a reference thermometer. Set the desired display offset value by pressing (and/or holding) the up or down arrow keys. When the desired offset value is displayed, press the **PAR** key to save the selection and advance to the next parameter. The display resolution for the offset value is the same as the decimal point position programmed above.



This parameter sets the amount of digital filtering applied to the input signal. If the temperature display is difficult to read due to small variations or noise, increased levels of filtering will help to stabilize the display. Although the digital filter features a "moving window" to help minimize response time, higher levels of filtering will result in slightly longer response times.

- **2** no digital filtering **2** increased filtering
- *l* normal filtering **J** maximum filtering

Set the desired level of input filtering by pressing the up or down arrow keys. Press the **PAR** key to save the selection and advance to the next parameter.



When the Input display is above the present HI value or below the present LO value for the entered delay time, the meter will capture the Input display as the new HI or LO reading. A delay time helps to avoid false captures of sudden short spikes or Input display variations that may occur during start-up.

Set the desired capture delay time by pressing the up or down arrow keys. Press the **PAR** key to save the selection and advance to the next parameter.

### UNITS LABEL BACKLIGHT



The Units Label Kit Accessory contains a sheet of custom unit overlays, which can be installed in the meter bezel display assembly. The unit of measure for the meter display is then visible when the label backlight is illuminated. The two most commonly used temperature unit labels (°F and °C) are supplied with the meter. Press the up or down arrow keys to select whether the units label backlight is illuminated. Press the **PAR** key to save the selection and advance to the next parameter.

### **PROGRAMMING MODE EXIT**



Before exiting Programming Mode, The meter offers the choice of entering Calibration Mode. To exit Programming Mode without entering Calibration Mode, select  $\pi a$  and press the **PAR** key. The meter briefly displays *End* and returns to the normal display mode. All programmed selections are now transferred to non-volatile memory and are retained if power is removed from the meter.

(If power loss occurs during Programming Mode, verify parameter changes and reprogram, if necessary, when power is restored.)

### www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **5.0 CALIBRATING THE METER**

### CALIBRATION MODE

0 to 99

To enter Calibration Mode, select LRL <> yE5 at the end of Programming Mode, and press the **PAR** key. In Calibration Mode, the user can restore the meter to factory default settings or recalibrate the signal input if necessary.

To prevent inadvertent entries, an access code must be entered to perform any operation in Calibration Mode. Upon entering Calibration Mode, the meter initially displays Code 50. Press the up or down arrow keys to select the access code for the desired operation. If an access code other than those shown below is entered, the meter exits Calibration Mode and returns to normal display mode.

### FACTORY SETTINGS



E o d E 🕤

50

F

The factory settings for the programming parameters are shown in the previous section in the alternating display illustrations. All programming parameters can be restored to the factory default settings by entering the access Code 66 and pressing the **PAR** key. The meter briefly displays **r5E** and then returns to Code 50. This procedure resets only parameters that are accessed through Programming Mode. The Calibration Mode settings (input calibration levels) are not affected.

### METER INPUT CALIBRATION



The meter has been fully calibrated at the factory. If the meter appears to be indicating incorrectly or inaccurately, refer to the troubleshooting section before attempting this procedure. When re-calibration is required *(generally every 2 years)*, the procedure should only be performed by qualified technicians using appropriate equipment. Resistance source accuracies of 0.02% or better are required.

The procedure consists of applying accurate signal levels to the meter input in a series of two steps. Allow a 30-minute warm-up period before starting calibration. To begin the input calibration, enter access Code 48 and press the **PAR** key.

### ENTER ZERO REFERENCE

Meter displays  $\mathbf{Jr}$ . Apply 0 ohms to the meter input by shorting Terminals 4, 5, and 6. Allow the meter to stabilize at least 20 seconds after shorting the terminals, and then press **PAR**.

#### APPLY PRECISION RESISTANCE

Meter displays **JUD***r*. Connect a precision 300 ohm resistor across Terminals 5 and 6. Terminals 4 and 5 remain shorted. (*Note: Be certain to short Terminals 4 and 5 at the resistor as shown in the drawing below. Shorting terminals may lead to incorrect calibration.*)



Allow the meter to stabilize at least 20 seconds after making the connections, and then press **PAR**. The meter briefly displays **End** and returns to the normal display mode. Calibration is now complete. It is recommended to check calibration by comparing the displayed temperature with a precision thermometer.

### TROUBLESHOOTING

The majority of all problems with the meter can be traced to improper connections or improper programming set-ups. Be sure all connections are clean and tight and check the programming set-ups for correct data.

For further technical assistance, contact technical support at the appropriate company numbers listed.

| PROBLEM                      | POSSIBLE CAUSE                                                                                                                           | REMEDIES                                                                                                                                                                                                                        |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO DISPLAY                   | 1. Power off, improperly connected, or brown-out.                                                                                        | 1a. Check wiring.<br>1b. Verify power.                                                                                                                                                                                          |
| "EEEE" IN DISPLAY            | 1. Program data error.                                                                                                                   | 1. Press PAR and check data set-ups.                                                                                                                                                                                            |
| "" or "" IN DISPLAY          | <ol> <li>Input display out of range.</li> <li>Loss of data set-ups.</li> </ol>                                                           | <ol> <li>1a. Change display resolution to "1" degree.</li> <li>1b. Reduce offset value.</li> <li>2a. Check data set-ups.</li> <li>2b. Check for electrical disturbance.</li> <li>2c. Disconnect and reconnect power.</li> </ol> |
| DISPLAY WANDERS              | 1. Loss of data set-ups.                                                                                                                 | <ul><li>1a. Check data set-ups.</li><li>1b. Disconnect and reconnect power.</li><li>1c. Check for electrical disturbance.</li></ul>                                                                                             |
| JITTERY DISPLAY              | <ol> <li>Electrical "Noise" in process or sensor lines.</li> <li>Process inherently unstable.</li> </ol>                                 | <ol> <li>1a. Increase digital filtering.</li> <li>1b. Re-route signal wires.</li> <li>2. Dampen process to eliminate oscillations.</li> </ol>                                                                                   |
| " <b>"DPE</b> FI" IN DISPLAY | <ol> <li>Probe unconnencted.</li> <li>Broken or burnout probe.</li> <li>Excessive probe temperature.</li> <li>Input overload.</li> </ol> | <ol> <li>Connect probe.</li> <li>Repair or obtain new probe.</li> <li>Reduce temperature.</li> <li>Check input levels.</li> </ol>                                                                                               |
| "5#re" IN DISPLAY            | 1. Input shorted.                                                                                                                        | 1. Check input connections.                                                                                                                                                                                                     |

### F

1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

### MODEL PAXLT - PAX LITE TEMPERATURE METER



CULUS LISTED IND. CONT. EQ. 51EB

For Model No. PAXLT0U0 Only

### **GENERAL DESCRIPTION**

The PAXLT is a versatile meter that accepts a variety of thermocouple and RTD inputs and provides a temperature display in Celsius or Fahrenheit. The readout conforms to ITS-90 standards, with 1° or 0.1° resolution. The 5-digit display has 0.56" high digits with adjustable intensity. Backlight overlay labels for °F and °C are included.

The meter features a Maximum and Minimum reading memory, with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events. Either value can be displayed if desired. The display can be toggled manually or automatically between the selected values.

Other features include thermocouple cold junction compensation, display offset and a programmable user input to perform a variety of meter control functions. Two setpoint outputs are provided, each with a Form C relay. Output modes and setup options are fully programmable to suit a variety of control requirements.

The PAXLT can be universally powered from a wide range of AC or DC voltage. The meter has been specifically designed for harsh industrial environments. With a NEMA 4X/IP65 sealed bezel and extensive testing to meet CE requirements, the meter provides a tough yet reliable application solution.

### **ORDERING INFORMATION**

| MODEL NO. | DESCRIPTION                                               | PART NUMBER |
|-----------|-----------------------------------------------------------|-------------|
|           | TC/RTD Temperature Meter with Dual Relay Output           | PAXLT000    |
| PAXLT     | UL Listed TC/RTD Temperature Meter with Dual Relay Output | PAXLT0U0    |

### **DIMENSIONS** In inches (mm)

- 5 DIGIT, 0.56" HIGH RED LED DISPLAY
- DISPLAYS °C OR °F WITH 1° OR 0.1° RESOLUTION
- BACKLIGHT OVERLAYS INCLUDED (°C AND °F)
- MAX AND MIN READING MEMORY
- TC COLD JUNCTION COMPENSATION (ON/OFF)
- PROGRAMMABLE TEMPERATURE OFFSET
- PROGRAMMABLE USER INPUT
- DUAL 5 AMP FORM C RELAYS
- UNIVERSALLY POWERED
- NEMA 4X/IP65 SEALED FRONT BEZEL
- THERMOCOUPLE AND RTD INPUTS
- CONFORMS TO ITS-90 STANDARDS

### SAFETY SUMMARY

All safety regulations, local codes and instructions that appear in this and corresponding literature, or on equipment, must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

C F

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter



### SPECIFICATIONS

- 1. DISPLAY: 5 digit, 0.56" (14.2 mm) intensity adjustable Red LED
- 2. POWER REQUIREMENTS: AC POWER: 50 to 250 VAC 50/60 Hz, 12 VA
- Isolation: 2300 Vrms for 1 min. to all inputs and outputs DC POWER: 21.6 to 250 VDC, 6 W
- 3. READOUT:

Display Range: -19999 to 99999 Scale: °F or °C Resolution: 1° or 0.1° Response Time: 500 msec min. Display Overrange/Underrange Indication: "

Display Overrange/Underrange Indication: "....." / "-...." Input Overrange/Underrange Indication: DLDL / ULUL

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.



### www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

### 4. THERMOCOUPLE INPUTS: Input Impedance: 20 MΩ Max. Continuous Overvoltage: 30 VDC Failed Sensor Indication: *DPER*

| TO TYPE       | PANGE                            | ACCURACY               |                          | WIRE COLOR            |                        |
|---------------|----------------------------------|------------------------|--------------------------|-----------------------|------------------------|
|               | KANGE                            | ±°C *                  | ±°C *                    | ANSI                  | BS 1843                |
| т             | -200 to 400°C<br>-328 to 752°F   | 2.3                    | 5.8                      | (+) blue<br>(-) red   | (+) white<br>(-) blue  |
| E             | -200 to 871°C<br>-328 to 1600°F  | 2.7                    | 4.9                      | (+) purple<br>(-) red | (+) brown<br>(-) blue  |
| J             | -200 to 760°C<br>-328 to 1400°F  | 1.9                    | 4.3                      | (+) white<br>(-) red  | (+) yellow<br>(-) blue |
| к             | -200 to 1372°C<br>-328 to 2502°F | 2.3                    | 5.8                      | (+) yellow<br>(-) red | (+) brown<br>(-) blue  |
| R             | -50 to 1768°C<br>-58 to 3214°F   | 4.5                    | 15.0                     | no<br>standard        | (+) white<br>(-) blue  |
| S             | -50 to 1768°C<br>-58 to 3214°F   | 4.5                    | 15.0                     | no<br>standard        | (+) white<br>(-) blue  |
| В             | 200 to 1820°C<br>392 to 3308°F   | 9.1<540°C<br>4.5>540°C | 42.6<540°C<br>15.0>540°C | no<br>standard        | no<br>standard         |
| N             | -200 to 1300°C<br>-328 to 2372°F | 2.8                    | 8.1                      | (+) orange<br>(-) red | (+) orange<br>(-) blue |
| C<br>(W5/W26) | 0 to 2315°C<br>32 to 4199°F      | 1.9                    | 6.1                      | no<br>standard        | no<br>standard         |
| mV            | -10.00 to 65.00                  | 0.02 mV                | 0.08 mV                  | no<br>standard        | no<br>standard         |

\*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy at 23°C and 15 to 75% RH environment; and Accuracy over a 0 to 50 °C and 0 to 85% RH (non condensing) environment. Accuracy specified over the 0 to 50 °C operating range includes meter tempco and cold junction tracking effects.

The specification includes the A/D conversion errors, linearization conformity, and thermocouple cold junction compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

### 5. RTD INPUTS:

**Type**: 2, 3 or 4 wire

**Excitation Current**:

100 ohm range: 165 µA; 10 ohm range: 2.5 mA

Lead Resistance:

100 ohm range: 10  $\Omega$ /lead max.; 10 ohm range: 3  $\Omega$ /lead max. Balanced Lead Resistance: Automatically compensated up to max per lead Unbalanced Lead Resistance: Uncompensated

Max. Continuous Overvoltage: 30 VDC Failed Sensor Indication: *DPER* or Shork

| RTD TYPE                         | RANGE         | ACCURACY*<br>@ 23°C | ACCURACY*<br>@0 to 50°C | STANDARD                |
|----------------------------------|---------------|---------------------|-------------------------|-------------------------|
| 100 ohm Pt<br>alpha = .00385     | -200 to 850°C | 0.4°C               | 1.6°C                   | IEC 751                 |
| 100 ohm Pt<br>alpha = .00392     | -200 to 850°C | 0.4°C               | 1.6°C                   | no official<br>standard |
| 120 ohm Nickel<br>alpha = .00672 | -80 to 260°C  | 0.2°C               | 0.5°C                   | no official standard    |
| 10 ohm Copper<br>alpha = .00427  | -100 to 260°C | 0.4°C               | 0.9°C                   | no official standard    |

\*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy at 23°C and 15 to 75% RH environment; and Accuracy over a 0 to 50°C and 0 to 85% RH (non condensing) environment. Accuracy specified over the 0 to 50°C operating range includes meter tempco effects.

The specification includes the A/D conversion errors and linearization conformity. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

6. USER INPUT: Programmable input

Software selectable for active logic state: active low, pull-up (24.7 K $\Omega$  to +5 VDC) or active high, pull-down resistor (20 K $\Omega$ ).

**Trigger levels**:  $V_{IL} = 1.0 \text{ V}$  max;  $V_{IH} = 2.4 \text{ V}$  min;  $V_{MAX} = 28 \text{ VDC}$ 

- **Response Time**: 10 msec typ.; 50 msec debounce (activation and release)
- MEMORY: Nonvolatile E<sup>2</sup>PROM retains all programming parameters and max/min values when power is removed.
- 8. OUTPUTS:

Type: Dual Form C contacts

- Isolation to Sensor & User Input Commons: 1400 Vrms for 1 min. Working Voltage: 150 Vrms
- Contact Rating: 5 amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 H.P. @ 120 VAC (inductive load)

- Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads. Response Time: Turn On or Off: 4 msec max.
- 9. ENVIRONMENTAL CONDITIONS: Operating temperature: 0 to 50 °C Storage temperature: -40 to 70 °C Operating and storage humidity: 0 to 85% max. RH (non-condensing) Vibration to IEC 68-2-6: Operational 5 to 150 Hz, 2 g. Shock to IEC 68-2-27: Operational 30 g (10 g relay). Altitude: Up to 2,000 meters
  10. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gage: 30-14 AWG copper wire

Torque: 4.5 inch-lbs (0.51 N-m) max.

11. **CONSTRUCTION**: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/ case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.

### 12. CERTIFICATIONS AND COMPLIANCES:

### **CE** Approved

EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A IEC/EN 61010-1 RoHS Compliant Type 4X Outdoor Enclosure rating (Face only) IP65 Enclosure rating (Face only) IP20 Enclosure rating (Rear of unit)

For Model No. PAXLTOUO Only: UL Listed: File #E137808

- Refer to EMC Installation Guidelines section of the bulletin for additional information.
- 13. WEIGHT: 10.4 oz. (295 g)

## **1.0 INSTALLING THE METER**

### Installation

The PAX Lite meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit



## **2.0 SETTING THE JUMPER**

### **INPUT RANGE JUMPER (RTD ONLY)**

This jumper is used to select the proper input range for the RTD probe being used (10 ohm or 100 ohm). For thermocouple inputs, this jumper has no effect and can be left in either position.

To access the jumper, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start on the other side latch. until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

### Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.







## **3.0 WIRING THE METER**

### WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

### **EMC INSTALLATION GUIDELINES**

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.

- a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
- b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:
  - Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:
  - Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)
- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective

### 3.1 POWER WIRING

#### Power

Terminal 1: VAC/DC + Terminal 2: VAC/DC -



### 3.2 INPUT SIGNAL WIRING

**CAUTION**: Sensor input common (Terminal 7) is NOT isolated from user common (Terminal 9). In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common and user common must be at protective earth ground potential. If not, hazardous live voltage may be present at the user input and user common terminals. Appropriate considerations must then be given to the potential of the sensor input common and the user common with respect to earth ground.



### 3.3 USER INPUT WIRING

Terminal 8: User Input Terminal 9: User Common

Current Sinking (Active Low Logic)



### **Current Sourcing (Active High Logic)**



#### location is across the load.

- a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
- b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

#### Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

Visit RLC's website at http://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

3.4 SETPOINT (OUTPUT) WIRING



Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

1-717-767-6511

## 4.0 REVIEWING THE FRONT BUTTONS AND DISPLAY



"SP1" - Indicates setpoint 1 output activated. "SP2" - Indicates setpoint 2 output activated.

Pressing the **SEL** button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

## **5.0 PROGRAMMING THE METER**



### **PROGRAMMING MODE ENTRY (PAR BUTTON)**

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing the **PAR** button. If it is not accessible, then it is locked by either a security code or a hardware lock.

### **MODULE ENTRY (SEL & PAR BUTTONS)**

The Programming Menu is organized into four modules. These modules group together parameters that are related in function. The display will alternate between **Pro** and the present module. The **SEL** button is used to select the desired module. The displayed module is entered by pressing the **PAR** button.

### **MODULE MENU (PAR BUTTON)**

MAX - Maximum display capture value

MIN - Minimum display capture value

Each module has a separate module menu (which is shown at the start of each module discussion). The **PAR** button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to **Pro ND**. Programming may continue by accessing additional modules.

### **SELECTION / VALUE ENTRY**

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The **SEL** and **RST** buttons are used to move through the selections/values for that parameter. Pressing the **PAR** button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, the value is displayed with one digit flashing (initially the right most digit). Pressing the **RST** button increments the digit by one or the user can hold the **RST** button and the digit will automatically scroll. The **SEL** button will select the next digit to the left. Pressing the **PAR** button will enter the value and move to the next parameter.

### **PROGRAMMING MODE EXIT (PAR BUTTON)**

The Programming Mode is exited by pressing the **PAR** button with  $Pra \Pi I$  displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

### **PROGRAMMING TIPS**

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

### FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

### ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter's Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

| Indicates | Program Mode Alternating Display |
|-----------|----------------------------------|
| Paramete  | r <b>EYPE</b> 🕤                  |
|           | Selection/Value                  |
|           | Factory Settings are shown.      |

F

### www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com



### **INPUT TYPE**

| FRE 4 | SELECTION | INPUT TYPE | SELECTION | INPUT TYPE              |
|-------|-----------|------------|-----------|-------------------------|
|       | 1 Ec-E    | Т          | Fe-u      | Ν                       |
|       | Le-E      | E          | Ec-E      | С                       |
|       | ב-1       | J          | UOLE      | mV                      |
|       | £c-Ľ      | К          | PE385     | Platinum 385 100 G      |
|       | te-r      | R          | PE 392    | Platinum 392 100 G      |
|       | £c-5      | S          | Л ,6 12   | Nickel 672 100 $\Omega$ |
|       | £c-b      | В          | E 427     | Copper 427 10 $\Omega$  |
|       |           |            |           |                         |

Select the thermocouple or RTD type used for the application. For RTDs, position the Input Range Jumper to match the RTD type ( $10\Omega$  or  $100\Omega$ ). Selecting **UOLE** displays a millivolt signal readout with 10 µV resolution.



This parameter enables or disables internal cold junction compensation for thermocouples. For most applications, cold junction compensation should be enabled (III). This parameter only appears for thermocouple input selections.



Select the desired temperature scale. This selection applies for the Input, MAX and MIN displays. This parameter does not appear when mV or RTD resistance display is enabled.



Set the decimal point for the desired display resolution. This selection applies for the Input, MAX and MIN displays, and also affects the Setpoint and Display Offset values. For mV or RTD resistance displays, the decimal point location is fixed and this parameter does not appear.



### **DISPLAY OFFSET VALUE**

- 19999 to 99999

The temperature display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer.



### FILTER SETTING

If the displayed temperature is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display.

0 1 2 3

Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.

#### ЪЯЛЬ ᠬ Ŀ 10

### FILTER BAND

I to 199 display units

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of '0' keeps the filter permanently engaged at the filter level selected above.

**USER INPUT FUNCTION** 

| U5r 1    | <b>П</b> 🖓                |                                                                                                              |
|----------|---------------------------|--------------------------------------------------------------------------------------------------------------|
| \$       | חח                        |                                                                                                              |
| DISPLAY  | MODE                      | DESCRIPTION                                                                                                  |
| ПО       | No Function               | User Input disabled.                                                                                         |
| P-Loc    | Program Mode Lock-out     | See Programming Mode Access chart (Module 3).                                                                |
| rESEE    | Reset *                   | Reset the assigned value(s) to the current input value.                                                      |
| d-HLd    | Display Hold              | Holds the assigned display, but all other meter functions continue as long as activated (maintained action). |
| d-5EL    | Display Select *          | Advance once for each activation.                                                                            |
| d-lEU    | Display Intensity Level * | Increase intensity one level for each activation.                                                            |
| r 5£ - 1 | Setpoint 1 Reset *        | Reset setpoint 1 output.                                                                                     |
| r 5£ - 2 | Setpoint 2 Reset *        | Reset setpoint 2 output.                                                                                     |
| r 5£ 12  | Setpoint 1 and 2 Reset *  | Reset both setpoint 1 and 2 outputs.                                                                         |
| * 1      |                           |                                                                                                              |

\* Indicates Edge Triggered function. All others are Level Active functions

### **USER INPUT ASSIGNMENT**

| <b>Ľ</b> -  | R5N 🕤 | н   | H 1-L 0 |
|-------------|-------|-----|---------|
| $\clubsuit$ | d 5 P | L 0 | d S P   |

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset or display hold is selected in the User Input Function menu.

#### **USER INPUT ACTIVE LEVEL** II-Rct ᠬᠴ H 1 LO L 🛛

F

Select whether the user input is configured as active low or active high.

### 1-717-767-6511

## 5.2 MODULE 2 - SECONDARY FUNCTION PARAMETERS (2-5EE)





Λ**Ο ΥΕ**5

Enables the Maximum Display Capture capability.

### MAX CAPTURE DELAY TIME

MAX DISPLAY ENABLE



### 0,0 to 999,9 sec.

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.



### MIN DISPLAY ENABLE



Enables the Minimum Display Capture capability.



### MIN CAPTURE DELAY TIME

0.0 to 999.9 sec.

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.



### FACTORY SERVICE OPERATIONS



Select **YE5** to perform any of the Factory Service Operations shown below.

### **RESTORE FACTORY DEFAULT SETTINGS**



Entering Code 66 will overwrite all user settings with the factory settings. The meter will display *r**ESEE* and then return to *<i>L odE DD*. Press the **PAR** button to exit the module

### VIEW MODEL AND VERSION DISPLAY



Entering Code 50 will display the version (x.x) of the meter. The display then returns to **LodE DD**. Press the **PAR** button to exit the module.

### TOGGLE RTD INPUT DISPLAY MODE



Entering Code 85 toggles the selected RTD input display mode between a temperature or resistance readout. The resistance readout is useful for diagnostic purposes before and after calibration, or to display the measured resistance of a connected RTD probe.

For RTD type  $L_{u}427$  (Input Range Jumper in 10 $\Omega$  position), resistance is displayed in **0,000** ohms resolution. For all other RTD types (100 $\Omega$  position), resistance is displayed in **0,00** ohms resolution.

Upon entering Code 85, the meter displays either **d5P**-**k** or **d5P**-**r** to indicate temperature or resistance readout selected. The display then returns to **LodE 00**. Press the **PAR** button to exit the module.

### CALIBRATION



The PAXLT uses stored calibration values to provide accurate temperature measurements. Over time, the electrical characteristics of the components inside the meter could slowly change, with the result being that the stored calibration values may no longer accurately define

the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration for thermocouple inputs involves a voltage calibration and a cold junction calibration. It is recommended that both calibrations be performed. The voltage calibration must precede cold junction calibration.

Calibration of the meter should only be performed by persons experienced in calibrating electronic equipment. Allow a minimum 30 minute warm up before performing any calibration procedures. The following procedures should be performed at an ambient temperature of 15 to 35°C (59 to 95°F).

*CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the meter.* 

### 10 OHM RTD Range Calibration

- 1. Set the Input Range Jumper to 10 ohm position.
- 2. With the display at LodE 48, press the PAR key. Unit displays [AL NO.
- 3. Press SEL to select 10 ohm range. Display reads [RL r 10.
- 4. Press **PAR**. Display reads **D**.
- 5. Apply a direct short to terminals RTD (4), TC (6) and COMM (7) using a three wire link. Press **PAR**. Display reads *LRLL* for about 10 seconds.
- 6. When the display reads **15.0***r*, apply a precision resistance of 15 ohms (with an accuracy of 0.01% or better) to terminals RTD, TC and COMM using a three wire link. Press **PAR**. Display reads **LALL** for about 10 seconds.
- 7. When display reads **[AL ND**, press **PAR** twice to exit calibration and return to the normal display mode.

### 100 OHM RTD Range Calibration

- 1. Set the Input Range Jumper to 100 ohm position.
- 2. With the display at **Lode 48**, press the **PAR** key. Unit displays **CRL NO**.
- 3. Press SEL twice to select 100 ohm range. Display reads CRL r 100.
- 4. Press PAR. Display reads DDr.
- Apply a direct short to terminals RTD (4), TC (6) and COMM (7) using a three wire link. Press PAR. Display reads *LRLL* for about 10 seconds.
- 6. When the display reads **JUDU**<sub>r</sub>, apply a precision resistance of 300 ohms (with an accuracy of 0.01% or better) to terminals RTD, TC and COMM using a three wire link. Press **PAR**. Display reads **LALL** for about 10 seconds.
- 7. When display reads **LAL AD**, press **PAR** twice to exit calibration and return to the normal display mode.

### www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

### THERMOCOUPLE Voltage Calibration

- 1. Connect a precision DC voltage source with an accuracy of 0.01% or better to the TC and COMM terminals. Set the voltage source to zero.
- 2. With the display at Lode 48, press the PAR key. Unit displays [AL NO.
- 3. Press SEL until the display reads [RL Lc to select thermocouple input.
- 4. Press PAR. Display reads 0.0 u.
- 5. With the voltage source set to zero, press **PAR**. Display reads **CRLC** for about 6 seconds.
- When the display reads **b00**, set the voltage source output to 60.000 mV. 6. Press PAR. Display reads [RL[ for about 6 seconds.
- 7. When display reads **CRL NO**, press **PAR** twice to exit calibration and return to the normal display mode. Proceed to Cold Junction Calibration.

### **THERMOCOUPLE Cold Junction Calibration**

- 1. The ambient temperature must be between 20°C and 30°C.
- 2. Connect a thermocouple (types T, E, J, K or N only) with an accuracy of 1°C or better to the meter.
- 3. Enter programming mode and verify the following settings in Module 1: **E YPE** = thermocouple type connected to the meter
  - $\Box J \Box = \Box \Pi;$ SERLE = PE;dECPE = 0.0;0F5EE = 0,0

- 4. Place the thermocouple in close thermal contact to a reference thermometer probe. (Use a reference thermometer with an accuracy of 0.25°C or better.) The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (A calibration bath of known temperature could be used in place of the thermometer.)
- 5. Compare the unit display with the reference temperature indicator (or calibration bath). If a difference of more than +/- 1.0°C exists, note the difference (CJ Error) and continue with cold junction calibration. CJ Error = Reference Temperature - Unit Display
- 6. Enter programming mode and proceed through Module 2 to the Service Access Code. Select LodE 48 and press PAR. Unit displays [RL ND. Press RST to select [J[.
- 7. Press **PAR**. Display reads **[J**[ followed by the current cold junction value. Calculate a new cold junction value as follows:
- New cold junction = Current cold junction + CJ Error (noted above) 8. Press **PAR** and set the display to the new cold junction value. Press **PAR** to
- enter the new value. Display reads **CRLC** for 6 seconds and returns to **CRL NO**. 9. Press **PAR** twice to exit calibration and return to the normal display mode.
  - Verify the input reading is correct. If not, repeat steps 5 through 9.

### **MODULE 3 - DISPLAY AND FRONT PANEL KEY** 5.3 PARAMETERS (3-d5P)



d - L E U



This parameter sets the display update time in seconds.





The **YE5** selection allows the **SEL** key to toggle through the enabled displays.

### FRONT PANEL RESET ENABLE (RST)

| r 5E         | ক্ষ   | ПО  | L 0    | dSP |
|--------------|-------|-----|--------|-----|
| $\mathbf{b}$ | d 5 P | H 1 | H [-L0 |     |

This selection allows the RST button to reset the selected value(s).



### **DISPLAY SCROLL ENABLE**





The **YE5** selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

### UNITS LABEL BACKLIGHT

OFF



The PAXLT includes two units overlay labels (°C and °F) which can be installed into the meter's bezel display assembly. The backlight for the units label is activated by this parameter.

P 3 Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed.

1 to 5

## **PROGRAMMING SECURITY CODE**



প্ম

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (**P-Loc**) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only user selected values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Entering a Security Code from 1-99 enables Quick Programming mode, and displays a sublist to select which values appear in the Quick Programming menu. Values set to **YE5** in the sublist are accessible in Quick Programming. These values include the Setpoints (5P-1, 5P-2) and Display Intensity (d-LEU).

Programming any Security Code other than 0, requires this code to be entered at the **LodE** prompt in order to access Full Programming mode. Quick Programming mode, if enabled, is accessed before the **LodE** prompt appears.

|  | USER INPUT<br>FUNCTION | USER INPUT<br>STATE | SECURITY<br>CODE | MODE WHEN "PAR"<br>BUTTON IS PRESSED | FULL PROGRAMMING<br>MODE ACCESS                                               |
|--|------------------------|---------------------|------------------|--------------------------------------|-------------------------------------------------------------------------------|
|  |                        |                     | 0                | Full Programming                     | Immediate Access                                                              |
|  | not<br>P-Loc           | not<br>P-Loc        |                  | Quick Programming                    | After Quick Programming<br>with correct code entry<br>at <b>[odf</b> prompt * |
|  |                        |                     | 100-999          | <b>LodE</b> prompt                   | With correct code entry<br>at <b>LodE</b> prompt *                            |
|  |                        |                     | 0                | Programming Lock                     | No Access                                                                     |
|  | P-Loc                  | Active              | 1-99             | Quick Programming                    | No Access                                                                     |
|  |                        |                     | 100-999          | <b>E</b> ad <b>E</b> prompt          | With correct code entry<br>at <b>LodE</b> prompt *                            |
|  |                        | Not Active          | 0-999            | Full Programming                     | Immediate Access                                                              |

\* Entering Code 222 allows access regardless of security code.

F

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## 5.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-5PE)



### SETPOINT SELECT



Select the Setpoint Output to be programmed, starting with Setpoint 1. The "n" in the following parameters reflects the chosen Setpoint number. After the selected setpoint is completely programmed, the display returns to **5P5EL**. Repeat steps for Setpoint 2 if both Setpoints are being used. Select **RD** to exit the Setpoint programming module.

## SETPOINT ENABLE



### IO YES

Select 4E5 to enable Setpoint n and access the setup parameters. If  $\Pi 0$  is selected, the unit returns to 5P5EL and Setpoint n is disabled.



Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

L0-Ub



- HI-Wh = High Acting, with unbalanced hysteresis
- LO-UL = Low Acting, with unbalanced hysteresis



### SETPOINT VALUE



#### - 19999 to 99999

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

### HYSTERESIS VALUE



### to **59999**

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

*Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.* 

### ON TIME DELAY



**0.0** to **599.9** Sec

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

### OFF TIME DELAY



0.0 to 599.9 Sec

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

### **OUTPUT RESET ACTION**

Ruto



. .. . . . .

L-dLY

Enter the reset action of the output. See figure for details.

LAFEN

 $\mathbf{Rub} \mathbf{c}$  = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The "on" output may be manually reset (off) immediately by the front panel **RST** button or user input. The output remains off until the trigger point is crossed again.

### 514

### www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

F

- LRELM = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input manual reset, or meter power cycle. When the user input or RST button is activated (momentary action), the corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)
- $L dL \dot{y} =$  Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel **RST** button or user input manual reset, or meter power cycle. When the user input or **RST** button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous  $L dL \dot{y}$  reset if it is not activated at power up.)



### **OUTPUT RESET WITH DISPLAY RESET**



This parameter enables the **RST** button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the **RST** button or User Input being used must be set to dSP and the Input value must be displayed. If these conditions are not met, the output will not reset.



When **JE5**, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset Action.

### **PROBE BURN-OUT ACTION**

ΩЛ



0 F F

Enter the probe burn-out action. In the event of a temperature probe failure (TC open; RTD open or short), the output can be programmed to be on or off.

515

F

### **MODEL DP5T - THERMOCOUPLE AND RTD INPUT**

This is a brief overview of the DP5T. For complete specifications and programming information, see the **DP5 Analog Input Panel Meters Bulletin** starting on **page 283**.



- THERMOCOUPLE AND RTD INPUTS
- CONFORMS TO ITS-90 STANDARDS
- TIME-TEMPERATURE INTEGRATOR
- 5-DIGIT 0.56" HIGH RED LED DISPLAY
- PROGRAMMABLE FUNCTION KEYS/USER INPUT
- 9 DIGIT TOTALIZER (INTEGRATOR) WITH BATCHING

### **DP5T SPECIFICATIONS**

### **READOUT:**

Resolution: Variable: 0.1, 0.2, 0.5, or 1, 2, or 5 degree Scale: F or C Offset Range: -19,999 to 99,999 display units

THERMOCOUPLE INPUTS:

### Input Impedance: 20 M $\Omega$

Lead Resistance Effect:  $0.03 \ \mu\text{V/ohm}$ Max. Continuous Overvoltage:  $30 \ \text{V}$ 

| INPUT         | RANGE                            | ACCURACY*      | ACCURACY*      | WIRE COLOR         |                       | OLOR                   |
|---------------|----------------------------------|----------------|----------------|--------------------|-----------------------|------------------------|
| TYPE          | NANGE                            | (18 to 28°C)   | (0 to 50°C)    | UIANDARD           | ANSI                  | BS 1843                |
| Т             | -200 to 400°C<br>-270 to -200°C  | 1.2°C<br>**    | 2.1°C          | ITS-90             | (+) blue<br>(-) red   | (+) white<br>(-) blue  |
| E             | -200 to 871°C<br>-270 to -200°C  | 1.0°C<br>**    | 2.4°C          | ITS-90             | (+) purple<br>(-) red | (+) brown<br>(-) blue  |
| J             | -200 to 760°C                    | 1.1°C          | 2.3°C          | ITS-90             | (+) white<br>(-) red  | (+) yellow<br>(-) blue |
| к             | -200 to 1372°C<br>-270 to -200°C | 1.3°C<br>**    | 3.4°C          | ITS-90             | (+) yellow<br>(-) red | (+) brown<br>(-) blue  |
| R             | -50 to 1768°C                    | 1.9°C          | 4.0°C          | ITS-90             | no<br>standard        | (+) white<br>(-) blue  |
| S             | -50 to 1768°C                    | 1.9°C          | 4.0°C          | ITS-90             | no<br>standard        | (+) white<br>(-) blue  |
| В             | 100 to 300°C<br>300 to 1820°C    | 3.9°C<br>2.8°C | 5.7°C<br>4.4°C | ITS-90             | no<br>standard        | no<br>standard         |
| Ν             | -200 to 1300°C<br>-270 to -200°C | 1.3°C<br>**    | 3.1°C          | ITS-90             | (+) orange<br>(-) red | (+) orange<br>(-) blue |
| C<br>(W5/W26) | 0 to 2315°C                      | 1.9°C          | 6.1°C          | ASTM<br>E988-90*** | no<br>standard        | no<br>standard         |

F

\*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 15 to 75% RH environment; and Accuracy over a 0 to 50°C and 0 to 85% RH (non condensing) environment. Accuracy specified over the 0 to 50°C operating range includes meter tempco and ice point tracking effects. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

\*\* The accuracy over the interval -270 to -200°C is a function of temperature, ranging from 1°C at -200°C and degrading to 7°C at -270°C. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

\*\*\* These curves have been corrected to ITS-90.

### RTD INPUTS:

Type: 3 or 4 wire, 2 wire can be compensated for lead wire resistance Excitation current: 100 ohm range: 165  $\mu$ A 10 ohm range: 2.6 mA

Lead resistance: 100 ohm range: 10 ohm/lead max. 10 ohm range: 3 ohms/lead max.

Max. continuous overload: 30 V

| INPUT TYPE                       | RANGE         | ACCURACY*<br>(18 to 28°C) | ACCURACY*<br>(0 to 50°C) | STANDARD             |
|----------------------------------|---------------|---------------------------|--------------------------|----------------------|
| 100 ohm Pt<br>alpha = .00385     | -200 to 850°C | 0.4°C                     | 1.6°C                    | IEC 751              |
| 100 ohm Pt<br>alpha = .003919    | -200 to 850°C | 0.4°C                     | 1.6°C                    | no official standard |
| 120 ohm Nickel<br>alpha = .00672 | -80 to 260°C  | 0.2°C                     | 0.5°C                    | no official standard |
| 10 ohm Copper<br>alpha = .00427  | -100 to 260°C | 0.4°C                     | 0.9°C                    | no official standard |

DIRECT READOUT:

Input range: -10 to 65 mV

0 to 400 ohms, high range 0 to 25 ohms, low range Display range: -19999 to 99999

| INPUT TYPE    | RANGE        | ACCURACY*<br>(18 to 28°C) | ACCURACY*<br>(0 to 50°C) |
|---------------|--------------|---------------------------|--------------------------|
| Direct        | -10 to 65mV  | 0.02% of reading          | 0.12% of reading         |
| mV range      | (1 μV res.)  | + 4µV                     | + 5μV                    |
| Direct        | 0 to 400 Ω   | 0.02% of reading          | 0.12% of reading         |
| 100 ohm range | (10 MΩ res.) | + 0.04 Ω                  | + 0.05 Ω                 |
| Direct        | 0 to 25 Ω    | 0.04% of reading          | 0.20% of reading         |
| 10 ohm range  | (1 MΩ res.)  | + 0.005 Ω                 | + 0.007 Ω                |

### **MODEL PAXT - THERMOCOUPLE AND RTD INPUT**

This is a brief overview of the PAXT. For complete specifications and programming information, see the **PAX Analog Input Panel Meters Bulletin** starting on **page 301**.



- THERMOCOUPLE AND RTD INPUTS
- CONFORMS TO ITS-90 STANDARDS
- CUSTOM SCALING FOR NON-STANDARD PROBES
- TIME-TEMPERATURE INTEGRATOR
- 5-DIGIT 0.56" RED SUNLIGHT READABLE OR STANDARD GREEN DISPLAY
- VARIABLE INTENSITY DISPLAY
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- FOUR SETPOINT ALARM OUTPUTS (W/OPTION CARD)
- COMMUNICATION AND BUS CAPABILITIES (W/OPTION CARD)
- RETRANSMITTED ANALOG OUTPUT (W/OPTION CARD)
- CRIMSON PROGRAMMING SOFTWARE

### PAXT SPECIFICATIONS

### **READOUT**:

Resolution: Variable: 0.1, 0.2, 0.5, or 1, 2, or 5 degrees Scale: F or C

Offset Range: -19,999 to 99,999 display units

THERMOCOUPLE INPUTS:

Max. Continuous Overvoltage: 30 V

| INPUT        | INPUT ACCURACY ACCURACY          |                | STANDARD       | WIRE C             | OLOR                  |                        |
|--------------|----------------------------------|----------------|----------------|--------------------|-----------------------|------------------------|
| TYPE         | KANGL                            | (18 to 28°C)   | (0 to 50°C)    | STANDARD           | ANSI                  | BS 1843                |
| т            | -200 to 400°C<br>-270 to -200°C  | 1.2°C<br>**    | 2.1°C          | ITS-90             | (+) blue<br>(-) red   | (+) white<br>(-) blue  |
| E            | -200 to 871°C<br>-270 to -200°C  | 1.0°C<br>**    | 2.4°C          | ITS-90             | (+) purple<br>(-) red | (+) brown<br>(-) blue  |
| J            | -200 to 760°C                    | 1.1°C          | 2.3°C          | ITS-90             | (+) white<br>(-) red  | (+) yellow<br>(-) blue |
| к            | -200 to 1372°C<br>-270 to -200°C | 1.3°C<br>**    | 3.4°C          | ITS-90             | (+) yellow<br>(-) red | (+) brown<br>(-) blue  |
| R            | -50 to 1768°C                    | 1.9°C          | 4.0°C          | ITS-90             | no<br>standard        | (+) white<br>(-) blue  |
| S            | -50 to 1768°C                    | 1.9°C          | 4.0°C          | ITS-90             | no<br>standard        | (+) white<br>(-) blue  |
| В            | 100 to 300°C<br>300 to 1820°C    | 3.9°C<br>2.8°C | 5.7°C<br>4.4°C | ITS-90             | no<br>standard        | no<br>standard         |
| N            | -200 to 1300°C<br>-270 to -200°C | 1.3°C<br>**    | 3.1°C          | ITS-90             | (+) orange<br>(-) red | (+) orange<br>(-) blue |
| C<br>(W5/W26 | 0 to 2315°C                      | 1.9°C          | 6.1°C          | ASTM<br>E988-90*** | no<br>standard        | no<br>standard         |

\*After 20 min. warm-up. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 15 to 75% RH environment; and Accuracy over a 0 to 50°C and 0 to 85% RH (non condensing) environment. Accuracy specified over the 0 to 50°C operating range includes meter tempco and ice point tracking effects. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

\*\* The accuracy over the interval -270 to -200°C is a function of temperature, ranging from 1°C at -200°C and degrading to 7°C at -270°C. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

\*\*\* These curves have been corrected to ITS-90.

#### **RTD INPUTS**:

Type: 3 or 4 wire, 2 wire can be compensated for lead wire resistance Excitation current: 100 ohm range: 165  $\mu$ A 10 ohm range: 2.6 mA

Lead resistance: 100 ohm range: 10 ohm/lead max.

10 ohm range: 3 ohms/lead max.

| Max. continuous ov | erload: 30 V |  |
|--------------------|--------------|--|
|--------------------|--------------|--|

| INPUT TYPE                       | RANGE         | ACCURACY*<br>(18 to 28°C) | ACCURACY*<br>(0 to 50°C) | STANDARD                |
|----------------------------------|---------------|---------------------------|--------------------------|-------------------------|
| 100 ohm Pt<br>alpha = .00385     | -200 to 850°C | 0.4°C                     | 1.6°C                    | IEC 751                 |
| 100 ohm Pt<br>alpha = .003919    | -200 to 850°C | 0.4°C                     | 1.6°C                    | no official<br>standard |
| 120 ohm Nickel<br>alpha = .00672 | -80 to 260°C  | 0.2°C                     | 0.5°C                    | no official<br>standard |
| 10 ohm Copper<br>alpha = .00427  | -100 to 260°C | 0.4°C                     | 0.9°C                    | no official<br>standard |

CUSTOM RANGE: Up to 16 data point pairs

Input range: -10 to 65 mV

0 to 400 ohms, high range 0 to 25 ohms, low range

Display range: -19999 to 99999

| INPUT TYPE    | RANGE        | ACCURACY*<br>(18 to 28°C) | ACCURACY*<br>(0 to 50°C) |
|---------------|--------------|---------------------------|--------------------------|
| Custom        | -10 to 65mV  | 0.02% of reading          | 0.12% of reading         |
| mV range      | (1 μV res.)  | + 4μV                     | + 5μV                    |
| Custom        | 0 to 400 Ω   | 0.02% of reading          | 0.12% of reading         |
| 100 ohm range | (10 MΩ res.) | + 0.04 Ω                  | + 0.05 Ω                 |
| Custom        | 0 to 25 Ω    | 0.04% of reading          | 0.20% of reading         |
| 10 ohm range  | (1 MΩ res.)  | + 0.005 Ω                 | + 0.007 Ω                |

Input Impedance: 20 MΩ Lead Resistance Effect: 0.03 μV/ohm

### MODEL PAX2A - 1/8 DIN ANALOG PANEL METER

This is a brief overview of the PAX2A. For complete specifications and programming information, see the **PAX2A Analog Panel Meter Bulletin** starting on **page 332.** 



- UNIVERSAL PROCESS, VOLTAGE, CURRENT, RESISTANCE AND TEMPERATURE INPUTS
- UNIVERSAL AC/DC POWER SUPPLY
- 6 / 9 DIGIT DUAL LINE/TRI-COLOR DISPLAY WITH 0.71" & 0.35" DIGITS
- PROGRAMMABLE UNITS DISPLAY
- VARIABLE CONTRAST AND INTENSITY DISPLAY
- UP TO 160 SAMPLES PER SECOND CONVERSION RATE
- BUILT-IN USB PROGRAMMING PORT ENABLING UNIT CONFIGURATION WITH CRIMSON PROGRAMMING SOFTWARE
- NEMA 4X/IP65 SEALED FRONT BEZEL

| SPECIFICATION | S |
|---------------|---|
|---------------|---|

| POWER:                                                             |      |
|--------------------------------------------------------------------|------|
| AC Power: 40 to 250 VAC, 50/60 Hz, 20 VA                           |      |
| DC Power: 21.6 to 250 VDC, 8 W                                     |      |
| Isolation: 2300 Vrms for 1 min. to all inputs and outputs.         |      |
| INPUT CAPABILITIES:                                                |      |
| Current Input Ranges:                                              |      |
| $\pm 250 \mu ADC \pm 2.5 m ADC \pm 25 m ADC$                       |      |
| $\pm 250 \text{ mADC}$ $\pm 2 \text{ ADC}$                         |      |
| Voltage Input Ranges:                                              |      |
| + 250  mVDC + 2.0  VDC + 10  VDC                                   |      |
| $\pm 250 \text{ mVDC}$ $\pm 2.0 \text{ VDC}$ $\pm 100 \text{ VDC}$ |      |
|                                                                    |      |
| I nermocouple inputs:                                              |      |
| Types: 1, E, J, K, R, S, B, N, C (W5/W26)                          |      |
| Max Continuous Overvoltage: 30 V                                   |      |
| RTD Inputs:                                                        |      |
| Type: 3 or 4 wire, 2 wire can be compensated for lead wire resist  | ance |
| Excitation current: 100 ohm range: 136.5 $\mu$ A ±10%              |      |
| 10 ohm range: $2.05 \text{ mA} \pm 10\%$                           |      |
| Max. continuous overload: 30 VDC                                   |      |
| Input Type:                                                        |      |
| 100 ohm Pt alpha = .00385 100 ohm Pt alpha = .00392                | :    |
| 120 ohm Nickel alpha = .00672 10 ohm Copper alpha = .00            | )427 |
| Resistance Inputs:                                                 |      |
| Max. continuous overload: 30 VDC                                   |      |
| INPUT RANGE COMPLIANCE                                             |      |
| 100 ohm 0.175 V                                                    |      |

1.75 V

17.5 V

**EXCITATION POWER:** Jumper selectable Transmitter Power: +18 VDC, ± 5% @ 50 mA max. Reference Voltage: + 2 VDC,  $\pm 2\%$ Compliance: 1KQ load min (2 mA max) Temperature Coefficient: 40 ppm/°C max. Reference Current: 1.05 mADC,  $\pm 2\%$ Compliance: 10 KQ load max. **USER INPUTS**: Two programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. **ENVIRONMENTAL CONDITIONS:** Operating Temperature Range: 0 to 50 °C Storage Temperature Range: -40 to 60 °C Vibration to IEC 68-2-6: Operational 5-150 Hz, 2 g Shock to IEC 68-2-27: Operational 25 g (10 g relay) Operating and Storage Humidity: 0 to 85% max. RH non-condensing Altitude: Up to 2000 meters CERTIFICATIONS AND COMPLIANCES: **CE** Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A IEC/EN 61010-1 **RoHS** Compliant UL Listed: File #E179259 Type 4X Indoor Enclosure rating (Face only) IP65 Enclosure rating (Face only) IP20 Enclosure rating (Rear of unit) CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gauge Capacity: One 14 AWG (2.55 mm) solid, two 18 AWG (1.02 mm) or four 20 AWG (0.61 mm) CONSTRUCTION: This unit is rated NEMA 4X/IP65 for indoor use only. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece

bezel/ case. Flame resistant. Synthetic rubber keypad. Panel gasket and

999 ohm

9999 ohm

mounting clip included. WEIGHT: 8 oz. (226.8 g)

### **MODELS T16 & P16 - TEMPERATURE/PROCESS CONTROLLERS**



- T16 ACCEPTS TC AND RTD
- P16 ACCEPTS 0-10 V AND 0/4-20 mA SIGNALS
- ON DEMAND AUTO-TUNING OF PID SETTINGS
- DC ANALOG OUTPUT (OPTIONAL)
- USER PROGRAMMABLE FUNCTION BUTTON
- PC OR FRONT PANEL PROGRAMMING
- PC CONFIGURABLE WITH TP16KIT



UL Recognized Component, File #E156876

### **GENERAL DESCRIPTION**

The Model T16 Controller accepts signals from a variety of temperature sensors (thermocouple or RTD), while the Model P16 Controller accepts either a 0 to 10 VDC or 0/4 to 20 mA DC input signal. Both controllers can provide an accurate output control signal (time proportional or DC Analog Output) to maintain a process at a setpoint value. Dual 4-digit displays allow viewing of the process/temperature and setpoint simultaneously. Front panel indicators inform the operator of the controller and output status. The comprehensive programming allows these controllers to meet a wide variety of application requirements.

### MAIN CONTROL

The controller operates in the PID Control Mode for both heating and cooling, with on-demand auto-tune, that establishes the tuning constants. The PID tuning constants may be fine-tuned through the front panel and then locked out from further modification. The controller employs a unique overshoot suppression feature, that allows the quickest response without excessive overshoot. Switching to Manual Mode provides the operator direct control of the output. The controller may also be programmed to operate in On/Off mode with adjustable hysteresis.

### ALARMS

Optional alarm(s) can be configured independently for absolute high or low acting with balanced or unbalanced hysteresis. They can also be configured for deviation and band alarm. In these modes, the alarm trigger values track the setpoint value. Adjustable alarm hysteresis can be used for delaying output response. The alarms can be programmed for Automatic or Latching operation. A selectable standby feature suppresses the alarm during power-up until the temperature stabilizes outside the alarm region.

### ANALOG OUTPUT OPTION

The optional DC Analog Output (10 V or 20 mA) can be configured and scaled for control or re-transmission purposes. The programmable output update time reduces valve or actuator activity.

### PC PROGRAMMING KIT

The optional TP16KIT contains a programming module with a 9 pin RS232 connector, cable and Crimson, a Windows<sup>®</sup> based configuration software. The software allows downloading, uploading and storage of T16 and P16 program files. All controllers have a communications port that allows configuration by PC even without controller power connected. Controller calibration is also possible using the software when the proper calibration equipment and controller power is connected.

### CONSTRUCTION

The controller is constructed of a lightweight, high impact, black plastic textured case and bezel with a clear display window. The front panel meets NEMA 4X/IP65 specifications when properly installed. In applications that do not require protection to NEMA 4X, multiple controllers can be stacked horizontally or vertically. Modern surface-mount technology, extensive testing, plus high immunity to noise interference makes the controller extremely reliable in industrial environments.

### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the controller to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the controller. An independent and redundant temperature limit indicator with alarm outputs is strongly recommended. • PID CONTROL WITH REDUCED OVERSHOOT



### **DIMENSIONS** In inches (mm)



1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

F

### **GENERAL SPECIFICATIONS**

- 1. DISPLAY: 2 Line by 4-digit, LCD negative image transmissive with backlighting.
- Top (Process) Display: 0.3" (7.6 mm) high digits with red backlighting. Bottom (Parameter) Display: 0.2" (5.1 mm) high digits with green backlighting.

### 2. ANNUNCIATORS:

### Status Annunciators:

- O1 Main control output is active.
- O2 Cooling output is active (when Alarm 2 is used for cooling).
- A1 Alarm 1 output is active.
- A2 Alarm 2 output is active.
- °F, °C Temperature units.
- %PW Output power percentage is shown in Bottom display.
- MAN Controller is in Manual Mode.
- R Ramping Setpoint indicator.
- % Percent indicator (P16 models only).
- **Display Messages:** 
  - **DLOL** Measurement exceeds + sensor range
  - **ULUL** Measurement exceeds sensor range
  - **DPEI** Open sensor is detected (T16 only)
  - **5Hr** Shorted sensor is detected (RTD only)
  - 5ER5 Measurement exceeds controller limits (P16 only)
  - **dddd** Display value exceeds + display range
  - -ddd Display value exceeds display range

### 3. POWER:

- Line Voltage Models:
- 85 to 250 VAC, 50/60 Hz, 8 VA
- Low Voltage Models:
  - DC Power: 18 to 36 VDC, 4 W
  - AC Power: 24 VAC, ±10%, 50/60 Hz, 7 VA
- 4. CONTROLS: Three rubber push buttons for modification and setup of controller parameters. One additional button (F1) for user programmable function. One external user input (models with alarms) for parameter lockout or other user programmable functions.

### INPUT SPECIFICATIONS

### 1. SENSOR INPUT:

- Sample Period: 100 msec (10 Hz rate)
- Step Response Time: 300 msec typical, 400 msec max to within 99% of final value with step input.
- Failed Sensor Response:
  - Main Control Output(s): Programmable preset output
  - Display: "OPEN"
  - Alarms: Upscale drive

Analog Output: Upscale drive when assigned to retransmitted input. Normal Mode Rejection: >40 dB @ 50/60 Hz Common Mode Rejection: >120 dB, DC to 60 Hz Overvoltage Protection: 120 VAC @ 15 sec max

2. RTD INPUTS: (T16 only)

Type: 2 or 3 wire

Excitation: 150 µA typical Lead Resistance:  $15 \Omega$  max per input lead Resolution: 1° or 0.1° for all types

| F |
|---|

| TYPE | INPUT TYPE                                | RANGE                             | STANDARD                |
|------|-------------------------------------------|-----------------------------------|-------------------------|
| 385  | 100 $\Omega$ platinum,<br>Alpha = .00385  | -200 to +600°C<br>-328 to +1112°F | IEC 751                 |
| 392  | 100 $\Omega$ platinum,<br>Alpha = .003919 | -200 to +600°C<br>-328 to +1112°F | No official<br>standard |
| 672  | 120 Ω nickel,<br>Alpha = .00672           | -80 to +215°C<br>-112 to +419°F   | No official<br>standard |
| Ohms | Linear Resistance                         | 0.0 to 320.0 Ω                    | N/A                     |

- 3. THERMOCOUPLE INPUTS: (T16 only)
- Types: T, E, J, K, R, S, B, N, C, and Linear mV **Input Impedance**: 20 M $\Omega$  for all types Lead Resistance Effect: 0.25  $\mu V/\Omega$
- Cold Junction Compensation: Less than ±1°C typical (1.5°C max) error over ambient temperature range.

Resolution: 1° for types R, S, B and 1° or 0.1° for all other types

| TYPE |                                  | WIRE (                | STANDARD              |          |
|------|----------------------------------|-----------------------|-----------------------|----------|
| 1166 | DISPLAT RANGE                    | ANSI                  | BS 1843               | STANDARD |
| Т    | -200 to +400°C<br>-328 to +752°F | (+) Blue<br>(-) Red   | (+) White<br>(-) Blue | ITS-90   |
| E    | -200 to 750°C<br>-328 to +1382°F | (+) Violet<br>(-) Red | (+) Brown<br>(-) Blue | ITS-90   |

- 5. MEMORY: Nonvolatile E<sup>2</sup>PROM retains all programmable parameters.
- 6. ISOLATION LEVEL:

AC power with respect to all other I/O: 250 V working (2300 V for 1 min.) Sensor input to analog output: 50 V working (500 V for 1 minute) Relay contacts to all other I/O: 300 V working (2300 V for 1 minute) DC power with respect to sensor input and analog output: 50 V working (500 V for 1 minute)

- 7. CERTIFICATIONS AND COMPLIANCES:
- **CE** Approved
- EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A IEC/EN 61010-1 **RoHS** Compliant UL Recognized Component: File #E156876 Type 4X Enclosure rating (Face only) IP65 Enclosure rating (Face only) IP20 Enclosure rating (Rear of unit) Refer to EMC Installation Guidelines section of the bulletin for additional information. 8. ENVIRONMENTAL CONDITIONS: Operating Temperature Range: 0 to 50°C Storage Temperature Range: -40 to 80°C Operating and Storage Humidity: 85% max relative humidity (noncondensing) from 0°C to 50°C
  - Vibration to IEC 68-2-6: Operational 5 to 150 Hz, 2 g. Shock to IEC 68-2-27: Operational 20 g (10 g relay).

  - Altitude: Up to 2000 meters
- 9. CONNECTION: Wire-clamping screw terminals
- 10. CONSTRUCTION: Black plastic alloy case and collar style panel latch. Panel latch can be installed for vertical or horizontal instrument stacking. Black plastic textured bezel with transparent display window. Controller meets NEMA 4X/IP65 requirements for indoor use when properly installed. Installation Category II, Pollution Degree 2.
- 11. WEIGHT: 6.3 oz (179 g)

| TYPE       | DISPLAY PANCE                      | WIRE 0                | WIRE COLOR             |                 |  |
|------------|------------------------------------|-----------------------|------------------------|-----------------|--|
|            | DIGITEATINANGE                     | ANSI                  | BS 1843                | UTANDARD        |  |
| J          | -200 to +760°C<br>-328 to +1400°F  | (+) White<br>(-) Red  | (+) Yellow<br>(-) Blue | ITS-90          |  |
| К          | -200 to +1250°C<br>-328 to +2282°F | (+) Yellow<br>(-) Red | (+) Brown<br>(-) Blue  | ITS-90          |  |
| R          | 0 to +1768°C<br>+32 to +3214°F     | No<br>standard        | (+) White<br>(-) Blue  | ITS-90          |  |
| S          | 0 to +1768°C<br>+32 to +3214°F     | No<br>standard        | (+) White<br>(-) Blue  | ITS-90          |  |
| В          | +149 to +1820°C<br>+300 to +3308°F | No<br>standard        | No<br>standard         | ITS-90          |  |
| N          | -200 to +1300°C<br>-328 to +2372°F | (+) Orange<br>(-) Red | (+) Orange<br>(-) Blue | ITS-90          |  |
| C<br>W5/W6 | 0 to +2315°C<br>+32 to +4199°F     | No<br>standard        | No<br>standard         | ASTM<br>E988-96 |  |
| mV         | -5.00 mV to<br>56.00mV             | N/A                   | N/A                    | N/A             |  |

### 4. SIGNAL INPUT: (P16 only)

| INPUT RANGE            | ACCURACY *                     | IMPEDANCE | MAX<br>CONTINUOUS<br>OVERLOAD | RESOLUTION |
|------------------------|--------------------------------|-----------|-------------------------------|------------|
| 10 VDC<br>(-1 to 11)   | 0.30 % of<br>reading<br>+0.03V | 1 MΩ      | 50 V                          | 10 mV      |
| 20 mA DC<br>(-2 to 22) | 0.30 % of<br>reading<br>+0.04V | 10 Ω      | 100 mA                        | 10 µA      |

\*Accuracies are expressed as ± percentages over 0 to 50 °C ambient range after 20 minute warm-up.

### 5. TEMPERATURE INDICATION ACCURACY: (T16 only)

 $\pm$  (0.3% of span, +1°C) at 23 °C ambient after 20 minute warm up. Includes NIST conformity, cold junction effect, A/D conversion errors and linearization conformity.

Span Drift (maximum): 130 PPM/°C

6. USER INPUT: (Only controllers with alarms have a user input terminal.) Internally pulled up to +7 VDC (100 K $\Omega$ ), V<sub>IN MAX</sub> = 35 V, V<sub>IL</sub> = 0.6 V max,  $V_{IH} = 1.5 \text{ V min}, I_{OFF} = 40 \ \mu\text{A max}$ 

Response Time: 120 msec max

Functions: Programmable

| OUTPUT SPECIFICATIONS                                                       |
|-----------------------------------------------------------------------------|
| 1. CONTROL AND ALARM OUTPUTS:                                               |
| Relay Output:                                                               |
| Type: Form A                                                                |
| Contact Rating: 3 A @ 250 VAC or 30 VDC (resistive load)                    |
| Life Expectancy: 100,000 cycles at max. load rating                         |
| (Decreasing load and/or increasing cycle time, increases life expectancy)   |
| Logic/SSR Output (main control output only):                                |
| Rating: 45 mA max @ 4 V min., 7 V nominal                                   |
| 2. MAIN CONTROL:                                                            |
| Control: PID or On/Off                                                      |
| Output: Time proportioning or DC Analog                                     |
| Cycle Time: Programmable                                                    |
| Auto-Tune: When selected, sets proportional band, integral time, derivative |
| time, and output dampening time. Also sets input filter and (if applicable) |
| cooling gain.                                                               |
| Probe Break Action: Programmable                                            |
| 3. ALARMS: (optional) 2 relay alarm outputs.                                |
| Modes:                                                                      |
| None                                                                        |
| Absolute High Acting (Balanced or Unbalanced Hysteresis)                    |
| Absolute Low Acting (Balanced or Unbalanced Hysteresis)                     |
| Deviation High Acting                                                       |
| Deviation Low Acting                                                        |
| Inside Band Acting                                                          |
| Outride David Acting                                                        |

Outside Band Acting Heat (Alarm 1 on Analog Output models only) Cool (Alarm 2)

Reset Action: Programmable; automatic or latched

Standby Mode: Programmable; enable or disable Hysteresis: Programmable Sensor Fail Response: Upscale Annunciator: "A1" and "A2" programmable for normal or reverse acting 4. COOLING: Software selectable (overrides Alarm 2).

Control: PID or On/Off Output: Time proportioning Cycle Time: Programmable Proportional Gain Adjust: Programmable Heat/Cool Deadband Overlap: Programmable 5. ANALOG DC OUTPUT: (optional)

Self-powered (Active)

Action: Control or retransmission Update Rate: 0.1 to 250 sec

| OUTPUT<br>RANGE ** | ACCURACY *            | COMPLIANCE        | RESOLUTION |
|--------------------|-----------------------|-------------------|------------|
| 0 to 10 V          | 0.3% of FS<br>+ ½ LSD | 10 k $\Omega$ min | 1/8000     |
| 0 to 20 mA         | 0.3% of FS<br>+ ½ LSD | 500 $\Omega$ max  | 1/8000     |
| 4 to 20 mA         | 0.3% of FS<br>+ ½ LSD | 500 $\Omega$ max  | 1/6400     |

\* Accuracies are expressed as ± percentages over 0 to 50 °C ambient range after 20 minute warm-up.

\*\* Outputs are independently jumper selectable for either 10 V or 20 mA. The output range may be field calibrated to yield approximately 5% overrange and a small underrange (negative) signal.

### **ORDERING INFORMATION**

|           |              |                       | PART NU          | JMBERS        |
|-----------|--------------|-----------------------|------------------|---------------|
| MODEL NO. | MAIN CONTROL | 2 ALARMS & USER INFUT | 18-36 VDC/24 VAC | 85 to 250 VAC |
|           | Relay        | —                     | T1610010         | T1610000      |
|           | Relay        | Yes                   | T1611110         | T1611100      |
| T16       | Logic/SSR    | —                     | T1620010         | T1620000      |
|           | Logic/SSR    | Yes                   | T1621110         | T1621100      |
|           | Analog Out * | Yes                   | T1641110         | T1641100      |
|           | Relay        | —                     | P1610010         | P1610000      |
|           | Relay        | Yes                   | P1611110         | P1611100      |
| P16       | Logic/SSR    | —                     | P1620010         | P1620000      |
|           | Logic/SSR    | Yes                   | P1621110         | P1621100      |
|           | Analog Out * | Yes                   | P1641110         | P1641100      |

\* Analog out may be used for retransmitted signals. When using analog output for retransmitted signals, AL1 becomes main control O1, if selected for heating in the analog out models.

### ACCESSORIES

| MODEL NO. | DESCRIPTION                                                                                                    | PART NUMBERS |
|-----------|----------------------------------------------------------------------------------------------------------------|--------------|
| TD46      | Programming Kit 1 : Includes Software, Comms Module w/<br>9-pin connector and cable, and 115 VAC Power Adapter | TP16KIT1     |
| IFIO      | Programming Kit 2 : Includes Software, Comms Module w/<br>9-pin connector and cable                            | TP16KIT2     |
|           | External SSR Power Unit (for Logic/SSR models)                                                                 | RLY50000     |
| RLY       | 25 A Single Phase Din Rail Mount Solid State Relay                                                             | RLY60000     |
|           | 40 A Single Phase Din Rail Mount Solid State Relay                                                             | RLY6A000     |
|           | Three Phase Din Rail Mount Solid State Relay                                                                   | RLY70000     |

521



### **EMC INSTALLATION GUIDELINES**

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
  - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
  - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is

effective. The following EMI suppression devices (or equivalent) are recommended:

- Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:
- Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)
- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
  - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
  - b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

#### Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

Visit RLC's web site at http://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

F



VIEW FROM TOP OF UNIT

## **2.0 INSTALLING THE CONTROLLER**

The T16 and P16 controllers meet NEMA 4X/IP65 requirements for indoor use to provide a watertight seal in steel panels with a minimum thickness of



### Multiple Controller Stacking

The controller is designed to allow for close spacing of multiple controllers in applications that do not require protection to NEMA 4X. Controllers can be stacked either horizontally or vertically. For vertical stacking, install the panel latch with the screws to the sides of the controller. For horizontal stacking, the panel latch screws should be at the top and bottom of the controller. The minimum spacing from centerline to centerline of controllers is 1.96" (49.8

mm). This spacing is the same for vertical or horizontal stacking.

Note: When stacking controllers, provide adequate panel ventilation to ensure that the maximum operating temperature range is not exceeded.



### Instructions:

- 1. Prepare the panel cutout to the proper dimensions.
- 2. Remove the panel latch from the controller. Discard the cardboard sleeve.
- 3. Carefully remove the center section of the panel gasket and discard. Slide the panel gasket over the rear of the controller, seating it against the lip at the front of the case.
- 4. Insert the controller into the panel cutout. While holding the controller in place, push the panel latch over the rear of the controller, engaging the tabs of the panel latch in the farthest forward slot possible.
- 5. To achieve a proper seal, tighten the panel latch screws evenly until the controller is snug in the panel, torquing the screws to approximately 7 in-lb (79 N-cm). Overtightening can result in distortion of the controller, and reduce the effectiveness of the seal.
- Note: The installation location of the controller is important. Be sure to keep it away from heat sources (ovens, furnaces, etc.) and away from direct contact with caustic vapors, oils, steam, or any other process by-products in which exposure may affect proper operation.



F





1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **3.0 WIRING THE CONTROLLER**

### WIRING CONNECTIONS

All wiring connections are made to the rear screw terminals. When wiring the controller, use the numbers on the label and those embossed on the back of the case, to identify the position number with the proper function.

All conductors should meet voltage and current ratings for each terminal. Also, cabling should conform to appropriate standards of good installation, local

### **CONTROLLER POWER CONNECTIONS**

For best results, the power should be relatively "clean" and within the specified limits. Drawing power from heavily loaded circuits or from circuits that also power loads that cycle on and off should be avoided. It is recommended that power supplied to the controller be protected by a fuse or circuit breaker. codes and regulations. It is recommended that power (AC or DC) supplied to the controller be protected by a fuse or circuit breaker. Strip the wire, leaving approximately 1/4" (6 mm) bare wire exposed (stranded wires should be tinned with solder). Insert the wire under the clamping washer and tighten the screw until the wire is clamped tightly.



### INPUT CONNECTIONS

For two wire RTDs, install a copper sense lead of the same gauge and length as the RTD leads. Attach one end of the wire at the probe and the other end to input common terminal. Complete lead wire compensation is obtained. This is the preferred method. If a sense wire is not used, then use a jumper. A temperature offset error will exist. The error may be compensated by programming a temperature offset.



### CONTROL AND ALARM OUTPUT CONNECTIONS



## **I.O REVIEWING THE FRONT KEYS AND DISPLAY**



### FRONT PANEL KEYS

 $|\mathbf{Q}|$ 

The F1 key is pressed to exit (or escape) directly to the start of the Display Loop. While in the Display Loop, the F1 key can be pressed to activate its programmed function.

The Loop key is pressed to advance to the next parameter, to activate a changed selection/value, and when held for three seconds, enter the Hidden Loop.

#### TOP DISPLAY



The Arrow keys are used to scroll through parameter selections/ values and in the Configuration Loop they are used to scroll to the appropriate Parameter Module.

## **5.0 PROGRAMMING: DISPLAY LOOP**





### DISPLAY LOOP

At power up, all display segments light, and then the programmed input type and the controller's software version will flash. Then the Temperature/Process Value is shown in the top display, and the Setpoint Value is shown in the bottom display. This is the Display Loop. If the Setpoint is hidden or locked, the Display Loop will default to Output Power. If Output Power is also hidden or locked out, the bottom display is blank. During programming, the F1 key can be pressed to return the controller to this point. (Only in the Display Loop will the F1 key perform the user F 1 In function programmed in Input Module 1- III.)

When the  $|\mathbf{\Phi}|$  is pressed the controller advances to the next parameter in the Display Loop. Except for Setpoint and % Output Power, the bottom display alternates between the parameter name and its selection/value. The arrow keys are pressed to change the selection/value for the shown parameter. The new selection/value is activated when the  $\bigcirc$  is pressed. Display Loop parameters may be locked out or hidden in Lockout Module 3-LL. Some parameters are model and programming dependent.

525

The values shown for the displays are the factory settings.



### SETPOINT VALUE (SP2) \*

-999 to 9999



Typically, the controller is operating with the Setpoint value in the bottom display. There is no annunciator nor parameter indication for Setpoint in the Display Loop. The parameter name alternates with the setpoint value in the Hidden Loop. The Setpoint value can be changed, activated and stored by pressing the arrow keys. This is the only parameter that can be configured as read only in the Display Loop, but read/write in the Hidden Loop. It is possible to store a second Setpoint value that can be selected in the Hidden Loop, by the F1 key or the user input. Both Setpoint values are limited by the Setpoint Low and High Limits in Input Module t-  $I\!R$ .



# % OUTPUT POWER \*

The % Output Power is shown with the %PW annunciator. The parameter name alternates with the % Output Power value in the Hidden Loop. While the controller is in Automatic Mode, this value is read only. When the controller is placed in Manual Mode, the value can be changed, activated and stored by pressing the arrow keys. For more details on % Output Power, see Control Mode Explanations.



### OUTPUT POWER OFFSET

- 100 to 100.0

When the Integral Time is set to zero and the controller is in the Automatic Mode, this parameter will appear after % Output Power. It is also shown with the %PW annunciator illuminated. The power offset is used to shift the proportional band to compensate for errors in the steady state. If Integral Action is later invoked, the controller will re-calculate the internal integral value to provide "bumpless" transfer and Output Power Offset will not be necessary.



F

### **PROPORTIONAL BAND**

to **9999** (% of full input range)

The proportional band should be set to obtain the best response to a process disturbance while minimizing overshoot. A proportional band of 0.0% forces the controller into On/Off Control with its characteristic cycling at Setpoint. For more information, see Control Mode and PID Tuning Explanations.

### INTEGRAL TIME



### I to 9999 seconds

Integral action shifts the center point position of the proportional band to eliminate error in the steady state. The higher the integral time, the slower the response. The optimal integral time is best determined during PID Tuning. If time is set to zero, the previous Integral output power value is maintained. Offset Power can be used to provide Manual Reset.

#### DERIVATIVE TIME



### I to 9999 seconds per repeat

Derivative time helps to stabilize the response, but too high of a derivative time, coupled with noisy signal processes, may cause the output to fluctuate too greatly, yielding poor control. Setting the time to zero disables derivative action.

#### ALARM 1 VALUE



On models with alarms, the value for Alarm 1 can be entered here. The value is either absolute (absolute alarm types) or relative to the Setpoint value (deviation and band alarm types.) When Alarm 1 is programmed for MERL or RanE, this parameter is not available. For more details on alarms, see Alarm Module 4-RL.



On models with alarms, the value for Alarm 2 can be entered here. The value is either absolute (absolute alarm types) or relative to the Setpoint value (deviation and band alarm types.) When Alarm 2 is programmed for *Lool* or *RonE*, this parameter is not available. For more details on alarms, see the Alarm Module  $\mathbf{4}$ - $\mathbf{R}$ .

\* Alternating indication only used in the Hidden Loop.

## **6.0 Programming: Hidden Loop**

To enter Hidden Loop, press 🖓 for 3 seconds.

HIDDEN LOOP



Note: Parameters shown bold are the only parameters visible in the Hidden Loop with Factory Settings. Setpoint and Output Power are factory set for the Display Loop. The remaining parameters can be selected for the Hidden Loop within Module 3. Parameter availability is model and programming dependent.



### **HIDDEN LOOP**

When  $\bigcirc$  is pressed and held for three seconds, the controller advances to the Hidden Loop. The Temperature/Process Value is shown in the top display. The bottom display alternates between the parameter and its selection/value. is pressed to change the selection/value for the shown parameter. The new selection/value is activated after  $\Theta$  is pressed. When  $\stackrel{\uparrow}{\models}$ is pressed, the controller returns to the Display Loop and stores changed selection/values to permanent memory. Hidden Loop parameters may be locked out in Lockout Module 3-LL. Some parameters are model and programming dependent.



EodE 1 to 125 ♦ 0

If the Access Code is set from 1 to 125, in Lockout Module 3-LC, Access Code will appear here. By entering the proper Code, access to the Hidden Loop is permitted. With the factory setting of 0, Access Code will not appear in the Hidden Loop. A universal code of 111 can be entered to gain access, independent of the programmed code number.



### SETPOINT SELECT



The SPSL function allows the operator to switch from or to, setpoint 1 and setpoint 2. In the Display Loop, there is no annunciator indicating the selected Setpoint, however, the selected Setpoint value is displayed and activated.

### SETPOINT RAMP RATE

0.0 to 999.9



The setpoint ramp rate can reduce sudden shock to the process and reduce overshoot on startup or after setpoint changes, by ramping the setpoint at a controlled rate. R annunciator flashes while ramping. With the T16, the ramp rate is always in tenths of degrees per minute, regardless of the resolution chosen for the process display. With the P16, the ramp rate is in least-significant (display units) digits per minute. A value of 0.0 or 0 disables setpoint ramping. Once the ramping setpoint reaches the target setpoint, the setpoint ramp rate disengages until the setpoint is changed again. If the ramp value is changed during ramping, the new ramp rate takes effect. If the setpoint is ramping prior to starting Auto-Tune, the ramping is suspended during Auto-Tune and then resumed afterward. Deviation and band alarms are relative to the target setpoint, not the ramping setpoint. A slow process may not track the programmed setpoint rate. At power up, the ramping setpoint is initialized at the ambient temperature/process value.



**CONTROL MODE TRANSFER** 

Ruto USEr

In Automatic Mode, the percentage of Output Power is automatically determined by the controller. In Manual/User #5Er Mode, the percentage of Output Power is adjusted manually while in the Display Loop. The Control Mode can also be transferred through the F1 Key or User Input. For more information, see Control Mode Explanations.

527

AUTO-TUNE START



NO 462

The Auto-Tune procedure of the controller sets the Proportional Band, Integral Time, Derivative Time, Digital Filter, Control Output Dampening Time, and Relative Gain (Heat/Cool) values appropriate to the characteristics of the process. This parameter allows front panel starting **JE5** or stopping **ND** of Auto-Tune. For more information, see PID Tuning Explanations.

#### ALARMS RESET



1-2

With alarm models, the alarms can be manually reset. The up key resets Alarm 1 and the down key resets Alarm 2.

### ACCESS CODE

- 1 to - 125



If the Access Code is set from -1 to -125, in Lockout Module  $\exists$ -LL, Access Code will appear here. By entering the proper Code, access to the Configuration Loop is permitted (with a negative Code value, the Hidden Loop can be accessed without the use of a code). With the factory setting of 0 or with an active User Input configured for Program Lock (PLOL), Access Code will not appear here. An active user input configured for Program Lock (PLOL) always locks out the Configuration Loop, regardless of Access Code.

## 7.0 PROGRAMMING: CONFIGURATION LOOP



F

To access the Configuration Loop, press the up key when CRFP/RD is displayed in the Hidden Loop. The arrow keys are used to select the parameter module (1-9). To enter a specific module press O while the module number is displayed. In the Configuration Loop, CRFP will alternate with the parameter number in the bottom display. The Temperature/Process Value is shown in the top display.

After entering a parameter module, press  $\bigcirc$  to advance through the parameter names in the module. To change a parameter's selection/value, press the arrow keys while the parameter is displayed. In the modules, the top display shows the parameter name, and the bottom display shows the selection/value. Use  $\bigcirc$  to enter any selection/values that have been changed. The change is not committed to permanent memory until the controller is returned to the Display Loop. If a power loss occurs before returning to the Display Loop, the new values must be entered again.

At the end of each module, the controller returns to CnFP/nD. At this location, pressing P again returns the display to the the Display Loop. Pressing the Up key allows re-entrance to the Configuration Loop. Whenever  $\fbox{P}$  is pressed, *End* momentarily appears as the parameters are stored to permanent memory and the controller returns to the Display Loop.



### www.redlion.net

## 7.1 MODULE 1 - INPUT PARAMETERS ( 1- 17) T16 ONLY



### **INPUT TYPE**

| ŁYPE       | SELECTION | TYPE | SELECTION | TYPE        |
|------------|-----------|------|-----------|-------------|
| <b>L</b> ! | £c-£      | T TC | Еc-Л      | N TC        |
|            | £c-E      | E TC | fr-E      | C TC        |
|            | Ec-1      | J TC | LIП       | Linear mV   |
|            | tc-M      | K TC | r 385     | RTD 385     |
|            | te-r      | R TC | r 392     | RTD 392     |
|            | Łc-5      | S TC | r 6 7 2   | RTD 672     |
|            | £c-b      | B TC | r L (П    | Linear Ohms |

Select the input type that corresponds to the input sensor.

#### **TEMPERATURE SCALE**



## FahrenheitCelsius

Select either degrees Fahrenheit or Celsius. For linear mV and ohms input types, this has no effect. If changed, adjust related parameter values, as the controller does not automatically convert them.

### DECIMAL RESOLUTION



### \_\_ . . . . . .

**D** to **D** for temperature and resistance inputs **D** for mV inputs

Select whole degrees, or tenths of degrees for Temperature display, Setpoint values, and related parameters. For Linear Resistance inputs rtm, the same parameter selections apply in ohms or tenths of an ohm. For mV inputs tm, only hundredths of a mV resolution is available.



### DIGITAL FILTERING

I = least to ¥ = most

The filter is an adaptive digital filter that discriminates between measurement noise and actual process changes. If the signal is varying too greatly due to measurement noise, increase the filter value. If the fastest controller response is needed, decrease the filter value.

## SHIFT/OFFSET



-999 to 9999 degrees

This value offsets the controller's temperature display value by the entered amount. This is useful in applications in which the sensor cannot provide the actual temperature signal due to mounting constraints, inaccuracy, etc.

### SETPOINT LOW LIMIT



The controller has a programmable low setpoint limit value to restrict the setting range of the setpoint. Set the limit so that the setpoint value cannot be set below the safe operating area of the process.

### SETPOINT HIGH LIMIT



The controller has a programmable high setpoint limit value to restrict the setting range of the setpoint. Set the limit so that the setpoint value cannot be set above the safe operating area of the process.

#### **USER INPUT FUNCTION (OPTIONAL)**



| SELECTION | FUNCTION             | SELECTION | FUNCTION               |
|-----------|----------------------|-----------|------------------------|
| ΠΟΠΕ      | No Function          | 5PE       | Setpoint 1 or 2 Select |
| PLOE      | Program Lock         | SPrP      | Setpoint Ramp Disable  |
| ILOE      | Integral Action Lock | RLr5      | Reset Both Alarms      |
| ErnF      | Auto/Manual Select   |           |                        |

The controller performs the selected User Input function (User Input available only on models with alarms), when the User terminal 1 is connected (pulled low) to Common terminal 8.

No Function: No function is performed.

- **Program Lock**: The Configuration Loop is locked, as long as activated (maintained action).
- **Integral Action Lock**: The integral action of the PID computation is disabled (frozen), as long as activated (maintained action).
- Auto/Manual Select: This function selects (maintained action) Automatic (open) or Manual Control (activated).
- Setpoint 1 or 2 Select: This function selects (maintained action) Setpoint 1(open) or Setpoint 2 (activated) as the active setpoint.
- **Setpoint Ramp Disable**: The setpoint ramping feature is disabled, as long as activated (maintained action). Any time the user input is activated with a ramp in process, ramping is aborted.
- **Reset Alarms**: Active alarms are reset, as long as activated (maintained action). Active alarms are reset until the alarm condition is cleared and triggered again (momentary action).

### 1-717-767-6511

F

### **F1 KEY FUNCTION**

### F | In ЛОЛЕ

| SELECTION | FUNCTION               | SELECTION | FUNCTION          |
|-----------|------------------------|-----------|-------------------|
| ПОЛЕ      | No Function            | R fr 5    | Reset Alarm 1     |
| £rnF      | Auto/Manual Select     | R2r5      | Reset Alarm 2     |
| 5PE       | Setpoint 1 or 2 Select | RLr5      | Reset Both Alarms |

No Function: No function is performed.

- Auto/Manual Select: This function toggles (momentary action) the controller between Automatic and Manual Control.
- Setpoint 1 or 2 Select: This function toggles (momentary action) the controller between Setpoint 1 and Setpoint 2.
- Reset Alarms: This function can be used to reset one or both of the alarms when activated (momentary action) The alarm will remain reset until the alarm condition is cleared and triggered again.





### **INPUT TYPE**

SELECTION TYPF Current Eurr UOLE Voltage

Select the input type that corresponds to the input signal.



### PERCENT ANNUNCIATOR

YES On Π**D** Off

This only illuminates the % annunciator. It does not perform any type of percent function, but is useful in applications that have been scaled in percent.



### **DECIMAL RESOLUTION**

0 0,0 0,00 0,000

This selection affects the decimal point placement for the Process value, and related parameters.



F

### ROUNDING INCREMENT

rnd 0.1

1 to 100 In steps of 1 least significant digit, regardless of decimal point.

Rounding selections other than 1 cause the process value display to round to the nearest rounding increment selected. (For example, rounding of 5 causes 122 to round to 120 and 123 to round to 125.) Rounding starts at the least significant digit of the process value. Setpoint values, Setpoint limits, Alarm values, Input Scaling values, and Analog Scaling values are not affected by rounding.

### **DIGITAL FILTERING**



 $\Box$  = least to  $\Psi$  = most

The filter is an adaptive digital filter that discriminates between measurement noise and actual process changes. If the signal is varying too greatly due to measurement noise, increase the filter value. If the fastest controller response is needed, decrease the filter value.

### SCALING

To scale the controller, two scaling points are necessary. Each scaling point has a coordinate pair of Display Values and Input Values. It is recommended that the two scaling points be at the low and high ends of the input signal being measured. Process value scaling will be linear between and continue past the entered points to the limits of the input range. (Factory settings example will display 0.0 at 4.00 mA input and display 100.0 at 20.00 mA input.) Reverse acting indication can be accomplished by reversing the two signal points or the Display value points, but not both. If both are reversed, forward (normal) acting indication will occur. In either case, do not reverse the input wires to change the action.

### **DISPLAY VALUE SCALING POINT 1**

### d5P ( -999 to 9999 8.8

Enter the first coordinate Display Value by using the arrow keys.

### **INPUT VALUE SCALING POINT 1**



0,00 to 20,00 mA 0.00 to 10.00 V

For Key-in Method, enter the first coordinate Input Value by using the arrow keys. To allow the P16 to "learn" the signal, use the Applied Method. For Applied Method, press [f]. The ° annunciator is turned on to indicate the applied method. Adjust the applied signal level externally until the appropriate value appears under INP I. Using either method, press 🔄 to store the value for INP I. (The controller can be toggled back to the Key-in Method by pressing  $\overleftarrow{\leftarrow}$  before  $\bigcirc$ .)

### **DISPLAY VALUE SCALING POINT 2**



Enter the second coordinate Display Value by using the arrow keys.



0,00 to 20,00 mA 0.00 to 10.00 V

For Key-in Method, enter the second coordinate Input Value by using the arrow keys. To allow the P16 to "learn" the signal, use the Applied Method. For Applied Method, press  $\overline{\overleftarrow{e}}$ . The ° annunciator is turned on to indicate the applied method. Adjust the applied signal level externally until the appropriate value appears under *INP2*. Using either method, press 👁 to store the value for INP2. (The controller can be toggled back to the Key-in Method by pressing before  $\mathbf{\Phi}$ .)

### SETPOINT LOW LIMIT

### SPL 0 -999 to 9999

The controller has a programmable low setpoint limit value to restrict the setting range of the setpoint. Set the limit so that the setpoint value cannot be set below the safe operating area of the process.

SETPOINT HIGH LIMIT



8.8

### -999 to 9999

The controller has a programmable high setpoint limit value to restrict the setting range of the setpoint. Set the limit so that the setpoint value cannot be set above the safe operating area of the process.

### USER INPUT FUNCTION (OPTIONAL)



| SELECTION | FUNCTION             | SELECTION | FUNCTION               |
|-----------|----------------------|-----------|------------------------|
| ΠΟΠΕ      | No Function          | 5PE       | Setpoint 1 or 2 Select |
| PLOC      | Program Lock         | SPrP      | Setpoint Ramp Disable  |
| IL OC     | Integral Action Lock | RLr5      | Reset Both Alarms      |
| ErnF      | Auto/Manual Select   |           |                        |

The controller performs the selected User Input function (User Input available only on models with alarms), when the User terminal 1 is connected (pulled low) to Common terminal 8.

No Function: No function is performed.

- Program Lock: The Configuration Loop is locked, as long as activated (maintained action).
- Integral Action Lock: The integral action of the PID computation is disabled (frozen), as long as activated (maintained action).
- Auto/Manual Select: This function selects (maintained action) Automatic (open) or Manual Control (activated).
- Setpoint 1 or 2 Select: This function selects (maintained action) Setpoint 1(open) or Setpoint 2 (activated) as the active setpoint.
- Setpoint Ramp Disable: The setpoint ramping feature is disabled, as long as activated (maintained action). Any time the user input is activated with a ramp in process, ramping is aborted.
- Reset Alarms: Active alarms are reset, as long as activated (maintained action). Active alarms are reset until the alarm condition is cleared and triggered again (momentary action).

#### **F1 KEY FUNCTION**

FUNCTION

| <u> </u>  | Ε                  |           |               |
|-----------|--------------------|-----------|---------------|
| SELECTION | FUNCTION           | SELECTION | FUNCTION      |
| ПОЛЕ      | No Function        | R Ir S    | Reset Alarm 1 |
| trnF      | Auto/Manual Select | R2r5      | Reset Alarm 2 |

Setpoint 1 or 2 Select RLr5 Reset Both Alarms 5PE

The controller performs the selected F1 key function, when  $\overleftarrow{\leftarrow}$  is pressed while in the Display Loop. In any other loop or module location, pressing 📇 will perform an escape to the Display Loop.

No Function: No function is performed.

Auto/Manual Select: This function toggles (momentary action) the controller between Automatic and Manual Control.

Setpoint 1 or 2 Selection: This function toggles (momentary action) the controller between Setpoint 1 and Setpoint 2.

Reset Alarms: This function can be used to reset one or both of the alarms when activated (momentary action). The alarm will remain reset until the alarm condition is cleared and triggered again.

### 1-717-767-6511



### CYCLE TIME



### 0.0 to 250.0 seconds

The Cycle Time is entered in seconds with one tenth of a second resolution. It is the total time for one on and one off period of the time proportioning control output O1. With time proportional control, the percentage of power is converted into an output on-time relative to the cycle time value set. (If the controller calculates that 65% power is required and a cycle time of 10.0 seconds is set, the output will be on for 6.5 seconds and off for 3.5 seconds.) For best control, a cycle time equal to one-tenth or less, of the natural period of oscillation of the process is recommended. When using the Analog Output signal for control, the Cycle Time setting has no effect. If the O1 output is not being used, a cycle time of 0 can be entered to prevent the output and indicator from cycling.

### **CONTROL ACTION**



### drct Direct (cooling) rEu Reverse (heating)

This determines the control action for the PID loop. Programmed for direct action (cooling), the output power will increase if the Process value is above the Setpoint value. Programmed for reverse action (heating), the output power decreases when the Process Value is above the Setpoint Value. For heat and cool applications, this is typically set to reverse. This allows O1 or A1 (models with Analog Output) to be used for heating, and A2/O2 to be used for cooling.

### OUTPUT POWER LOWER LIMIT

| BP | 'L 🛛 |
|----|------|
|    | 8    |

## I to 100 percent O1

- 100 to 100 percent O1/O2

This parameter may be used to limit controller power at the lower end due to process disturbances or setpoint changes. Enter the safe output power limits for the process. If Alarm 2 is selected for cooling, the range is from -100 to +100%. At 0%, both O1 and O2 are off; at 100%, O1 is on; and at -100%, O2 is on. When the controller is in Manual Control Mode, this limit does not apply.



F

### OUTPUT POWER UPPER LIMIT

**1** to **100** percent O1 - **100** to **100** percent O1/O2

This parameter may be used to limit controller power at the upper end due to process disturbances or setpoint changes. Enter the safe output power limits for the process. If Alarm 2 is selected for cooling, the range is from -100 to +100%. At 0%, both O1 and O2 are off; at 100%, O1 is on; and at -100%, O2 is on. When the controller is in Manual Control Mode, this limit does not apply.

### SENSOR FAIL POWER LEVEL

| ü | ۲ | 7 | Ĺ |
|---|---|---|---|
|   |   |   | 8 |

0051

### 0 to 100 percent O1 - 100 to 100 percent O1/O2

This parameter sets the power level for the control outputs in the event of a sensor failure. If Alarm 2 is not selected for cooling, the range is from 0% (O1 output full off) to 100% (O1 output full on). If A2 is selected for cooling, the range is from -100 to +100%. At 0%, both O1 and O2 are off; at 100%, O1 is on; and at -100%, O2 is on. The alarm outputs are upscale drive with an open sensor, and downscale drive with a shorted sensor (RTD only), independent of this setting. Manual Control overrides the sensor fail preset.

### OUTPUT POWER DAMPENING



The Dampening Time, entered as a time constant in seconds, dampens (filters) the calculated output power. Increasing the value increases the dampening effect. Generally, dampening times in the range of one-twentieth to one-fiftieth of the controller's integral time (or process time constant) are effective. Dampening times longer than these may cause controller instability due to the added lag effect.

### ON/OFF CONTROL HYSTERESIS



The controller can be placed in the On/Off Control Mode by setting the Proportional Band to 0.0%. The On/Off Control Hysteresis (balanced around the setpoint) eliminates output chatter. In heat/cool applications, the control hysteresis value affects both Output O1 and Output O2 control. It is suggested to set the hysteresis band to Factory Setting prior to starting Auto-Tune. After Auto-Tune, the hysteresis band has no effect on PID Control. On/Off Control Hysteresis is illustrated in the On/Off Control Mode section.

### AUTO-TUNE CODE



### I fastest to 2 slowest

Prior to starting Auto-Tune, this code should be set to achieve the necessary dampening level under PID Control. This value allows customization of the PID values that Auto-Tune will calculate. For the process to be controlled aggressively (fastest process response with possible overshoot), set the Auto-Tune Code to 0. For the process to be controlled conservatively (slowest response with the least amount of overshoot), set this value to 2. If the Auto-Tune Code is changed, Auto-Tune needs to be reinitiated for the changes to affect the PID settings. For more information, see PID Tuning Explanations Section.

### ANALOG OUTPUT RANGE (OPTIONAL)



0-10 V 0-20 mA 4-20 mA

Select the type of output and range. The Analog output jumpers are factory set to current. They must be changed if voltage output is desired. The Analog output can be calibrated to provide up to approximately 5% over range operation (0 mA current can only go slightly negative).

### ANALOG OUTPUT ASSIGNMENT (OPTIONAL)



IP Main Control % Output PowerInput Signal RetransmissionSP Active Setpoint

This setting selects the parameter that the Analog Output will retransmit or track.



ANALOG UPDATE TIME (OPTIONAL)

I to 250 seconds
I = update rate of 0.1 second

The update time of the Analog Output can be used to reduce excess valve actuator or pen recorder activity.

#### ANALOG LOW SCALING (OPTIONAL)



-999 to 9999

The Analog Output assignment value that corresponds to 0 V, 0 mA or 4 mA output as selected.

### ANALOG HIGH SCALING (OPTIONAL)



-999 to 9999

The Analog Output assignment value that corresponds to 10 V or 20 mA output as selected. An inverse acting output can be achieved by reversing the low and high scaling points.



EodE

| SELECTION      | DESCRIPTION                                                                |  |
|----------------|----------------------------------------------------------------------------|--|
| d (SP          | Display: accessible in Display Loop.                                       |  |
| HIGE           | Hide: accessible in Hidden Loop.                                           |  |
| LOC            | Locked: not accessible in either loop.                                     |  |
| dSPr (SP only) | Display/read: read only in Display Loop,<br>but read/write in Hidden Loop. |  |

The following parameters can be configured for LOE, # IdE, and d ISP.



ACCESS CODE

| 0 |     |    |       |                                                             |
|---|-----|----|-------|-------------------------------------------------------------|
|   | ٥   |    |       | Full access to Display, Hidden,<br>and Configuration Loops  |
|   | - 1 | to | - 125 | Code necessary to access<br>Configuration Loop only.        |
|   | 1   | to | 125   | Code necessary to access<br>Hidden and Configuration Loops. |

- 125 to 125

The following parameters can be configured for LOE or H IdE only.



1-717-767-6511



### AVAILABLE ALARM ACTIONS

| ЛОЛЕ  | None                                     | No action, the remaining Alarm parameters are not available.                                      |
|-------|------------------------------------------|---------------------------------------------------------------------------------------------------|
| яьн і | Absolute High<br>(balanced hysteresis)   | The alarm energizes when the Process Value exceeds the alarm value + 1/2 the hysteresis value.    |
| яьі о | Absolute Low<br>(balanced hysteresis)    | The alarm energizes when the Process Value falls below the alarm value -1/2 the hysteresis value. |
| 8°K ( | Absolute High<br>(unbalanced hysteresis) | The alarm energizes when the Process Value exceeds the alarm value.                               |
| RulO  | Absolute Low<br>(unbalanced hysteresis)  | The alarm energizes when the Process Value falls below the alarm value.                           |

| d-X ( | Deviation High                  | Alarm 1 and 2 value tracks the Setpoint value                                  |
|-------|---------------------------------|--------------------------------------------------------------------------------|
| d-L0  | Deviation Low                   | Alarm 1 and 2 value tracks the<br>Setpoint value                               |
| Ь- (П | Band Acting<br>(inside)         | Alarm 1 and 2 value tracks the Setpoint value                                  |
| 6-0F  | Band Acting<br>(outside)        | Alarm 1 and 2 value tracks the Setpoint value                                  |
| KERF  | Heat (A1 Analog<br>models only) | If heating is selected, the remaining<br>Alarm 1 parameters are not available. |
| [ ool | Cool<br>(A2 only)               | If cooling is selected, the remaining<br>Alarm 2 parameters are not available. |

### **ALARM ACTION FIGURES**



Note: Hys in the above figures refers to the Alarm Hysteresis.

F

### www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com


ПОЛЕ ЯЪНІ ЯЪLО Я⊔НІ Я⊔LО d-HI d-LO b-IN b-ot HERt

Select the action for the alarms. See Alarm Action Figures for a visual explanation.

#### ALARM ANNUNCIATOR ALARM 1



ner Normal

With normal selection, the alarm annunciator indicates "on" alarm output 1. With reverse selection, the alarm annunciator indicates "off" alarm output.



#### ALARM RESET MODE ALARM 1

Ruto Automatic

In Automatic mode, an energized alarm turns off automatically after the Temperature/Process value leaves the alarm region. In Latched mode, an energized alarm requires an F1 key or user input alarm reset to turn off. After an alarm reset, the alarm remains reset off until the trigger point is crossed again.



#### ALARM STANDBY ALARM 1

YE5Standby onIIIStandby off

Standby prevents nuisance (typically low level) alarms after a power up or setpoint change. After powering up the controller or changing the setpoint, the process must leave the alarm region (enter normal non-alarm area of operation). After this has occurred, the standby is disabled and the alarm responds normally until the next controller power up or setpoint change.

#### ALARM VALUE ALARM 1



The alarm values are entered as process units or degrees. They can also be entered in the Display or Hidden Loops. When the alarm is configured as deviation or band acting, the associated output tracks the Setpoint as it is changed. The value entered is the offset or difference from the Setpoint.

#### **ALARM ACTION ALARM 2**



ПОЛЕ ЯЬНІ ЯЬLО Я⊔НІ Я⊔LО d-HI d-LO b-IN b-ot [ool

Select the action for the alarms. See Alarm Action Figures for a visual explanation.

#### ALARM ANNUNCIATOR ALARM 2



reverse

With normal selection, the alarm annunciator indicates "on" alarm output 2. With reverse selection, the alarm annunciator indicates "off" alarm output.

#### ALARM RESET MODE ALARM 2



Ruto Automatic LRtc Latched

In Automatic mode, an energized alarm turns off automatically after the Temperature/Process value leaves the alarm region. In Latched mode, an energized alarm requires an F1 key or user input alarm reset to turn off. After an alarm reset, the alarm remains reset off until the trigger point is crossed again.

#### ALARM STANDBY ALARM 2



YE5Standby onN0Standby off

Standby prevents nuisance (typically low level) alarms after a power up or setpoint change. After powering up the controller or changing the setpoint, the process must leave the alarm region (enter normal non-alarm area of operation). After this has occurred, the standby is disabled and the alarm responds normally until the next controller power up or setpoint change.

#### ALARM VALUE ALARM 2

-999 to 9999



The alarm values are entered as process units or degrees. They can also be entered in the Display or Hidden Loops. When the alarm is configured as deviation or band acting, the associated output tracks the Setpoint as it is changed. The value entered is the offset or difference from the Setpoint.

#### ALARM HYSTERESIS



The Hysteresis Value is either added to or subtracted from the alarm value, depending on the alarm action selected. The same value applies to both alarms. See the Alarm Action Figures for a visual explanation of how alarm actions are affected by the hysteresis.



To enable Cooling in Heat/Cool applications, the Alarm 2 Action must first be set for Cooling. (For P16 Controllers, the cooling output is sometimes referred to as secondary output.) When set to cooling, the output no longer operates as an alarm but operates as a cooling output. The O2 terminals are the same as A2, however a separate O2 annunciator indicates Cooling Operation. Cooling output power ranges from -100% (full cooling) to 0% (no cooling, unless a heat/cool overlap is used). The Power Limits in Output Module **2-UP** also limit the cooling power. In applications requiring only a Cooling output, the main 01 output should be used.



#### CYCLE TIME

0.0 to 250.0 seconds

0.0 to 10.0

This cycle time functions like the O1 Output Cycle Time but allows independent cycle time for cooling. A setting of zero will keep output O2 off.



#### **RELATIVE GAIN**

This defines the gain of the cooling relative to the heating. It is generally set to balance the effects of cooling to that of heating. This is illustrated in the Heat/ Cool Relative Gain Figures. A value of 0.0 places the cooling output into On/ Off Control.

#### DEADBAND/OVERLAP



#### -999 to 9999

This defines the overlap area in which both heating and cooling are active (negative value) or the deadband area between the bands (positive value). If a heat/cool overlap is specified, the percent output power is the sum of the heat power (O1) and the cool power (O2). If Relative Gain is zero, the cooling output operates in the On/Off Control Mode, with the On/Off Control Hysteresis **LHY5** in Output Module **2-***D* becoming the cooling output hysteresis. The function of Deadband is illustrated in the Control Mode Explanations. For most applications, set this parameter to 0.0 prior to starting Auto-Tune. After the completion of Auto-Tune, this parameter may be changed.

#### **HEAT/COOL RELATIVE GAIN FIGURES**



www.redlion.net

536



#### CALIBRATION



The controller is fully calibrated from the factory. Recalibration is recommended every two years by qualified technicians using appropriate equipment. Calibration may be performed by using the front panel or with the TP16KIT. The front panel method is explained below. (Refer to the TP16KIT bulletin for calibration instructions using TP16KIT cable and software.)

Calibration may be aborted by disconnecting power to the controller before exiting Factory Service Module **9-F5**. In this case, the existing calibration settings remain in effect.

Note: Allow the controller to warm up for 30 minutes minimum and follow the manufacturer's warm-up recommendations for the calibration source or measuring device.

#### Millivolt Calibration (T16)

Millivolt calibration requires a precision voltage source with an accuracy of 0.03% (or better) connected to terminals 8 (comm.) and 9 (+). When calibrating the input, the millivolt calibration must be performed first, then the Cold Junction or RTD Resistance.

| PROMPT | APPLY   | FRONT PANEL ACTION                                     |
|--------|---------|--------------------------------------------------------|
| [ odE  |         | Press 💌 until <b>48</b> , press 🝳.                     |
| ERL    |         | Press 🛋 for ¥E5, press 🗨.                              |
| 5EP (  | 0.0 ohm | After 5 seconds (minimum), press 🗨.                    |
| 5£P2   | 14.0 mV | After 5 seconds (minimum), press 🗨.                    |
| 5EP3   | 28.0 mV | After 5 seconds (minimum), press 🗨.                    |
| 5£P4   | 42.0 mV | After 5 seconds (minimum), press <b>Q</b> .            |
| 5£P5   | 56.0 mV | After 5 seconds (minimum), press $oldsymbol{\Theta}$ . |

#### Cold Junction (T16)

Cold Junction calibration requires a thermocouple of known accuracy of types T, E, J, K, C or N (connected to terminals 8 and 9) and a calibrated external reference thermocouple probe measuring in °C with resolution to tenths. The two probes should be brought in contact with each other or in some way held at the same temperature. They should be shielded from air movement and allowed sufficient time to equalize in temperature. (As an alternative, the T16 thermocouple may be placed in a calibration bath of known temperature.) If performing the millivolt calibration prior, verify that the correct input type is configured in Input Module *t- th* before performing the following procedure. (After the millivolt calibration the controller will default to type J.) If using RTD only, the cold junction calibration need not be performed.

| PROMPT     | COMPARE                                 | FRONT PANEL ACTION                                                                                                   |
|------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| [ odE      |                                         | Press 💌 until 48, press 🗣.                                                                                           |
| ERL        |                                         | Press Q.                                                                                                             |
| <u>ביר</u> |                                         | Press 🔺 for ¥E5, press 🗣.                                                                                            |
|            | Top display to<br>external<br>reference | Press ▲ or ♥ to adjust the bottom display until the top process display matches the external reference then press ♥. |

#### **RTD Resistance (T16)**

RTD calibration requires a precision 277.0 ohm resistor with an accuracy of 0.1  $\Omega$  (or better). Connect a jumper between terminals 9 and 10 with a 0 ohm jumper between 9 and 8 at 5*LP1* and the 277.0 ohm resistor between 9 and 8 at 5*LP2*. If using thermocouple only, the RTD calibration need not be performed.

| PROMPT | APPLY     | FRONT PANEL ACTION                  |
|--------|-----------|-------------------------------------|
| EodE   |           | Press 💌 until <b>48</b> , press 🗨.  |
| ERL    |           | Press Q.                            |
| ביוב   |           | Press Q.                            |
| rtd    |           | Press 🔺 for ¥E5, press 🗣.           |
| SEP (  | 0.0 ohm   | After 5 seconds (minimum), press 🗨. |
| SEP2   | 277.0 ohm | After 5 seconds (minimum), press 🗨. |

#### Input Calibration (P16)

Process calibration requires a precision signal source with an accuracy of 0.03% (or better) that is capable of generating 10.0 V connected to terminals 8 (COMM) and 9 (+10V) and 20.00 mA connected to terminals 8 (COMM) and 10 (20mA). The current calibration can be skipped by pressing  $\bigcirc$  at the not applicable prompts if using the controller for process voltage only.

| PROMPT | APPLY   | FRONT PANEL ACTION                                     |
|--------|---------|--------------------------------------------------------|
| EodE   |         | Press 💌 until <b>48</b> , press 🗨.                     |
| ERL    |         | Press 🔺 for ¥E5, press 🗨.                              |
| 5EP 1  | 0.0 ohm | After 5 seconds (minimum), press $oldsymbol{\Theta}$ . |
| 5EP2   | 2.5 V   | After 5 seconds (minimum), press 🗨.                    |
| 5EP3   | 5.0 V   | After 5 seconds (minimum), press $oldsymbol{\Theta}$ . |
| 5EP4   | 7.5 V   | After 5 seconds (minimum), press $oldsymbol{\Theta}$ . |
| 5EP5   | 10.0 V  | After 5 seconds (minimum), press $oldsymbol{\Theta}$ . |
| SEPR   | 0.0 mA  | After 5 seconds (minimum), press <b>Q</b> .            |
| 5EP6   | 20.0 mA | After 5 seconds (minimum), press 🗨.                    |

#### Analog Output Calibration (T16 and P16)

Set the controller Analog jumpers to the output type being calibrated. Connect an external meter with an accuracy of 0.05% (or better) that is capable of measuring 10.00 V or 20.00 mA to terminals 6 (+V/I) and 7 (-V/I). The voltage or current calibration that is not being used must be skipped by pressing  $\bigcirc$  until End appears.

| PROMPT | EXTERNAL<br>METER | FRONT PANEL ACTION                                          |
|--------|-------------------|-------------------------------------------------------------|
| EodE   |                   | Press 💌 until <b>48</b> , press 🗨.                          |
| ERL    |                   | Press <b>P</b> .                                            |
| ]נ]    |                   | Press 🗨. (T16 only)                                         |
| r£d    |                   | Press \varTheta. (T16 only)                                 |
| RNEL   |                   | Press 🔺 for ¥£5, press 🗣.                                   |
| E Ou   | 0.00 V            | Press  or  until external meter matches listing, press      |
| E 10.  | 10.00 V           | Press ▲ or ▼ until external meter matches listing, press ♀. |
| [ 0c   | 0.0 mA            | Press ▲ or ▼ until external meter matches listing, press ♀. |
| [ 20c  | 20.0 mA           | Press  or  until external meter matches listing, press  .   |

#### **RESTORE FACTORY SETTINGS**



Press and hold  $\frown$  to display *LodE* **55**. Press  $\bigcirc$ . The controller will display **r5E** and then return to *LRFP*. Press  $\overleftarrow{E}$  to return to the Display Loop. This will overwrite all user settings with Factory Settings.

#### NOMINAL CALIBRATION SETTINGS



Press and hold  $\frown$  to display *Lode* 17. Press  $\bigodot$ . Press and hold  $\frown$  to display *Lode* 17 again. Press  $\bigodot$ . The controller will then return to *LRFP*. Press  $\bigoplus$  to return to the Display Loop. This will not overwrite any user settings but will erase the controller calibration values. This procedure does not require any calibration signals nor external meters. This can be used to clear calibration error flag *E*-*L*1.

**CAUTION**: This procedure will result in up to  $\pm 10\%$  reading error and the controller will no longer be within factory specifications. For this reason, this procedure should only be performed if meter error is outside of this range to temporarily restore operation until the unit can be accurately calibrated.

### TROUBLESHOOTING

For further technical assistance, contact technical support.

| PROBLEM                              | CAUSE                                                                                                                                                                                                                                             | REMEDIES                                                                                                                                                                                                             |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO DISPLAY                           | <ol> <li>Power off.</li> <li>Brown-out condition.</li> <li>Loose connection or improperly wired.</li> <li>Bezel assembly not fully seated into rear of controller.</li> </ol>                                                                     | <ol> <li>Check power.</li> <li>Verify power reading.</li> <li>Check connections.</li> <li>Check installation.</li> </ol>                                                                                             |
| CONTROLLER NOT WORKING               | 1. Incorrect setup parameters.                                                                                                                                                                                                                    | 1. Check setup parameters.                                                                                                                                                                                           |
| E-EZ IN DISPLAY                      | 1. Loss of setup parameters due to noise spike or other EMI event.                                                                                                                                                                                | <ol> <li>Press F1 to escape, then check controller accuracy.</li> <li>a. Recalibrate controller. (See Factory Service Module code 77.)</li> <li>b. Reset parameters to factory default settings.</li> </ol>          |
| E-EL IN DISPLAY                      | <ol> <li>Loss of calibration parameters due to noise spike or<br/>other EMI event.</li> </ol>                                                                                                                                                     | <ol> <li>Press F1 to escape, then check controller accuracy.</li> <li>a. Recalibrate controller. (See Factory Service Module code 77.)</li> <li>b. Reset parameters to factory default settings.</li> </ol>          |
| dddd or -ddd IN DISPLAY              | <ol> <li>Display value exceeds 4 digit display range.</li> <li>Defective or miscalibrated cold junction circuit.</li> <li>Loss of setup parameters.</li> <li>Internal malfunction.</li> </ol>                                                     | <ol> <li>Press F1 to escape, then check controller accuracy.</li> <li>a. Recalibrate controller. (See Factory Service Module code 77.)</li> <li>b. Reset parameters to factory default settings.</li> </ol>          |
| መደብ IN DISPLAY (T16)                 | <ol> <li>Probe disconnected.</li> <li>Broken or burned-out probe.</li> <li>Corroded or broken terminations.</li> <li>Excessive process temperature.</li> </ol>                                                                                    | <ol> <li>Change resolution to display whole number and verify reading.</li> <li>Perform cold junction calibration.</li> <li>Check setup parameters.</li> <li>Perform Input calibration.</li> </ol>                   |
| 5ER5 IN DISPLAY (P16)                | <ol> <li>Input exceeds range of controller.</li> <li>Incorrect input wiring.</li> <li>Defective transmitter.</li> <li>Internal malfunction.</li> </ol>                                                                                            | <ol> <li>Check input parameters.</li> <li>Check input wiring.</li> <li>Replace transmitter.</li> <li>Perform input calibration.</li> </ol>                                                                           |
| BLBL IN TOP DISPLAY                  | <ol> <li>Input exceeds range of controller.</li> <li>Temperature exceeds range of input probe.</li> <li>Defective or incorrect transmitter or probe.</li> <li>Excessive high temperature for probe.</li> <li>Loss of setup parameters.</li> </ol> | <ol> <li>Check input parameters.</li> <li>Change to input sensor with a higher temperature range.</li> <li>Replace transmitter or probe.</li> <li>Reduce temperature.</li> <li>Perform input calibration.</li> </ol> |
| มีLUL IN TOP DISPLAY                 | <ol> <li>Input is below range of controller.</li> <li>Temperature below range of input probe.</li> <li>Defective or incorrect transmitter or probe.</li> <li>Excessive low temperature for probe.</li> <li>Loss of setup parameters.</li> </ol>   | <ol> <li>Check input parameters.</li> <li>Change to input sensor with a lower temperature range.</li> <li>Replace transmitter or probe.</li> <li>Raise temperature.</li> <li>Perform input calibration.</li> </ol>   |
| 5Hrt IN DISPLAY (T16)                | 1. RTD probe shorted.                                                                                                                                                                                                                             | 1. Check wiring and/or replace RTD probe.                                                                                                                                                                            |
| CONTROLLER SLUGGISH OR<br>NOT STABLE | <ol> <li>Incorrect PID values.</li> <li>Incorrect probe location.</li> </ol>                                                                                                                                                                      | See PID control.     Evaluate probe location.                                                                                                                                                                        |
| 55r IN DISPLAY                       | 1. Control output is damaged.                                                                                                                                                                                                                     | 1. Return controller to factory for repair.                                                                                                                                                                          |

# **CONTROL MODE EXPLANATIONS**

#### **ON/OFF CONTROL**

The controller operates in On/Off Control when the Proportional Band is set to 0.0%. In this control mode, the process will constantly oscillate around the setpoint value. The On/Off Control Hysteresis (balanced around the setpoint) can be used to eliminate output chatter. Output O1 Control Action can be set to reverse for heating (output on when below the setpoint) or direct for cooling (output on when above the setpoint) applications.

#### ON/OFF CONTROL -REVERSE OR DIRECT ACTING FIGURES





For heat and cool systems, O1 Control Action is set to reverse (heat) and the Alarm 2 Action is set to cooling (O2). The Proportional Band is set to 0.0 and the Relative Gain in Cooling to 0.0. The Deadband in Cooling sets the amount of operational deadband or overlap between the outputs. The setpoint and the On/Off Control Hysteresis applies to both O1 and O2 outputs. The hysteresis is balanced in relationship to the setpoint and deadband value.

#### **PID CONTROL**

In PID Control, the controller processes the input and then calculates a control output power value by use of a modified Proportional Band, Integral Time, and Derivative Time control algorithm. The system is controlled with the new output power value to keep the process at the setpoint. The Control Action for PID Control can be set to reverse for heating (output on when below the setpoint) or direct for cooling (output on when above the setpoint) applications. For heat and cool systems, the heat (O1) and cool (O2) outputs are both used. The PID parameters can be established by using Auto-Tune, or they can be Manually tuned to the process.

#### **ON/OFF CONTROL - HEAT/COOL OUTPUT FIGURES**









#### TYPICAL PID RESPONSE CURVE

#### TIME PROPORTIONAL PID CONTROL

In Time Proportional applications, the output power is converted into output On time using the Cycle Time. For example, with a four second cycle time and 75% power, the output will be on for three seconds  $(4 \times 0.75)$  and off for one second.

The cycle time should be no greater than 1/10 of the natural period of oscillation for the process. The natural period is the time it takes for one complete oscillation when the process is in a continuously oscillating state.

#### LINEAR PID CONTROL

In Linear PID Control applications, the Analog Output Assignment RTR5 is set to % Output Power,  ${\tt DP}.$  The Analog Low Scaling,  ${\tt ANLD}$  , is set to 0.0 and the Analog High Scaling, RINK , is set to 100.0. The Analog Output will then be proportional to the PID calculated % output power for Heat or Cooling per the Control Action **DPRE**. For example, with 0 VDC to 10 VDC (scaled 0 to 100%) and 75% power, the analog output will be 7.5 VDC.

#### MANUAL CONTROL MODE

In Manual Control Mode, the controller operates as an open loop system (does not use the setpoint and process feedback). The user adjusts the percentage of power through the % Power display to control the power for Output O1. When Alarm 2 is configured for Cooling (O2), Manual operation provides 0 to 100% power to O1 (heating) and -100 to 0% power to O2 (Cooling). The Low and High Output Power limits are ignored when the controller is in Manual.

#### **MODE TRANSFER**

When transferring the controller mode between Automatic and Manual, the controlling outputs remain constant, exercising true "bumpless" transfer. When transferring from Manual to Automatic, the power initially remains steady, but Integral Action corrects (if necessary) the closed loop power demand at a rate proportional to the Integral Time.

#### AUTOMATIC CONTROL MODE

In Automatic Control Mode, the percentage of output power is automatically determined by PID or On/Off calculations based on the setpoint and process feedback. For this reason, PID Control and On/Off Control always imply Automatic Control Mode.

### **PID TUNING EXPLANATIONS**

#### AUTO-TUNE

Auto-Tune is a user-initiated function that allows the controller to automatically determine the Proportional Band, Integral Time, Derivative Time, Digital Filter, Control Output Dampening Time, and Relative Gain (Heat/Cool) values based upon the process characteristics. The Auto-Tune operation cycles the controlling output(s) at a control point three-quarters of the distance between the present process value and the setpoint. The nature of these oscillations determines the settings for the controller's parameters.

Prior to initiating Auto-Tune, it is important that the controller and system be first tested. (This can be accomplished in On/Off Control or Manual Control Mode.) If there is a wiring, system or controller problem, Auto-Tune may give incorrect tuning or may never finish. Auto-Tune may be initiated at start-up, from setpoint or at any other process point. However, ensure normal process conditions (example: minimize unusual external load disturbances) as they will have an effect on the PID calculations.

#### Start Auto-Tune

Below are the parameters and factory settings that affect Auto-Tune. If these setting are acceptable then Auto-Tune can be started just by performing two steps. If changes are needed, then they must be made before starting Auto-Tune.

| DISPLAY | PARAMETER                    | FACTORY<br>SETTING                 | MODULE       |
|---------|------------------------------|------------------------------------|--------------|
| ŁYPE    | Input Type                   | <b>tc-1</b> T16<br><b>Lurr</b> P16 | I- I∏        |
| FLEr    | Digital Filtering            | 1                                  | <b>Ι- ΙΠ</b> |
| [ איז   | On/Off Control<br>Hysteresis | <b>2</b> T16<br><b>02</b> P16      | 2-0P         |
| tcod    | Auto-Tune Code               | 0                                  | 2-0P         |
| 4P - 5  | Deadband                     | 0                                  | 5-02         |
| EllaE   | Auto-Tune Access             | HIdE                               | 3-12         |

1. Enter the Setpoint value in the Display Loop.

2. Initiate Auto-Tune by changing Auto-Tune Start LURE to YES in the Hidden Loop.

#### **Auto-Tune Progress**

The controller will oscillate the controlling output(s) for four cycles. The bottom display will flash the cycle phase number. Parameter viewing is permitted during Auto-Tune. The time to complete the Auto-Tune cycles is process dependent. The controller should automatically stop Auto-Tune and store the calculated values when the four cycles are complete. If the controller remains in Auto-Tune unusually long, there may be a process problem. Auto-Tune may be stopped by entering no in Auto-Tune Start LURE.





#### www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### **PID Adjustments**

In some applications, it may be necessary to fine tune the Auto-Tune calculated PID parameters. To do this, a chart recorder or data logging device is needed to provide a visual means of analyzing the process. Compare the actual process response to the PID response figures with a step change to the process. Make changes to the PID parameters in no more than 20% increments from the starting value and allow the process sufficient time to stabilize before evaluating the effects of the new parameter settings.

In some unusual cases, the Auto-Tune function may not yield acceptable control results or induced oscillations may cause system problems. In these applications, Manual Tuning is an alternative.

#### PROCESS RESPONSE EXTREMES



#### MANUAL TUNING

A chart recorder or data logging device is necessary to measure the time between process cycles. This procedure is an alternative to the controller's Auto-Tune function. It will not provide acceptable results if system problems exist.

- 1. Set the Proportional Band (*ProP*) to 10.0% for temperature models (T16) and 100.0% for process models (P16).
- 2. Set both the Integral Time (Intt) and Derivative Time (dErt) to 0 seconds.
- 3. Set the Output Dampening Time (**DPdP**) in Output Module **2-DP** to 0 seconds.
- 4. Set the Output Cycle Time [CYCt] in Output Module **2-***u***P** to no higher than one-tenth of the process time constant (when applicable).
- 5. Place the controller in Manual #5Er Control Mode krnF in the Hidden Loop and adjust the % Power to drive the process value to the Setpoint value. Allow the process to stabilize after setting the % Power. Note: krnF must be set to H dE in Parameter Lockouts Module 3-LE.
- Place the controller in Automatic (Rute) Control Mode krnF in the Hidden Loop. If the process will not stabilize and starts to oscillate, set the Proportional Band two times higher and go back to Step 5.
- 7. If the process is stable, decrease Proportional Band setting by two times and change the Setpoint value a small amount to excite the process. Continue with this step until the process oscillates in a continuous nature.
- 8. Fix the Proportional Band to three times the setting that caused the oscillation in Step 7.
- 9. Set the Integral Time to two times the period of the oscillation.
- 10. Set the Derivative Time to 1/8 (0.125) of the Integral Time.
- 11. Set the Output Dampening Time to 1/40 (0.025) the period of the oscillation.

### MODEL T48 - 1/16 DIN TEMPERATURE CONTROLLER

- PID CONTROL WITH REDUCED OVERSHOOT
- ON DEMAND AUTO-TUNING OF PID CONTROL SETTINGS
- NEMA 4X/IP65 BEZEL
- DUAL LED DISPLAYS FOR SIMULTANEOUS INDICATION OF TEMPERATURE AND SETPOINT
- STATUS INDICATORS FOR OUTPUTS AND CONTROL MODES
- ACCEPTS 10 TYPES OF SENSOR INPUTS (Thermocouple or RTD)
- OPTIONAL HEATER CURRENT MONITOR AND HEATER BREAK ALARM
- OPTIONAL DUAL ALARM OUTPUTS
- OPTIONAL TWO LINEAR DC OUTPUTS (0 to 10 V, 0/4 to 20 mA)
- MANUAL/AUTOMATIC CONTROL MODES
- SETPOINT RAMPING FOR PROCESS STARTUP
- PROGRAMMABLE USER INPUT (Digital) FOR ADDED FLEXIBILITY
- SENSOR ERROR COMPENSATION (Offset) AND BREAK DETECTION
- HEATING AND OPTIONAL COOLING OUTPUTS
- PARAMETER SECURITY VIA PROGRAMMABLE LOCKOUTS
- FIELD REPLACEABLE OUTPUT BOARD (Relay or Logic/SSR Drive)

#### DESCRIPTION

The T48 Controller accepts signals from a variety of temperature sensors (thermocouple or RTD elements), precisely displays the process temperature, and provides an accurate output control signal (time proportional or linear DC) to maintain the process at the desired temperature. The controller's comprehensive yet simple programming allows it to meet a wide variety of application requirements.

The controller operates in the PID control mode for both heating and cooling, with on-demand auto-tune, which will establish the tuning constants. The PID tuning constants may be fine-tuned by the operator at any time and then locked out from further modification. The controller employs a unique overshoot suppression feature, which allows the quickest response without excessive overshoot. The unit can be transferred to operate in the manual mode, providing the operator with direct control of the output. The controller may also be programmed to operate in the ON/OFF control mode with adjustable hysteresis. A second setpoint is available on select models to allow quick selection of a different setpoint setting.





- OPTIONAL TRIAC OUTPUT
- SECOND SETPOINT SETTING
- OPTIONAL REMOTE SETPOINT INPUT (0/4 to 20 mA)
- OPTIONAL RS485 SERIAL COMMUNICATIONS
- PC SOFTWARE AVAILABLE FOR CONTROLLER CONFIGURATION

( F



UL Recognized Component, File # E156876

Dual 4-digit displays allow viewing of the process temperature and setpoint simultaneously. Front panel indicators inform the operator of the controller and output status. On many models the main control output and the alarm outputs are field replaceable.

Optional alarm(s) can be configured to activate according to a variety of actions (Absolute HI or LO, Deviation HI or LO, Band IN or OUT, and Heater Current Break) with adjustable hysteresis. A standby feature suppresses the alarm during power-up until the temperature stabilizes outside the alarm region. The second alarm can be configured as a secondary PID output (heat/cool applications).

Optional Main Linear DC output (10 V or 20 mA) can be used for control or temperature re-transmission purposes. Programmable output update time reduces valve or actuator activity. The output range can be scaled independent of the input range.

Optional Second Linear DC output (10 V or 20 mA) provides an independent temperature re-transmission, while the main Linear DC output is being used for control. The output range can be scaled independent of the input range.

Optional Heater Current Monitor provides a direct readout of process heater current. An alarm can be programmed to signal when the heater has failed. This provides early warning of system failure before product quality is affected.



F

#### www.redlion.net

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Optional Remote Setpoint input (0/4 to 20 mA) allows for cascade control loops, where tighter control is required; and allows for remotely driven setpoint signal from computers or other similar equipment. Straightforward end point scaling with independent filtering and local/remote transfer option expand the controller's flexibility.

The optional RS485 serial communication interface provides two-way communication between a T48 and other compatible equipment such as a printer, PLC, HMI, or a host computer. In multipoint applications (up to thirty-two), the address number of each T48 on the line can be programmed from 0 to 99. Data from the T48 can be interrogated or changed, and alarm output(s) may be reset by sending the proper command code via serial communications. PC software, SFCRM, allows for easy configuration of controller parameters. These settings can be saved to disk for later use or used for multi-controller down loading. On-line help is provided within the software.

The unit is constructed of a lightweight, high impact plastic case with a tinted front panel. The front panel meets NEMA 4X/IP65 specifications when properly installed. Multiple units can be stacked horizontally or vertically. Modern surface-mount technology, extensive testing, plus high immunity to noise interference makes the controller extremely reliable in industrial environments.

#### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the T48 to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the controller. An independent and redundant temperature limit indicator with alarm outputs is strongly recommended.

#### SPECIFICATIONS

1. DISPLAY: Dual 4-digit

Upper Temperature Display: 0.4" (10.2 mm) high red LED Lower Auxiliary Display: 0.3" (7.6 mm) high green LED Display Messages:

- "OLOL" Appears when measurement exceeds + sensor range.
- "ULUL" Appears when measurement exceeds sensor range.
- "OPEN" Appears when open sensor is detected.
- "SHrt" Appears when shorted sensor is detected (RTD only)
- "..." Appears when display values exceed + display range.
- "-.." Appears when display values exceed display range.

#### LED Status Annunciators:

- %P Lower auxiliary display shows power output in (%).
   MN Flashing: Controller is in manual mode.
  - N Flashing: Controller is in manual mode. On: Local Setpoint (Remote Setpoint option) Off: Remote Setpoint
- DV Lower auxiliary display shows deviation (error) from temperature setpoint or shows heater current.
- O1 Main control output is active.
- A1 Alarm #1 is active (for A1 option.).
- A2 Alarm #2 is active OR
- Cooling output (O2) is active
- 2. POWER:

AC Versions: 85 VAC min. to 250 VAC max., 50 to 60 Hz, 8 VA max. DC Versions:

- **DC Power**: 18 to 36 VDC; 7 W
- AC Power: 24 VAC ± 10%; 50 to 60 Hz, 9 VA
- CONTROLS: Four front panel push buttons for modification and setup of controller functions and one external input user for parameter lockout or other functions.
- 4. **MEMORY:** Nonvolatile E<sup>2</sup> PROM retains all programmable parameters and values.
- 5. MAIN SENSOR INPUT:
  - Sample Period: 100 msec
  - **Response Time**: Less than 300 msec typ., 400 msec max. (to within 99% of final value w/step input; typically, response is limited to response time of probe)
  - Failed Sensor Response:
  - Main Control Output(s): Programmable preset output
  - Display: "OPEN"
  - Alarms: Upscale drive

Normal Mode Rejection: 40 dB @ 50/60 Hz (improves with increased digital filtering.)

Common Mode Rejection: Greater than 120 dB, DC to 60 Hz

**Protection**: Input overload 120 VAC max. for 15 seconds max. 6. **THERMOCOUPLE INPUT:** 

D. THERMOCOUPLE INPUT:

**Types**: T, E, J, K, R, S, B, N, Linear mV, software selectable **Input Impedance**: 20 M $\Omega$  all types **Lead resistance effect**: 0.25  $\mu V/\Omega$ 

- **Cold junction compensation**: Less than  $\pm 1^{\circ}$ C ( $\pm 1.5^{\circ}$ C max), error over 0 to 50°C max. ambient temperature range. Defeated for Linear mV indication mode.
- Resolution: 1° for all types, or 0.1° for T, E, J, K, and N only.

|        | DANCE                              | WIRE COLOR          |             |
|--------|------------------------------------|---------------------|-------------|
| ICTIPE | RANGE                              | ANSI                | BS 1843     |
| Т      | -200 to +400°C                     | blue (+)            | white (+)   |
|        | -328 to +752°F                     | red (-)             | blue (-)    |
| E      | -200 to +750°C                     | violet (+)          | brown (+)   |
|        | -328 to +1382°F                    | red (-)             | blue (-)    |
| J      | -200 to +760°C                     | white (+)           | yellow (+)  |
|        | -328 to 1400°F                     | red (-)             | blue (-)    |
| к      | -200 to +1250°C                    | yellow (+)          | brown (+)   |
|        | -328 to +2282°F                    | red (-)             | blue (-)    |
| R      | 0 to 1768°C                        | black (+)           | white (+)   |
|        | +32 to +3214°F                     | red (-)             | blue (-)    |
| S      | 0 to 1768°C                        | black (+)           | white (+)   |
|        | +32 to 3214°F                      | red (-)             | blue (-)    |
| В      | +149 to +1820°C<br>+300 to +3308°F | grey (+)<br>red (-) | no standard |
| Ν      | -200 to +1300°C                    | orange (+)          | orange (+)  |
|        | -328 to +2372°F                    | red (-)             | blue (-)    |
| mV     | -5.00 to +56.00                    | no standard         | no standard |

7. **RTD INPUT:** 2 or 3 wire, 100  $\Omega$  platinum, alpha = 0.00385 (DIN 43760), alpha = 0.0039162

Excitation: 150 µA typical

Resolution: 1 or 0.1 degree

Lead Resistance: 15  $\Omega$  max. per input lead

| 1        | 1                                 |
|----------|-----------------------------------|
| RTD TYPE | RANGE                             |
| 385      | -200 to +600°C<br>-328 to +1100°F |
| 392      | -200 to +600°C<br>-328 to +1100°F |
| OHMS     | 1.0 to 320.0                      |

- INDICATION ACCURACY: ±(0.3% of Span +1°C.) includes NIST conformity, cold junction effect and A/D conversion errors at 23°C after 20 min. warm-up.
- 9. USER INPUT: Internally pulled up to +5 VDC (1 M $\Omega$ ).

 $V_{IN MAX} = 5.25 \text{ VDC}, V_{IL} = 0.85 \text{ V max.}, V_{IH} = 3.65 \text{ V min.}, I_{OFF} = 1 \mu \text{A max.}$ 

- **Response Time**: 120 msec max.
- Functions: Program Lock
  - 2. Program Lock Integral Ac Auto/Manual Mode Select Setpoint Ra Reset Alarms Setpoint 1/ Local/Remote Setpoint Select Serial bloc

Integral Action Lock Setpoint Ramp Enable Setpoint 1/Setpoint 2 Select Serial block print

#### 10. CONTROL AND ALARM OUTPUTS: (Heating, Cooling or Alarm) Relay outputs with Form A contacts:

**Contact Rating:** 3 A @ 250 VAC or 30 VDC (resistive load).

Life Expectancy: 100,000 cycles at max. load rating.

(Decreasing load and/or increasing cycle time, increases life expectancy.)

#### Logic/SSR Drive Outputs:

Rating: 45 mA @ 4 V min., 7 V nominal

Triac Outputs:

Type: Isolated, Zero Crossing Detection

- Rating:
  - Voltage: 120/240 VAC
  - Max. Load Current: 1 Amp @ 35°C
    - 0.75 Amp @ 50°C

Min Load Current: 10 mA Offstate Leakage Current: 7 mA max. @ 60 Hz

**Operating Frequency**: 20 to 400 Hz

- **Protection**: Internal transient snubber
- 11. MAIN CONTROL:

Control: PID or ON/OFF

- Output: Time proportioning or Linear DC
- Cycle time: Programmable
  - Auto-tune: When selected, sets proportional band, integral time, and derivative time values.
  - Probe Break Action: Programmable
- 12. ALARMS: 1 or 2 alarms (optional)
  - Modes: Absolute high acting Absolute low acting Deviation high acting Deviation low acting Inside band acting

Outside band acting

Heater break alarm

Reset Action: Programmable; automatic or latched Standby Mode: Programmable; enable or disable Hysteresis: Programmable Probe Break Action: Upscale

**Annunciator**: LED backlight for "A1", "A2"

COOLING: Software selectable (overrides alarm 2)
 Control: PID or ON/OFF
 Output: Time Proportioning
 Cvcle time: Programmable

Proportional Gain Adjust: Programmable

Heat/Cool Deadband Overlap: Programmable

14. MAIN AND SECOND LINEAR DC OUTPUT: (optional)

Self-powered (active)

Main: Control or Re-transmission, programmable update rate from 0.1 sec to 250 sec

Second: Re-transmission only, fixed update rate of 0.1 sec

| OUTPUT **<br>RANGE | ACCURACY *<br>(18 to 28°C) | ACCURACY *<br>(0 to 50°C) | COMPLIANCE   | RESOLUTION |
|--------------------|----------------------------|---------------------------|--------------|------------|
| 0 to 10 V          | 0.10% of FS<br>+ 1/2 LSD   | 0.30% of FS<br>+ 1/2 LSD  | 10k ohm min. | 1/3500     |
| 0 to 20 mA         | 0.10% of FS<br>+ 1/2 LSD   | 0.30% of FS<br>+ 1/2 LSD  | 500 ohm max. | 1/3500     |
| 4 to 20 mA         | 0.10% of FS<br>+ 1/2 LSD   | 0.30% of FS<br>+ 1/2 LSD  | 500 ohm max. | 1/2800     |

\* Accuracies are expressed as ± percentages after 20 minutes warm-up. Output accuracy is specified in two ways: Accuracy over an 18 to 28°C range at 10 to 75% RH environment; and accuracy over a 0 to 50°C range at 0 to 85% RH (non-condensing) environment. Accuracy over the wide temperature range reflects the temperature coeffecient of the internal circuitry.

\*\* Outputs are independently jumper selectable for either 10 V or 20 mA. The output range may be field calibrated to yield approximately 10% overrange and a small underrange (negative) signal.

15. REMOTE SETPOINT INPUT: (optional)

Input type:

0/4 to 20 mA

Input Resistance: 10 Ω

Overrange: -5% to 105%

Overload: 100 mA (continuous)

Scale Range: -999 to 9999 degrees or -99.9 to 999.9 degrees. Resolution: 1 part in 10,000.

Accuracy:

At 25° C:  $\pm (0.1 \% \text{ of full scale} + \frac{1}{2} \text{ LSD})$ 

**Over 0 to 50°C range**:  $\pm (0.2\% \text{ of full scale } +\frac{1}{2} \text{ LSD})$ 

Reading Rate: 10/sec.

Setpoint Filtering: Programmable Digital

Setpoint Ramping: Programmable, 0.1 to 999.9 degrees/minute.

16. HEATER CURRENT MONITOR INPUT: (optional)

**Type**: Single phase, full wave monitoring of load currents controlled by main output (01).

Input: 100 mA AC output from current transformer (RLC #CT004001) or any CT with 100 mA AC output.

Display Scale Range: 1.0 to 999.9 Amps or 0.0 to 100.0%

#### Input Resistance: 5 $\Omega$

Accuracy:

At  $25^{\circ}$  C:  $\pm (0.5 \% \text{ of full scale} + \frac{1}{2} \text{ LSD})$ , (5 to 100% of Range)

**Over 0 to 50°C range**:  $\pm(1.0\% \text{ of full scale} +\frac{1}{2} \text{ LSD})$ , (5 to 100% of Range) **Frequency**: 50 to 400 Hz.

Alarm Mode: Dual acting; heater element fail detect and control device fail detect.

Overrange: 105% Capacity

Overload: 200 mA (continuous).

17. SERIAL COMMUNICATIONS: (optional)

Type: RS485 multipoint, balanced interface

Baud Rate: 300 to 9600

**Data Format**: 701, 7E1, 7N2, 8N1

Node Address: 0-99, max of 32 units per line Transmit Delay: 2-100 msec or 100-200 msec

Data Encoding: ASCII

Isolation w.r.t Main Input Common: 500 Vrms for 1 min. (50 V working) Not isolated w.r.t. Remote Setpoint or Heater Current inputs, or Analog Output common

Note: RS485 and the Analog Output commons are not internally isolated within the controller. The terminating equipment of these outputs must not share the same common (ie. earth ground). 18. ENVIRONMENTAL CONDITIONS:

Operating Range: 0 to 50°C

Storage Range: -40 to 80°C Span Drift (max.): 130 ppm/°C, main input

**Zero Drift** (*max.*): 130 ppm/ C, main input

**Operating and Storage Humidity**:

85% max. relative humidity (non-condensing) from 0°C to 50°C.

Vibration to IEC 68-2-6: Operational 5 to 150 Hz, 2 g.

Shock to IEC 68-2-27: Operational 20 g (10 g relay).

Altitude: Up to 2000 meters

19. ISOLATION BREAKDOWN RATINGS:

**AC line with respect to all Inputs and outputs**: 250 V working (2300 V for 1 minute).

Main input with respect to Analog Outputs, Remote Setpoint Input, Heater Current Input: 50 V working (2300 V for 1 minute).

All other inputs and outputs with respect to relay contacts: 2000 VAC Not isolated between Analog Outputs, Remote Setpoint and Heater Current commons.

#### 20. CERTIFICATIONS AND COMPLIANCES:

**CE** Approved

EN 61326-1 Immunity to Industrial Locations

Emission CISPR 11 Class A

IEC/EN 61010-1

**RoHS** Compliant

UL Recognized Component: File #E156876

Type 4X Enclosure rating (Face only)

IP65 Enclosure rating (Face only)

IP20 Enclosure rating (Rear of unit)

- Refer to EMC Installation Guidelines section of the manual for additional information.
- 21. CONNECTION: Wire clamping screw terminals
- 22. **CONSTRUCTION:** Black plastic alloy case and collar style panel latch. Panel latch can be installed for vertical or horizontal instrument stacking. One piece tinted plastic bezel. Bezel assembly with circuit boards can be removed from the case to change the output board without removing the case from the panel or disconnecting wiring. Unit meets NEMA 4X/IP65 requirements for indoor use, when properly installed. Installation Category II, Pollution Degree 2.

23. WEIGHT: 0.38 lbs (0.17 kgs)

#### **BASIC OPERATION**

The T48 controls a process temperature by measuring the temperature via an input probe, then calculating a control output power value by use of a modified PID control algorithm. The unit controls the system with the new output power value to keep the process temperature at setpoint. The PID control algorithm incorporates features which provide for high control accuracy and low temperature overshoot from process disturbances.

#### **FRONT PANEL FEATURES**

In the normal operating mode, the unit displays the process temperature in the upper display. One of the following parameters can be viewed in the lower display:

- Setpoint
- % Power Output
- Temperature Deviation
- Heater Current
- Temperature symbol (F or C)
- Blank Display

The user scrolls through these parameters by pressing the D button. If enabled, the control setpoint or power output (manual mode only) can be directly modified in this mode.

In the normal operating mode, parameters are selected by use of the P button and modified by use of the UP and DOWN buttons. Parameters are then entered by the P button, which advances the user to the next parameter. Pressing the D button immediately returns the controller to the normal operating mode without changing the currently selected parameter.

#### HARDWARE FEATURES

A fast 100 msec input sampling rate provides quick controller response to a process disturbance, thus providing excellent temperature control. Measurement accuracy of 0.3% of span  $\pm 1^{\circ}$ C or better, provides close process control conforming to the desired control setpoint value. The T48 accepts a variety of both thermocouple and RTD temperature probes. An output board contains the Main Control output, Alarm 1 output, Alarm 2/Cooling output, and/or Linear DC output. Since the controller is serviceable from the front of the panel, the output board (on some models) may be easily changed or replaced without disturbing the wiring behind the panel. No re-programming is required when changing or replacing the output board for units without the Linear DC output option. Units with the linear output option require calibration procedure for the new linear output.

Low-drift, highly stable circuitry ensures years of reliable and accurate temperature control. The recommended two year re-calibration interval is easily accomplished via the programming menu.

#### **REMOTE SETPOINT INPUT**

The remote setpoint input facilitates the use of a remote signal to drive the controller's setpoint. The remote signal can be scaled independent to that of the controller's range. The controller's response to local/remote setpoint transfers can be programmed. Also, the remote signal is filtered by use of an adaptive filter. With this filter, relatively large filtering time constants can be used without suffering from long settling times. The time constant and filter disable band are programmable. Additionally, the remote signal can also be velocity limited (or ramped) to slow the controller's response to changes in setpoint. This results in a steady control response with no overshoot.

#### **HEATER CURRENT MONITOR**

The T48 provides a direct readout of process heater current. This provides valuable information regarding single phase heater system integrity. It is especially useful on extruder and large oven applications where adjacent controllers mask the effect of a failed heater. The heater break alarm senses two types of heater system faults:

- Main control output is "on" and heater current is below alarm value. This indicates failed heater or failed parts of heater, breaker trip, failed power control device, etc.
- 2) Main control output is "off" and heater current is above 10% of alarm value. This indicates a failed power control device, wiring fault, etc.

#### LINEAR DC ANALOG OUTPUTS

The Main Linear DC output has independent scaling, programmable output update time and filter (damping) time. These parameters permit flexibility in process configuration. The output can be set for 0 to 10 V, 0 to 20 mA or 4 to 20 mA ranges, and can be configured for control or for transmission of temperature or setpoint values.

A Second Linear DC output is dedicated for retransmission of input temperature. The output can be scaled and converted independent of the input and Main Linear DC output. This output is isolated from the input.

#### SETPOINT FEATURES

The controller setpoint can be protected from out of range values by programming the setpoint range limit values. Additionally, safeguards from inadvertent data entry can be programmed.

A second setpoint value can be programmed which can be made active by a user input and/or through the front panel on selected models.

The setpoint ramp feature ramps the setpoint value at start-up or any time a setpoint change is made, at a user programmable rate. This feature reduces thermal shock to the process and helps to minimize temperature overshoot.

#### **INPUT FEATURES**

A programmable input filter can be used to stabilize readings from a process with varying or oscillating temperature characteristics, helping to provide better temperature control. A programmable temperature shift function can be used to compensate for probe errors or to have multiple T48 units indicate the same nominal temperature.

The programmable User Input can be used to control a variety of functions, such as auto/manual transfer of the controller, reset alarm output(*s*), transfer to second setpoint, etc.

#### **OUTPUT FEATURES**

Programmable output power limits provide protection for processes where excessive power can cause damage. Automatic sensor probe break detection, for fail-safe operation, causes the controller to default to a programmed output power (upscale or downscale burnout). Programmable output cycle time, output hysteresis and dampening can reduce output activity without degrading control accuracy. The main outputs can operate in PID, ON/OFF, or manual control modes.

#### **CONTROL AND ALARM OUTPUTS**

In addition to the Linear DC outputs, there are up to three types of ON/OFF outputs. These outputs can be relay, logic, or triac for control or alarm purposes. Relay outputs can switch user applied AC or DC voltages. Logic/SSR drive outputs supply power to external SSR power units. One Logic/SSR Drive output can control up to four SSR power units at one time. The Triac output supplies one Amp of AC current for control of an external AC relay or triac device.

#### AUTO-TUNE

The T48 has an auto-tune feature which, on demand, automatically determines the PID control parameters for a particular thermal process. After completion of auto-tune, the PID parameters are automatically optimized for that process and loaded into non-volatile memory. The operator may view and modify the parameters as desired.

Auto-tune may be invoked either at start-up or at setpoint, depending on the process requirements. An auto-tune programmable dampening factor produces various levels of process control and response characteristics.

#### **RS485** Communications

The RS485 communications option allows the connection of up to 32 devices on a single pair of wires with a distance of up to 4,000 feet and a maximum baud rate of 9600. Since the same pair of wires are used for both transmit and receive, only one way communication is possible at any given time. The controller has a programmable response time to allow the host device adequate time to release the communication line for a transmission.

Selected parameters from the T48 can be interrogated or changed, and alarm output(s) may be reset by sending the proper command code via serial communications. It is also possible to invoke Auto-tune through the serial port. Serial communications used with SFCRM software allows for easy controller parameter configuration by computer.

#### **HEATING AND COOLING SYSTEMS**

The T48 is available with dual outputs to provide heating and cooling to those processes that require them. For example, many extruder applications require both heating and cooling to maintain accurate extruder barrel and die temperatures. The T48 is easily configured for these types of applications.

545

#### CONTROLLER PROGRAMMING

Front Panel Program Disable allows all of the controller's set-ups to be locked-out from further operator intervention after the initial set-up.

The following four programming modes allow the controller to adapt to any required user-interface level:

> Unprotected Parameter Mode Protected Parameter Mode Hidden Function Mode Configuration Parameter Mode

#### **UNPROTECTED PARAMETERS MODE \***

The Unprotected Parameters Mode is accessible from the Normal Display Mode when program disable is inactive or when the proper access code number from the Protected Parameter Mode is entered. The Configuration Parameter Modes can be accessed only from this mode.

| "SP"<br>"OP" | <ul><li>Enter setpoint</li><li>Enter output power</li></ul> |
|--------------|-------------------------------------------------------------|
| "ProP"       | <ul> <li>Enter proportional band</li> </ul>                 |
| "Intt"       | <ul> <li>Enter integral time</li> </ul>                     |
| "dErt"       | <ul> <li>Enter derivative time</li> </ul>                   |
| "AL-1"       | <ul> <li>Enter value for alarm #1</li> </ul>                |
| "AL-2"       | <ul> <li>Enter value for alarm #2</li> </ul>                |
| "CNFP"       | <ul> <li>Select configuration access point</li> </ul>       |
| "End"        | - Return to normal display mode                             |
|              |                                                             |

#### **PROTECTED PARAMETERS MODE \***

The Protected Parameters Mode is enabled when program disable is active. This mode prevents access to the Configuration Parameter Modes without the proper access code number. Only the parameters that are enabled in the Configuration 3 parameter (lock-out section) can be accessed.

| "ProP" | <ul> <li>Enter proportional band</li> </ul>                                                       |
|--------|---------------------------------------------------------------------------------------------------|
| "Intt" | - Enter integral time                                                                             |
| "dErt" | <ul> <li>Enter derivative time</li> </ul>                                                         |
| "AL-1" | <ul> <li>Enter value for alarm #1</li> </ul>                                                      |
| "AL-2" | <ul> <li>Enter value for alarm #2</li> </ul>                                                      |
| "CodE" | <ul> <li>Enter value to access unprotected parameters and<br/>configuration parameters</li> </ul> |

#### **HIDDEN FUNCTION MODE \***

The Hidden Function Mode is accessible from the Normal Display Mode. The functions in this mode may be locked-out individually in Configuration 3 parameter (lock-out section).

| "SPSL" | <ul> <li>Select local (SP1 or SP2) or remote setpoint</li> </ul> |
|--------|------------------------------------------------------------------|
| "trnF" | - Transfer between automatic (PID) control and manual control    |
| "tUNE" | - Invoke/cancel PID Auto-tune                                    |
| "ALrS" | <ul> <li>Reset latched alarms</li> </ul>                         |
|        |                                                                  |

#### CONFIGURATION PARAMETER MODE

The Configuration Parameter Mode allows the operator to set-up the basic requirements of the controller. It is divided into sections which group together related programming steps, such as inputs, outputs, alarms, etc. Upon completion of each section, the program returns to the Configuration Access Point, allowing the user to return to the Normal Display Mode.

#### Configuration 1, Inputs (1-IN)

| "tyPE"<br>"SCAL"<br>"dCPt"<br>"FLtr"<br>"SHFt"<br>"SPLO"<br>"SPHI"<br>"SPrP"<br>"IpPt" | <ul> <li>Select input probe type</li> <li>Select temperature scale</li> <li>Select temperature resolution</li> <li>Select level of input filtering</li> <li>Enter input correction shift (offset)</li> <li>Enter setpoint lower limit</li> <li>Enter setpoint higher limit</li> <li>Enter setpoint ramp rate</li> <li>Select user input function</li> </ul> |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "InPt"                                                                                 | <ul> <li>Select user input function</li> </ul>                                                                                                                                                                                                                                                                                                              |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                             |

#### Configuration 2, Outputs (2-OP) \*

"CYCt" - Enter time proportioning cycle time 'OPAC' Select output control action "OPLO" - Enter output power low limit "OPHI" - Enter output power high limit "OPFL" - Enter probe fail power preset "OPdP" - Enter output control dampening Enter ON/OFF control hysteresis 'CHYS' "tcOd" Select auto-tuning dampening "ANtP" - Main Linear DC analog output range "ANAS" Main Linear DC analog output source "ANut" - Main Linear DC analog output update time "ANI O - Main Linear DC analog output scaling low "ANHI" - Main Linear DC analog output scaling high

#### Configuration 3, Parameter Lock-Outs (3-LC) \*

- Select setpoint access level "SP
- "OP" Select power access level Enable deviation display
- "dEv"
- "Hcur" Enable heater current display "UdSP" Enable temperature scale display
- "CodF" Enter parameter access code
- "Pld" Select PID access level
- "AI " Select alarm access level
- "ALrS' Enable alarm reset access
- 'SPSL Enable local/remote selection
- "trnF Enable auto/manual mode selection
- "tUNE" - Enable auto-tune invocation

#### Configuration 4, Alarms (4-AL) \*

Select operation mode of alarm #1, or select heat output "ACt1"

- "rSt1' Select reset mode of alarm #1
- "Stb1" Enable activation delay of alarm #1
- "AL-1" Enter value for alarm #1
- "ACt2" Select operation mode of alarm #2, or select cooling output
- "rSt2" Select reset mode of alarm #2
- "Stb2" Enable activation delay of alarm #2 "AL-2" Enter value for alarm #2
- "AHYS" - Enter hysteresis value for both alarms

#### Configuration 5, Cooling (5-O2) \*

- "CYC2" Enter cooling time proportioning cycle time
- "GAN2" Enter cooling relative gain
- "db-2" - Enter heat/cool deadband or overlap

#### Configuration 6, Serial Communications (6-SC) \*

- Select baud rate "bĂŪd" Select character frame format
- "ConF' "Addr"
- Enter address
- "Abrv" Select abbreviated or full transmission "PoPt" Select print options

#### Configuration 7, Remote Setpoint Input (7-N2) \*

- Enter remote setpoint display scaling value #1 "dSP1
- "INP1" Enter remote setpoint process scaling value #1
- "dSP2" Enter remote setpoint display scaling value #2
- Enter remote setpoint process scaling value #2 "INP2 Enter remote setpoint filter time constant -
- "FLtr"
- Enter remote setpoint filter disable band "bAnd "trnF
- Select Local/Remote setpoint transfer response

#### Configuration 7 - Heater Current Parameters (7-N2) \* "Hcur Enter full scale rating of CT

- Configuration 8, Second Linear DC Analog Output (8-A2) \*
  - "A2tP" Second linear DC analog range
  - "A2LO" - Second linear DC analog scaling low
  - "A2HI" - Second linear DC analog scaling high

#### Configuration 9, Factory Service Operations (9-FS)

- "Code 48" - Calibrate Instrument "Code 66"
  - Reset parameters to factory setting
- \* These parameters may not appear due to option configuration or other programming.

F

#### **MULTIPLE UNIT STACKING**

The T48 is designed for close spacing of multiple units. Units can be stacked either horizontally or vertically. For vertical stacking, install the panel latch with the screws to the sides of the unit. For horizontal stacking, the panel latch screws should be at the top and bottom of the unit. The minimum spacing from center line to center line of units is 1.96" (49.8 mm). This spacing is the same for vertical or horizontal stacking.

*Note: When stacking units, provide adequate panel ventilation to ensure that the maximum operating temperature range is not exceeded.* 





PANEL LATCH INSTALLED FOR HORIZONTAL UNIT STACKING





### ACCESSORY - CURRENT TRANSFORMER-50 A

The external Current Transformer is used when specifying the T48s equipped with the Heater Current Monitor.



#### **ACCESSORY - EXTERNAL SSR POWER UNIT**

The external SSR Power Unit is used with T48s equipped with Logic/SSR Drive outputs to switch loads up to 240 VAC @ 45 Amps, 25°C ambient. The unit is operated by applying a low level DC control signal to the isolated input. The unit features zero cross detection circuits which reduces radiated RFI when switching load currents. With no contacts to wear out, the SSR Power Unit provides virtually limitless operational life. The unit is supplied with an integral heat sink for immediate installation.



#### 1-717-767-6511

F





#### MULTIPLE UNIT/REMOTE SETPOINT APPLICATION

Eight T48 controllers are used in a drying oven. Each T48 controls a zone within the oven. Depending upon the material to be dried, and its initial moisture content, the drying setpoint temperature varies. A master T48 controller transmits setpoint via linear DC output. This signal is received as a remote setpoint signal by the other slave controllers.

#### **OEM PAINT SPRAYER APPLICATION**

An OEM manufacturing spray painting equipment utilizes the T48 to maintain optimum paint temperature. In addition to the low cost, the 1/16 DIN package size permits the OEM to design temperature control into various sized painting equipment, from small hand sprayers to large paint booths. The heating element used to heat the paint, is connected to the Main Control Output (OP1) programmed for On/Off control. Alarm 1 is programmed as Band Inside Acting, so that as long as the paint temperature is within manufacturer's specifications for temperature, the "GO" light is on. Alarm 2 is programmed as Band Outside acting so that the "NO GO" light is lit when the paint temperature is more than 12° outside the manufacturer's specifications of 140 to 150°F.

(Terminal assignments are model number dependent.)

Whenever the master controller's setpoint is changed, the slave controller's setpoint changes automatically.

The remote setpoint input at each slave controller can be scaled independently.



#### www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### **ORDERING INFORMATION**

Options and Output Boards are factory configured per the part number specified. Part numbers without replacement output boards listed must be returned to the factory for output board replacement.

#### MODELS WITHOUT RS485 AND LINEAR DC ANALOG OUTPUT

|           | DEDICATED            | DEDICATED (ALARM 2) | REMOTE HEATER | REPLACEMENT | PART NUMBERS |                  |               |
|-----------|----------------------|---------------------|---------------|-------------|--------------|------------------|---------------|
| 01 OUTPUT | ALARM 1<br>A1 OUTPUT | (COOL)*             | INPUT @       | INPUT @     | BOARD        | 18-36 VDC/24 VAC | 85 TO 250 VAC |
| Relay     |                      |                     |               |             | RBD48100     | T4810010         | T4810000      |
| Relay     | Relay                |                     |               |             | RBD48111     | NA               | T4811000      |
| Relay     | Relay                | Relay               |               |             | RBD48111     | T4811110         | T4811100      |
| Relay     | Relay                | Relay               | YES           |             | RBD48111     | T4811113         | T4811103      |
| Relay     | Relay                | Relay               |               | YES         | RBD48111     | T4811114         | T4811104      |
| Logic/SSR |                      |                     |               |             | RBD48200     | T4820010         | T4820000      |
| Logic/SSR | Relay                |                     |               |             | RBD48211     | NA               | T4821000      |
| Logic/SSR | Relay                | Relay               |               |             | RBD48211     | T4821110         | T4821100      |
| Logic/SSR | Relay                | Relay               | YES           |             | RBD48211     | T4821113         | T4821103      |
| Logic/SSR | Relay                | Relay               |               | YES         | RBD48211     | T4821114         | T4821104      |
| Triac     | Logic/SSR            | Logic/SSR           |               |             | NA           | T4832210         | T4832200      |

\* - This output is programmable as either Control (PID) or as an Alarm.
 @ - These part numbers are equipped with a second setpoint.

Option Boards are installed at the factory for the appropriate models. These boards are only needed for field replacement.

#### MODELS WITH RS485 OR LINEAR DC ANALOG OUTPUT

|           | MAIN CONTROL | DEDICATED            | (ALARM 2) | REMOTE  | HEATER  | RS485            | MAIN       | SECOND     | PART NU          | MBERS         |
|-----------|--------------|----------------------|-----------|---------|---------|------------------|------------|------------|------------------|---------------|
| 01 OUTPUT | (ALARM 1) *  | ALARM 1<br>A1 OUTPUT | (COOL) *  | INPUT @ | INPUT @ | @                | OUTPUT** @ | OUTPUT** @ | 18-36 VDC/24 VAC | 85 TO 250 VAC |
| Relay     |              |                      |           |         |         | YES <sup>1</sup> |            |            | NA               | T4810002      |
|           | Relay        |                      | Relay     |         |         |                  | YES        | YES        | T481011A         | T481010A      |
|           | Relay        |                      | Relay     |         |         |                  | YES        |            | T4810111         | T4810101      |
|           | Relay        |                      | Relay     | YES     |         |                  | YES        |            | T4810115         | T4810105      |
|           | Relay        |                      | Relay     |         | YES     |                  | YES        |            | T4810116         | T4810106      |
|           | Relay        |                      | Relay     |         |         | YES              | YES        |            | T4810117         | T4810107      |
| Relay     |              |                      | Relay     | YES     |         | YES              |            |            | T4810118         | T4810108      |
| Relay     |              |                      | Relay     |         | YES     | YES              |            |            | T4810119         | T4810109      |
| Relay     |              | Relay                | Relay     |         |         | YES <sup>2</sup> |            |            | T4811112         | T4811102      |
|           | Logic/SSR    |                      | Logic/SSR |         |         |                  | YES        |            | T4820211         | T4820201      |
|           | Logic/SSR    |                      | Logic/SSR | YES     |         |                  | YES        |            | T4820215         | T4820205      |
|           | Logic/SSR    |                      | Logic/SSR |         | YES     |                  | YES        |            | T4820216         | T4820206      |
| Logic/SSR |              |                      | Logic/SSR | YES     |         | YES              |            |            | T4820218         | T4820208      |
| Logic/SSR |              |                      | Logic/SSR |         | YES     | YES              |            |            | T4820219         | T4820209      |
| Logic/SSR |              | Relay                | Relay     |         |         | YES              |            |            | T4821112         | T4821102      |

\* - This output is programmable as either Control (PID) or as an Alarm.

\*\* - This output is jumper and program selectable for either a current or voltage Linear DC output.

@ - These part numbers are equipped with a second setpoint.

<sup>1</sup> - Replacement Output Board RBD48100 may be used.

<sup>2</sup> - Replacement Output Board RBD48111 may be used.

#### ACCESSORIES

| MODEL NO. | DESCRIPTION                                                                            | PART NUMBERS |
|-----------|----------------------------------------------------------------------------------------|--------------|
|           | External SSR Power Unit (for Logic/SSR output models)                                  | RLY50000     |
| RLY       | Single Phase 25 A DIN Rail Mount SSR                                                   | RLY60000     |
|           | Single Phase 40 A DIN Rail Mount SSR                                                   | RLY6A000     |
|           | Three Phase DIN Rail Mount SSR                                                         | RLY70000     |
| СТ        | 40 Ampere Current Transformer (for Heater Current Input models)                        | CT004001     |
|           | 50 Ampere Current Transformer (for Heater Current Input models)                        | CT005001     |
| SFCRM     | Crimson 2 PC Configuration Software for Windows 98, ME, 2000 and XP (for RS485 models) | SFCRM        |
| ICM4      | RS232/RS485 Serial Converter Module                                                    | ICM40030     |
| ICM5      | Three way isolated RS232/RS485 Serial Converter                                        | ICM50000     |

\* Crimson software is available for download from http://www.redlion.net

F

#### 1-717-767-6511

### MODEL PAX2C – 1/8 DIN TEMPERATURE/PROCESS PID CONTROLLER



PID CONTROL WITH REDUCED OVERSHOOT

- UNIVERSAL PROCESS, TEMPERATURE, VOLTAGE, CURRENT AND RESISTANCE iNPUT
- PROGRAMMABLE DUAL LINE DISPLAY WITH UNITS INDICATION AND BAR GRAPH

FOUR PROGRAMMABLE UNIVERSAL ANNUNCIATORS

- TRI-COLOR DISPLAY, WITH 7 PROGRAMMABLE COLOR ZONES
- UP TO 16 ALARMS WITH BOOLEAN LOGIC FUNCTIONALITY
- BUILT-IN USB PROGRAMMING PORT ENABLING UNIT CONFIGURATION WITH CRIMSON PROGRAMMING SOFTWARE

NEMA 4X/IP65 SEALED FRONT BEZEL

#### DESCRIPTION

The PAX2C Temperature/Process Controller offers many features and performance capabilities to suit a wide range of applications. The PAX2C has a universal input to handle various input signals including Temperature, DC Voltage/Current and Resistance. Optional plug-in cards allow the opportunity to configure the controller for present applications, while providing easy upgrades for future needs. The PAX2C employs a tri-color display with seven independently programmable color zones.

The controller has been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel, CE compliance and extensive testing of noise effects, the controller provides a tough reliable application solution.

#### MAIN CONTROL

The controller operates in the PID Control Mode for both heating and cooling, with on-demand auto-tune that establishes the tuning constants. The PID tuning constants may be fine-tuned and then locked out from further modification. The controller employs a unique overshoot suppression feature, that allows the quickest response without excessive overshoot. Switching to Manual Mode provides the operator direct control of the output.

#### DISPLAY

F

The PAX2C features a dual line display with units annunciators, dual bar graphs, four universal annunciators and tri-color capability. Each of the seven display zones may be configured independently of the others, providing a visual indication of control and/or alarm status.

#### ALARMS

The PAX2C has up to sixteen "soft" alarms that may be configured to suit a variety of control and alarm requirements. These alarms may be used to monitor and/or actuate the controller's physical outputs as well as change display colors. Mapped "soft" alarms may be processed independently or logically combined using AND/OR Boolean logic.

#### **OPTION CARDS**

Optional plug-in cards provide dual FORM-C relays, quad FORM-A, quad sinking, or quad sourcing open collector logic outputs. These cards can be used as control outputs or for alarm indication.

A linear DC output signal is available as an optional plug-in card. The card provides either 20 mA or 10 V signals. The output can be scaled independent of the input range and can track the input, max and min readings or for control.

Communication and bus capabilities are also available as option cards. These

include RS232, RS485, DeviceNet, and ProfibusDP. The PAX2C can be programmed to utilize Modbus protocol. With Modbus, the user has access to most configuration parameters. Readout values, setpoint, process and alarm values can be controlled through the bus. Additionally, the controller has a feature that allows a remote computer to directly control the outputs of the controller.

With a Windows<sup>®</sup> based program, made available by Red Lion Controls, configuration data can be downloaded to the PAX2C via a built-in USB programming port.



#### www.redlion.net

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.





# TABLE OF CONTENTS

| Ordering Information              | . 2 |
|-----------------------------------|-----|
| General Controller Specifications | . 3 |
| Optional Plug-In Cards            | . 5 |
| Installing the Controller         | . 6 |
| Setting the Jumpers               | . 6 |
| Installing the Plug-In Cards      | . 7 |
| Wiring the Controller             | . 7 |

| Reviewing the Front Buttons and Display9 |
|------------------------------------------|
| Programming the PAX2C10                  |
| Frequently Used Modbus Registers42       |
| Factory Service Operations46             |
| Troubleshooting Guide52                  |
|                                          |

### **ORDERING INFORMATION**

#### **Controller Part Numbers**

| MODEL NO. | DESCRIPTION                                                | PART NUMBER |
|-----------|------------------------------------------------------------|-------------|
| PAX2C     | Universal Input Temperature/Process Controller, Horizontal | PX2C8H00    |
|           | Universal Input Temperature/Process Controller, Vertical   | PX2C8V00    |

#### **Option Card and Accessories Part Numbers**

| TYPE     | MODEL NO. | DESCRIPTION                                                        | PART NUMBER |
|----------|-----------|--------------------------------------------------------------------|-------------|
|          |           | Dual Setpoint Relay Output Card                                    | PAXCDS10    |
|          | DAYODO    | Quad Setpoint Relay Output Card                                    | PAXCDS20    |
|          | PAACUS    | Quad Setpoint Sinking Open Collector Output Card                   | PAXCDS30    |
|          |           | Quad Setpoint Sourcing Open Collector Output Card                  | PAXCDS40    |
| Ontional | PAXCDC    | RS485 Serial Communications Card with Terminal Block               | PAXCDC10    |
| Plug-In  |           | Extended RS485 Serial Communications Card with Dual RJ11 Connector | PAXCDC1C    |
| Cards    |           | RS232 Serial Communications Card with Terminal Block               | PAXCDC20    |
|          |           | Extended RS232 Serial Communications Card with 9 Pin D Connector   | PAXCDC2C    |
|          |           | DeviceNet Communications Card                                      | PAXCDC30    |
|          |           | Profibus-DP Communications Card                                    | PAXCDC50    |
|          | PAXCDL    | Analog Output Card                                                 | PAXCDL10    |
|          | CBLUSB    | USB Programming Cable Type A-Mini B                                | CBLUSB01    |

Note:

1. For Modbus communications use RS485 Communications Output Card and configure communication (LyPE) parameter for Modbus.

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

# **GENERAL CONTROLLER SPECIFICATIONS**

#### 1. DISPLAY: Negative image LCD with tri-color backlight.

The display is divided into seven independently programmable color zones: Line 1, Line 2, Universal Annunciators (1-4) & Mnemonics

Line 1 and 2: 4 digits each line

Display Range: -1999 to 9999

Units - Programmable 3 digit units annunciator

Bar Graph - Programmable 8 segment bar graph

Universal Annunciator 1 thru 4: Programmable 2 digit annunciator Status Mnemonics: MAN - Controller is in Manual Mode

REM - Controller is in Remote Mode

Vertical Model Digit Size: Line 1 - 0.51" (13 mm), Line 2 - 0.44" (11.2 mm) Horizontal Model Digit Size: Line 1 - 0.62" (15.7 mm), Line 2 - 0.47" (12.0 mm) 2. POWER:

AC Power: 40 to 250 VAC, 50/60 Hz, 20 VA

DC Power: 21.6 to 250 VDC, 8 W

Isolation: 2300 Vrms for 1 min. to all inputs and outputs.

3. **KEYPAD**: 2 programmable function keys, 4 keys total

4. A/D CONVERTER: 24 bit resolution

#### 5. DISPLAY MESSAGES:

"OLOL" - Appears when measurement exceeds + signal range. "ULUL" - Appears when measurement exceeds - signal range "Shrt" - Appears when shorted sensor is detected. (RTD range only) "OPEN" - Appears when open sensor is detected. (TC/RTD range only) "...." - Appears when display values exceed + display range. "-..." - Appears when display values exceed - display range.

### 6. INPUT CAPABILITIES:

| Current | Input |  |
|---------|-------|--|
|         | 1     |  |

| INPUT RANGE | ACCURACY *<br>(18 to 28°C) | ACCURACY *<br>(0 to 50°C) | IMPEDANCE | ‡<br>RESOLUTION |
|-------------|----------------------------|---------------------------|-----------|-----------------|
| ± 250 µADC  | 0.03% of rdg<br>+ 0.03µA   | 0.12% of rdg<br>+ 0.04µA  | 1.11 KΩ   | 0.1µA           |
| ± 2.5 mADC  | 0.03% of rdg<br>+ 0.3µA    | 0.12% of rdg<br>+ 0.4µA   | 111 Ω     | 1µA             |
| ± 25 mADC   | 0.03% of rdg<br>+ 3µA      | 0.12% of rdg<br>+ 4µA     | 11.1 Ω    | 10µA            |
| ± 250 mADC  | 0.05% of rdg<br>+ 30µA     | 0.12% of rdg<br>+ 40µA    | 1.1 Ω     | 0.1mA           |
| ± 2 ADC     | 0.5% of rdg<br>+ 0.3mA     | 0.7% of rdg<br>+ 0.4mA    | 0.1 Ω     | 1mA             |

#### Voltage Input:

| INPUT RANGE | ACCURACY *<br>(18 to 28°C) | ACCURACY *<br>(0 to 50°C) | IMPEDANCE | ‡<br>RESOLUTION |
|-------------|----------------------------|---------------------------|-----------|-----------------|
| ± 250 mVDC  | 0.03% of rdg<br>+ 30µV     | 0.12% of rdg<br>+ 40µV    | 451 ΚΩ    | 0.1mV           |
| ± 2.0 VDC   | 0.03% of rdg<br>+ 0.3mV    | 0.12% of rdg<br>+ 0.4mV   | 451 ΚΩ    | 1mV             |
| ± 10 VDC    | 0.03% of rdg<br>+ 3mV      | 0.12% of rdg<br>+ 4mV     | 451 ΚΩ    | 1mV             |
| ± 25 VDC    | 0.03% of rdg<br>+ 3mV      | 0.12% of rdg<br>+ 4mV     | 451 KΩ    | 10mV            |
| ± 100 VDC   | 0.3% of rdg<br>+ 30mV      | 0.12% of rdg<br>+ 40mV    | 451 ΚΩ    | 0.1V            |
| ± 200 VDC   | 0.3% of rdg<br>+ 30mV      | 0.12% of rdg<br>+ 40mV    | 451 ΚΩ    | 0.1V            |

#### **Temperature Inputs:**

Scale: °F or °C Offset Range: -1999 to 9999 display units.

**Thermocouple Inputs:** 

Input Impedance: 20MΩ Lead Resisitance Effect: 0.03  $\mu V/\Omega$ 

Max Continuous Overvoltage: 30 VDC

| INPUT         | PANCE                         | ACCURACY* ACCURACY* |                | STANDARD          | WIRE COLOR            |                        |
|---------------|-------------------------------|---------------------|----------------|-------------------|-----------------------|------------------------|
| TYPE          | KANGE                         | (18 to 28 °C)       | (0 to 50 °C)   | STANDARD          | ANSI                  | BS 1843                |
| Т             | -200 to 400°C                 | 1.2°C               | 2.1°C          | ITS-90            | (+) blue<br>(-) red   | (+) white<br>(-) blue  |
| E             | -200 to 750°C                 | 1.0°C               | 2.4°C          | ITS-90            | (+) purple<br>(-) red | (+) brown<br>(-) blue  |
| J             | -200 to 760°C                 | 1.1°C               | 2.3°C          | ITS-90            | (+) white<br>(-) red  | (+) yellow<br>(-) blue |
| к             | -200 to 1250°C                | 1.3°C               | 3.4°C          | ITS-90            | (+) yellow<br>(-) red | (+) brown<br>(-) blue  |
| R             | 0 to 1768°C                   | 1.9°C               | 4.0°C          | ITS-90            | no<br>standard        | (+) white<br>(-) blue  |
| S             | 0 to 1768°C                   | 1.9°C               | 4.0°C          | ITS-90            | no<br>standard        | (+) white<br>(-) blue  |
| В             | 150 to 300°C<br>300 to 1820°C | 3.9°C<br>2.8°C      | 5.7°C<br>4.4°C | ITS-90            | no<br>standard        | no<br>standard         |
| N             | -200 to 1300°C                | 1.3°C               | 3.1°C          | ITS-90            | (+) orange<br>(-) red | (+) orange<br>(-) blue |
| C<br>(W5/W26) | 0 to 2315°C                   | 1.9°C               | 6.1°C          | ASTM<br>E988-90** | no<br>standard        | no<br>standard         |

#### **RTD Inputs**:

Type: 3 or 4 wire, 2 wire can be compensated for lead wire resistance Excitation current: 100 ohm range: 136.5  $\mu$ A ±10%

10 ohm range: 2.05 mA ±10%

Lead resistance: 100 ohm range: 10 ohm/lead max.

10 ohm range: 3 ohms/lead max.

Max. continuous overload: 30 VDC

| INPUT TYPE                       | RANGE         | ACCURACY*<br>(18 to 28 °C) | ACCURACY*<br>(0 to 50 °C) | STANDARD                |
|----------------------------------|---------------|----------------------------|---------------------------|-------------------------|
| 100 ohm Pt<br>alpha = .00385     | -200 to 850°C | 0.4°C                      | 1.6°C                     | IEC 751                 |
| 100 ohm Pt<br>alpha = .00392     | -200 to 850°C | 0.4°C                      | 1.6°C                     | no official<br>standard |
| 120 ohm Nickel<br>alpha = .00672 | -80 to 259°C  | 0.2°C                      | 0.5°C                     | no official<br>standard |
| 10 ohm Copper<br>alpha = .00427  | -110 to 260°C | 0.4°C                      | 0.9°C                     | no official<br>standard |

#### **Resistance Inputs:**

| INPUT<br>RANGE | ACCURACY *<br>(18 to 28°C) | ACCURACY *<br>(0 to 50°C) | COMPLIANCE | MAX CONT.<br>OVERLOAD | ‡<br>RESOLUTION |
|----------------|----------------------------|---------------------------|------------|-----------------------|-----------------|
| 100 ohm        | 0.05% of rdg<br>+0.03 ohm  | 0.2% of rdg<br>+0.04 ohm  | 0.175 V    | 30 V                  | 0.1 ohm         |
| 999 ohm        | 0.05% of rdg<br>+0.3 ohm   | 0.2% of rdg<br>+0.4 ohm   | 1.75 V     | 30 V                  | 1 ohm           |
| 9999 ohm       | 0.05% of rdg<br>+1 ohm     | 0.2% of rdg<br>+1.5 ohm   | 17.5 V     | 30 V                  | 1 ohm           |

**‡** Higher resolution can be achieved via input scaling.

\* After 20 min. warm-up, @ 5 samples per second input rate. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 15 to 75% RH environment; and Accuracy over a 0 to 50°C and 0 to 85% RH (non condensing) environment. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of controller and probe errors. Accuracy may be improved by field calibrating the controller readout at the temperature of interest.

These curves have been corrected to ITS-90.

www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

7. EXCITATION POWER: Jumper selectable Transmitter Power: +18 VDC, ± 5% @ 50 mA max. Reference Voltage: +2 VDC,  $\pm 2\%$ Compliance: 1KQ load min (2 mA max) Temperature Coefficient: 40 ppm/°C max. Reference Current: 1.05 mADC,  $\pm 2\%$ Compliance: 10 KQ load max. Temperature Coefficient: 40 ppm/°C max. 8. USER INPUTS: Two programmable user inputs Max. Continuous Input: 30 VDC Isolation To Sensor Input Common: Not isolated. Logic State: User programmable (URLE) for sink/source (Lo/Hi) INPUT STATE LO/SINK HI/SOURCE (US-REE) 20KΩ pull-up to +3.3V  $20K\Omega$  pull-down Active  $V_{IN} < 1.1 \text{ VDC}$ V<sub>IN</sub> > 2.2 VDC V<sub>IN</sub> > 2.2 VDC V<sub>IN</sub> < 1.1 VDC Inactive 9. CUSTOM LINEARIZATION: Data Point Pairs: Selectable from 2 to 16 Display Range: -1999 to 9999 Decimal Point: 0 to 0.000 10. MEMORY: Nonvolatile FRAM memory retains all programmable parameters and display values. 11. ENVIRONMENTAL CONDITIONS: Operating Temperature Range: 0 to 50 °C Storage Temperature Range: -40 to 60 °C Vibration to IEC 68-2-6: Operational 5-150 Hz, 2 g Shock to IEC 68-2-27: Operational 25 g (10 g relay) Operating and Storage Humidity: 0 to 85% max. RH non-condensing Altitude: Up to 2000 meters 12. CERTIFICATIONS AND COMPLIANCES: **CE** Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A IEC/EN 61010-1 **RoHS** Compliant UL Listed: File #E179259 Type 4X Indoor Enclosure rating (Face only) IP65 Enclosure rating (Face only) IP20 Enclosure rating (Rear of unit) Refer to EMC Installation Guidelines section of the bulletin for additional information 13. CONNECTIONS: High compression cage-clamp terminal block Wire Strip Length: 0.3" (7.5 mm) Wire Gauge Capacity: One 14 AWG (2.55 mm) solid, two 18 AWG (1.02 mm) or four 20 AWG (0.61 mm) 14. CONSTRUCTION: This unit is rated NEMA 4X/IP65 for indoor use only. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/ case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.

15. WEIGHT: 8 oz. (226.8 g)

### **OPTIONAL PLUG-IN CARDS**



WARNING: Disconnect all power to the unit before installing plug-in cards.

#### Adding Option Cards

The PAX2C controllers can be fitted with up to three optional plug-in cards. The details for each plug-in card can be reviewed in the specification section below. Only one card from each function type can be installed at a time. The function types include Setpoint/Control (PAXCDS), Communications (PAXCDC), and Analog Output (PAXCDL). The plug-in cards can be installed initially or at a later date.

### **COMMUNICATION CARDS (PAXCDC)**

A variety of communication protocols are available for the PAX2C controller. Only one PAXCDC card can be installed at a time. *Note: For Modbus communications use RS485 Communications Output Card and configure communication (LYPE) parameter for Modbus.* 

PAXCDC10 - RS485 Serial (Terminal) PAXCDC30 - DeviceNet

PAXCDC1C - RS485 Serial (Connector) PAXCDC50 - Profibus-DP

PAXCDC20 - RS232 Serial (Terminal)

PAXCDC2C - RS232 Serial (Connector)

#### SERIAL COMMUNICATIONS CARD

Type: RS485 or RS232

Communication Type: RLC Protocol (ASCII), Modbus RTU, and Modbus ASCII

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Data: 7/8 bits

- **Baud**: 1200 to 38,400
- Parity: no, odd or even
- **Bus Address**: Selectable 0 to 99 (RLC Protocol), or 1 to 247 (Modbus Protocol), Max. 32 controllers per line (RS485)

Transmit Delay: Selectable for 0 to 0.250 sec (+2 msec min)

#### DEVICENET<sup>TM</sup> CARD

Compatibility: Group 2 Server Only, not UCMM capable

Baud Rates: 125 Kbaud, 250 Kbaud, and 500 Kbaud

**Bus Interface**: Phillips 82C250 or equivalent with MIS wiring protection per DeviceNet<sup>™</sup> Volume I Section 10.2.2.

Node Isolation: Bus powered, isolated node

Host Isolation: 500 Vrms for 1 minute (50 V working) between DeviceNet<sup>™</sup> and controller input common.

#### **PROFIBUS-DP CARD**

Fieldbus Type: Profibus-DP as per EN 50170, implemented with Siemens SPC3 ASIC

Conformance: PNO Certified Profibus-DP Slave Device

**Baud Rates:** Automatic baud rate detection in the range 9.6 Kbaud to 12 Mbaud **Station Address:** 0 to 125, set by rotary switches.

Connection: 9-pin Female D-Sub connector

**Network Isolation:** 500 Vrms for 1 minute (50 V working) between Profibus network and sensor and user input commons. Not isolated from all other commons.

#### PROGRAMMING SOFTWARE

Crimson<sup>®</sup> software is a Windows<sup>®</sup> based program that allows configuration of the PAX<sup>®</sup> controller from a PC. Crimson offers standard drop-down menu commands, that make it easy to program the controller. The controller's program can then be saved in a PC file for future use. The Crimson installation file is located on the included flash drive, or it can be downloaded at www.redlion.net

#### CONTROL/OUTPUT CARDS (PAXCDS)

The PAX2C controller has 4 available control/output plug-in cards. Only one PAXCDS card can be installed at a time. (Logic state of the outputs can be reversed in the programming.) These plug-in cards include:

PAXCDS10 - Dual Relay, FORM-C, Normally open & closed PAXCDS20 - Quad Relay, FORM-A, Normally open only PAXCDS30 - Isolated quad sinking NPN open collector PAXCDS40 - Isolated quad sourcing PNP open collector

#### DUAL RELAY CARD

Type: Two FORM-C relays

Isolation To Sensor & User Input Commons: 2000 Vrms for 1 min. Working Voltage: 240 Vrms

#### Contact Rating:

One Relay Energized: 5 amps @ 120/240 VAC or 28 VDC (resistive load). Total current with both relays energized not to exceed 5 amps

Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

#### QUAD RELAY CARD

Type: Four FORM-A relays

Isolation To Sensor & User Input Commons: 2300 Vrms for 1 min. Working Voltage: 250 Vrms

Contact Rating:

One Relay Energized: 3 amps @ 240 VAC or 30 VDC (resistive load). Total current with all four relays energized not to exceed 4 amps

Life Expectancy: 100K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

#### QUAD SINKING OPEN COLLECTOR CARD

Type: Four isolated sinking NPN transistors. Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons. Rating: 100 mA max @  $V_{SAT} = 0.7$  V max.  $V_{MAX} = 30$  V

#### QUAD SOURCING OPEN COLLECTOR CARD

Type: Four isolated sourcing PNP transistors.

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

Rating: Internal supply: 18 VDC unregulated, 30 mA max. total External supply: 30 VDC max., 100 mA max. each output

#### ALL FOUR SETPOINT CARDS

**Response Time**: See Update Rates step response specification on page 3; add 6 msec (typical) for relay card

#### LINEAR DC OUTPUT (PAXCDL)

Either a 0(4)-20 mA or 0-10 V linear DC output is available from the analog output plug-in card. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing the scaling point positions.

PAXCDL10 - Retransmitted Analog Output Card

#### ANALOG OUTPUT CARD

Types: 0 to 20 mA, 4 to 20 mA or 0 to 10 VDC

**Isolation To Sensor & User Input Commons**: 500 Vrms for 1 min. Working Voltage: 50 V. Not Isolated from all other commons.

**Accuracy:** 0.17% of FS (18 to 28 °C); 0.4% of FS (0 to 50 °C)

Resolution: 1/3500

Compliance: 10 VDC: 10 K $\Omega$  load min., 20 mA: 500  $\Omega$  load max. Powered: Self-powered

**Step Response**: See Update Rates step response specification on page 3. **Update time**: See ADC Conversion Rate and Update Time parameter

# **1.0 INSTALLING THE CONTROLLER**

#### Installation

The PAX2C meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.



2.0 SETTING THE JUMPERS

The PAX2C controller has four jumpers that must be checked and/or changed prior to applying power. The following Jumper Selection Figures show an enlargement of the jumper area.

To access the jumpers, remove the controller base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.



Warning: Exposed line voltage exists on the circuit boards. Remove all power to the controller and load circuits before accessing inside of the controller.



#### **INPUT RANGE JUMPERS**

#### Voltage Input

Two jumpers are used in configuring the controller for voltage/resistance. The first jumper, T/V, must be in the V (voltage) position. The second jumper is used to select the proper voltage input range. (This jumper is also used to select the current input range.) Select a range that is high enough to accommodate the maximum signal input to avoid overloads. For proper operation, the input range selected in programming must match the jumper setting.

screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

#### Installation Environment

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

#### HORIZONTAL PANEL CUT-OUT



Current Input For current input, only one jumper must be configured to select the current range. This jumper is shared with the voltage input range. To avoid overloads, select the jumper position that is high enough to accommodate the maximum signal input level to be applied.

Note: The position of the T/V jumper does not matter when the controller is in the current input mode.

#### **Temperature Input**

For temperature measurement the T/V jumper must be in the T (temperature) position. For RTD sensors the RTD jumper must also be set.

#### **Resistance Input**

Three jumpers are used to configure the resistance input. The T/V jumper must be in the V (voltage) position, and the excitation jumper must be in the 1.05 mA REF position. The voltage/resistance jumper position is determined by the input range.

#### **Excitation Output Jumper**

This jumper is used to select the excitation range for the application. If excitation is not being used, it is not necessary to check or move this jumper.



#### 1-717-767-6511

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

F

# **3.0 INSTALLING PLUG-IN CARDS**

The plug-in cards are separately purchased optional cards that perform specific functions. These cards plug into the main circuit board of the controller. The plug-in cards have many unique functions when used with the PAX2C.



**CAUTION**: The plug-in card and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.



#### To Install:

- With the controller removed from the case, locate the plug-in card connector for the card type to be installed. The types are keyed by position with different main circuit board connector locations. When installing the card, hold the controller by the rear terminals and not by the front display board. If installing the Quad sourcing Plug-in Card (PAXCDS40), set the jumper for
  - internal or external supply operation before continuing.



- 2. Install the plug-in card by aligning the card terminals with the slot bay in the rear cover. Be sure the connector is fully engaged and the tab on the plug-in card rests in the alignment slot on the display board.
- 3. Slide the controller base back into the case. Be sure the rear cover latches fully into the case.
- 4. Apply the plug-in card label to the bottom side of the controller in the designated area. Do Not Cover the vents on the top surface of the controller. The surface of the case must be clean for the label to adhere properly.

# **4.0 WIRING THE CONTROLLER**

#### WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the controller. All conductors should conform to the controller's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the controller (DC or AC) be protected by a fuse or circuit breaker.

When wiring the controller, compare the numbers embossed on the back of the controller case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure (Pull wire to verify tightness). Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

#### EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
  - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
  - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long

and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.

- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:

Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)

- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
  - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
- b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

VisitRLC's website at http://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

F

#### www.redlion.net

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

### 4.1 POWER WIRING

AC/DC

AC/DC



1

2





The power supplied to the meter shall employ a 15 Amp UL approved circuit breaker for AC input and a 1 Amp, 250 V UL approved fuse for DC input. It shall be easily accessible and marked as a disconnecting device to the installed unit. This device is not directly intended for connection to the mains without a reliable means to reduce transient over-voltages to 1500 V.

### 4.2 VOLTAGE/RESISTANCE/CURRENT INPUT SIGNAL WIRING

IMPORTANT: Before connecting signal wires, the Input Range Jumpers and Excitation Jumper should be verified for proper position.





**CAUTION:** Sensor input common is NOT isolated from user input common. In order to preserve the safety of the controller application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

### 4.3 TEMPERATURE INPUT SIGNAL WIRING

IMPORTANT: Before connecting signal wires, verify the T/V Jumper is in the T position.



**CAUTION:** Sensor input common is NOT isolated from user input common. In order to preserve the safety of the controller application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

1-717-767-6511

F

### 4.4 USER INPUT WIRING

If not using User Inputs, then skip this section. User Input terminal does not need to be wired in order to remain in the inactive state.

#### Sinking Logic (UREL Lo)

When the UALL parameter is programmed to  $L_0$ , the user inputs of the controller are internally pulled up to +3.3 V with 20 K $\Omega$  resistance. The input is active when it is pulled low (<1.1 V).



#### Sourcing Logic (UREL H.)

When the UALE parameter is programmed to  $H_i$ , the user inputs of the controller are internally pulled down to 0 V with 20 K $\Omega$ resistance. The input is active when a voltage greater than 2.2 VDC is applied.



#### 4.5 SETPOINT (ALARMS) WIRING

- 4.6 SERIAL COMMUNICATION WIRING
- 4.7 ANALOG OUTPUT WIRING

See appropriate plug-in card bulletin for wiring details.

## **5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY**



#### **DISPLAY LINE 1**

Line 1 consists of a large 4-digit top line display, eight segment bar graph and a three digit units mnemonic: Values such as Input, Max(HI) & Min (LO) may be shown on Line 1. The eight segment bar graph may be mapped to values such as Output Power, Deviation or Setpoints. The three digit units mnemonic characters can be used to indicate which Line 1 display value is shown. Line 1 is a tri-colored display and may be configured to change color based on specified alarm/logic configurations.

#### KEY DISPLAY MODE OPERATION

| D         | Index Line 2 through enabled Line 2 display values                                                                                                                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ         | Enter full programming mode or access the parameter and<br>hidden display loops; Press and hold to skip parameters and go<br>directly to Code or Programming Menu |
| <u>F1</u> | User programmable Function key 1; hold for 3 seconds for user programmable second function 1*                                                                     |
| F2/       | User programmable Function key 2; hold for 3 seconds for user programmable second function $2^*$                                                                  |

\*Factory setting for F1 and F2 and second function F1/F2 is no mode

| KEY       | PROGRAMMING MODE OPERATION                                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| D         | Return to the previous menu level (momentary press)<br>Quick exit to Display Mode (press and hold)                                                        |
| Р         | Access the programming parameter menu, store selected parameter and index to next parameter                                                               |
| <u>F1</u> | Increment selected parameter value; Hold <u>Fi</u> and momentarily press 2 key to increment next decade or D key to increment by 1000's                   |
| F2/       | Decrement selected parameter value; Hold $\boxed{F2}$ and momentarily press $\underline{F1}$ key to decrement next decade or D key to decrement by 1000's |

#### **DISPLAY LINE 2**

Line 2 consists of a 4-digit bottom line display, eight segment bar graph and a three digit units mnemonic. Values such as Setpoints, Output Power, Deviation, PID Parameters/Tuning Status, List A/B Status, and Alarm Values may be shown on the Line 2 display. The eight segment bar graph may be mapped to values such as Output Power, Deviation or Setpoints. The three digit units mnemonic characters can be used to indicate which Line 2 display value is shown. Line 2 is a tri-colored display and may be configured to change color based on specified alarm/logic configurations.

The display loops described in the next section are used to view, reset and modify the selected display values, based on the Line 2 Value Access setting programmed for each available value. See Line 2 parameters in the Display Parameters programming section for configuration details.

#### **Universal Annunciator Zones**

The PAX2C has four programmable universal annunciator zones. Each zone has a user-defined two digit annunciator mnemonic to suit a variety of applications. Universal annunciator zones are tri-colored and may be configured to change color based on specified alarm/logic configurations.

### LINE 2 DISPLAY LOOPS

The PAX2C offers three display loops to allow users quick access to needed information.



#### Manual Mnemonic

'MAN' - Flashes when the unit is in manual mode

The Mnemonic zone is tri-colored and may be configured to change color based on specified alarm/logic configurations.

#### Main Display Loop

In the Main display loop, the D key is pressed to sequence through the selected Line 2 values. The Line 2 units mnemonics are used to indicate which Line 2 value is currently shown. When in the Main display loop, the Function keys  $\underline{F1}$  and  $\underline{F2}$  perform the user functions programmed in the User Input parameter section.

#### Parameter and Hidden Parameter Display Loops

Display loops provide quick access to selected parameters that can be viewed and modified on Line 2 without having to enter Full Programming mode. These values may include: input, max/min, List A/B selection, output power, PID parameters/control, alarm parameters, setpoint values/selection, and display intensity and contrast settings. To utilize the Parameter or Hidden Parameter display loops, a security code (1-250) must be programmed. (See Programming Security Code in the Display Parameters programming section for details.)

The Parameter display loop is accessed by pressing the **P** key. The selected Parameter display loop values can be viewed and/or changed per the Line 2 Value Access setting programmed for each available value. The Hidden Parameter display loop follows the Parameter display loop, and can only be accessed when the correct security code is entered at the Code prompt. Combining the two parameter loops provides an area for parameters that require general access and/or protected or secure access depending on the application needs.

While in the Parameter and Hidden Parameter loops, pressing the **D** key will return the meter to the Main display loop. To directly access the Code prompt, press and hold the **P** key. This can be done from the Main display loop or at any point during the Parameter display loop. Also, to directly access Full Programming mode while in the Hidden Parameter loop, press and hold the **P** key to bypass any remaining Hidden Parameter loop values.

## **6.0 PROGRAMMING THE PAX2C**

It is recommended that program settings be recorded as programming is performed. A blank Parameter Value Chart is provided at the end of this bulletin.

#### **BASIC/ADVANCED MODE**

The PAX2C incorporates two different configuration modes that are user selectable via the Display Configuration Menu:

#### Basic Mode (65) [)

When the PAX2C is configured in this mode, a maximum of four alarms are supported and no mapped backlight color changes are available. Default backlight colors are still user selectable.

#### Advanced Mode (RdUE)

A maximum of sixteen alarms are supported and all backlight color configuration menu parameters are enabled. Select this mode when you require more than four alarms or where display color changes are desired.

#### PROGRAMMING MODE ENTRY

The Programming Mode is entered by pressing the  $\mathbf{P}$  key. Full Programming Mode will be accessible unless the controller is programmed to use the Parameter loop or Hidden Parameter loop on the Line 2 display. In this case, programming access will be limited by a security code and/or a hardware program lock. (Refer to the previous section for details on Line 2 display loops and limited programming access.) Full Programming Mode permits all parameters to be viewed and modified. In this mode, the front panel keys change to Programming Mode Operations and certain user input functions are disabled.

#### MODULE ENTRY

The Programming Menu is organized into seven modules. These modules group together parameters that are related in function. The F and F keys are used to select the desired module. The displayed module is entered by pressing the **P** key.

#### MODULE MENU

Upon entering a module, a parameter selection sub-menu is provided to choose the specific parameter type for programming. For example, this includes analog and user input under the Input Parameter menu. Use the  $\underline{FN}$  and  $\underline{F2}$  keys to select the desired parameter type, and press the **P** key to enter the parameter menu.

#### PARAMETER MENU

Upon entering the Parameter Menu, the  $\mathbf{P}$  key is pressed to advance to a specific parameter to be changed. After completing the parameter menu, or upon pressing the  $\mathbf{D}$  key, the display returns to the initial entry point for the parameter menu. For each additional press of the  $\mathbf{D}$  key, the display returns to the previous level within the module until exiting the module entirely.

#### 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### SELECTION/VALUE ENTRY

For each parameter, the top line display shows the parameter while the bottom line shows the selections/value for that parameter. The  $\overline{F1}$ and  $\overline{V2}$  keys are used to move through the selections/values for the parameter. Pressing the **P** key, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

#### Numerical Value Entry

If the parameter is programmed for enter (EnEr), the <u>F</u>A and <u>V</u>2 keys are used to change the parameter values in any of the display loops.

The F and F keys will increment or decrement the parameter value. When the F or F key is pressed and held, the value automatically scrolls. The longer the key is held the faster the value scrolls.

For large value changes, press and hold the  $\underline{F1}$  or  $\overline{V2}$  key. While holding that key, momentarily press the opposite arrow key ( $\overline{V2}$  or  $\overline{F1}$ ) to shift decades (10's 100's, etc), or momentarily press the **D** key and the value scrolls by 1000's as the arrow key is held. Releasing the arrow key removes the decade or 1000's scroll feature. The arrow keys can then be used to make small value changes as described above.

#### **PROGRAMMING MODE EXIT**

To exit the Programming Mode, press and hold the **D** key (from anywhere in the Programming Mode) or press the **P** key with  $P_{ro} \Pi D$  displayed. This will commit stored parameter changes to memory and return the meter to the Display Mode. If a parameter was just changed, the **P** key must be pressed to store the change before pressing the **D** key. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

#### **PROGRAMMING TIPS**

It is recommended to start with the Input Parameters and proceed through each module in sequence. If lost or confused while programming, press and hold the  $\mathbf{D}$  key to exit programming mode and start over. It is recommended that program settings be recorded as programming is performed. When programming is complete lock out programming with a user input or lock-out code.

Factory Settings may be completely restored in the Factory Service Operations module. This is useful when encountering programming problems.



Top line is green to indicate top level programming modules Top line is orange to indicate module menu or sub-menu selection Top line is red to indicate a changeable parameter.



Pro NO

### INPUT PARAMETERS (I MPL)

#### **INPUT SELECT**

Anlb

USEr

| **ПРЕ** <sub>P2C</sub> ЯлЕБ

Select the Input to be programmed.

### Analog Input Parameters: Temperature Mode (Rolb)

This section details the programming for the analog input.





| TEMPER/ | ATURE IN | PUT TYPE |
|---------|----------|----------|
|---------|----------|----------|

| 250 JA | 2 11            | IL RES  | Łc-r  | r 392  |
|--------|-----------------|---------|-------|--------|
| 25 mR  | IJ              | IOY RES | te-5  | r 6 72 |
| 25 mR  | 25 U            | Łc-Ł    | £c-b  | r 427  |
| 250 ml | 7 <i>1</i> 00 U | Łc-E    | tc-n  |        |
| 2 A    | 500 N           | £ב-J    | tc-[  |        |
| 250 ml | J IOO RES       | Łc-Ľ    | r 385 |        |

Shaded selections indicate the available temperature input types. Select the desired input type.

#### 

### TEMPERATURE SCALE

ok o[

00

Select the temperature scale. If changed, those parameters that relate to the temperature scale should be checked.



#### ICE POINT COMPENSATION For TC Input Range Selection only.

**DFF** 

This parameter turns the internal ice point compensation on or off. Normally, the ice point compensation is on. If using external compensation, set this parameter to off. In this case, use copper leads from the external compensation point to the meter.

#### **INPUT UPDATE RATE (/SEC)**



#### 5 10 20

Select the ADC conversion rate (conversions per second). The selection does not affect the display update rate, however it does affect alarm and analog output response time. The default factory setting of 20 is recommended for most applications. Selecting a fast update rate may cause the display to appear very unstable.

**DECIMAL RESOLUTION (Display Units)** 

0 to 0.0 (temp) 0 to 0.000 (curr/volt/ohm)

Select desired display resolution. The available selections are dependent on the Input Type selected (LUPE).

#### **ROUNDING INCREMENT**



FSE

1 06

0.0

ltr

I NP

0

SEC

d[PŁ

ית **חח** 

> 1 2 5 10 20 50 100

Rounding selections other than one, cause the Input Display to 'round' to the nearest rounding increment selected (ie. rounding of '5' causes 122 to round to 120 and 123 to round to 125). Rounding starts at the least significant digit of the Input Display. Remaining

parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection.

#### DISPLAY OFFSET



The display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer.

#### DIGITAL FILTERING



The input filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of '0' disables filtering.

#### 1-717-767-6511

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

### Analog Input Parameters: Process Mode (AnLb)

This section details the programming for the analog input.







Shaded selections indicate the available process input types. Select the desired input type.

#### SQUARE ROOT

УЕЅ ПО

This parameter allows the unit to be used in applications in which the measured signal is the square of the PV. This is useful in applications such as the measurement of flow with a differential pressure transducer.

**Example**: It is necessary to square root linearize the output of a differential pressure transmitter to indicate and control flow. The defining equation is  $F = 278 \sqrt{\Delta P}$ , where  $\Delta P = 0 - 500$  PSI, transmitted linearly by a 4 - 20 mA transducer. At full flow rate ( $\Delta P = 500$  PSI), the flow is 6216 ft<sup>3</sup>/h. The following scaling information is used with the controller:

| dEPE    | = | 0                     | NPL   =  | ዛመ mA                     |
|---------|---|-----------------------|----------|---------------------------|
| Poot    | = | YES                   | di 5P2 = | 62 16 ft <sup>3</sup> /hr |
| di 5P ( | = | 0 ft <sup>3</sup> /hr | 1 NPE2 = | 2000 mA                   |

As a result of the scaling and square root linearization, the following represents the readings at various inputs:

| Delta P<br>(PSI) | Transmitter<br>(mA) | Flow<br>(ft <sup>3</sup> /hr) |
|------------------|---------------------|-------------------------------|
| 0.00             | 4.00                | 0                             |
| 15.63            | 4.50                | 1099                          |
| 31.25            | 5.00                | 1554                          |
| 62.50            | 6.00                | 2198                          |
| 125.00           | 8.00                | 3108                          |
| 187.50           | 10.00               | 3807                          |
| 250.00           | 12.00               | 4396                          |
| 312.50           | 14.00               | 4914                          |
| 375.00           | 16.00               | 5383                          |
| 437.50           | 18.00               | 5815                          |
| 500.00           | 20.00               | 6216                          |

#### INPUT UPDATE RATE (/SEC)

5

#### 10 20 40

Select the ADC conversion rate (conversions per second). The selection does not affect the display update rate, however it does affect alarm and analog output response time. The default factory setting of 5 is recommended for most applications. Selecting a fast update rate may cause the display to appear very unstable.

#### **DECIMAL RESOLUTION (Display Units)**



to 0000 (curr/volt/ohm) to 00 (temp)

Select desired display resolution. The available selections are dependent on the Input Type selected (LUPE).

#### ROUNDING INCREMENT



1 2 5 10 20 50 100

Rounding selections other than one, cause the Input Display to 'round' to the nearest rounding increment selected (ie. rounding of '5' causes 122 to round to 120 and 123 to round to 125). Rounding

starts at the least significant digit of the Input Display. Remaining parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection.

#### **DISPLAY OFFSET**

#### - 1999 to 9999

The display can be corrected with an offset value. This can be used to compensate for sensor errors, errors due to variances in sensor placement or adjusting the readout to a reference source. A value of zero will remove the affects of offset.

#### **DIGITAL FILTERING**



SEL

PNE S

2

OFSE

1.00

00

0.0 to 25.0 seconds

The input filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of '0' disables filtering.

#### SCALING POINTS

2 to 16

#### Linear - Scaling Points (2)

For linear processes, only 2 scaling points are necessary. It is recommended that the 2 scaling points be at opposite ends of the input signal being applied. The points do not have to be the signal

limits. Display scaling will be linear between and continue past the entered points up to the limits of the Input Signal Jumper position. Each scaling point has a coordinate-pair consisting of an Input Value ( $l \Pi P L n$ ) and an associated desired Display Value ( $d \beta P n$ ).

ЧРE

Pool

I NP

ПП

1 11

2

rAEE

IN

20

ςρα

#### www.redlion.net

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### Nonlinear - Scaling Points (Greater than 2)

For non-linear processes, up to 16 scaling points may be used to provide a piece-wise linear approximation. (The greater the number of scaling points used, the greater the conformity accuracy.) The Input Display will be linear between scaling points that are sequential in program order. Each scaling point has a coordinate-pair consisting of an Input Value ( $I \Pi P n$ ) and an associated desired Display Value (d S P n). Data from tables or equations, or empirical data could be used to derive the required number of segments and data values for the coordinate pairs. In the Crimson software, several linearization equations are provided to help calculate scaling points.

#### SCALING STYLE

5**2 91** , ind , key

부분별 key-in data 메리 apply signal

If Input Values and corresponding Display Values are known, the Key-in  $(\mbox{\it kE}\,\mbox{\it y})$  scaling style can be used. This allows scaling without the presence of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply  $(\mbox{\it RPL}\,\mbox{\it y})$  scaling style must be used.

#### **INPUT VALUE FOR SCALING POINT 1**



#### - 1999 to 9999

For Key-in ( $\forall E \forall$ ), enter the known first Input Value by using the <u>(FI)</u> or <u>(F2)</u> arrow keys. (The Input Range selection sets up the decimal location for the Input Value). For Apply ( $\Re PL \Psi$ ), the existing programmed value will appear. If this is acceptable, press the **P** key to save and continue to the next parameter. To update/program this

value, apply the input signal that corresponds to Scaling Point 1, press  $\sqrt{2}$  key and the actual signal value will be displayed. Then press the **P** key to accept this value and continue to the next parameter.

#### **DISPLAY VALUE FOR SCALING POINT 1**



#### - 1999 to 9999

Enter the first coordinating Display Value by using the arrow keys. This is the same for  $\[multiplus]$  and  $\[multiplus]$  scaling styles. The decimal point follows the  $\[multiplus]$  follows the d[Pt selection.

#### **INPUT VALUE FOR SCALING POINT 2**



- 1999 to 9999

For Key-in ( $\[\]EY$ ), enter the known second Input Value by using the  $(\[\]EY$ ) or  $\[\]EY$  arrow keys. For Apply ( $\[\]PLY$ ), the existing programmed value will appear. If this is acceptable, press the **P** key to save and

continue to the next parameter. To update/program this value, apply the input signal that corresponds to Scaling Point 2, press  $\sqrt{2}$  key and the actual signal value will be displayed. Then press the **P** key to accept this value and continue to the next parameter. (Follow the same procedure if using more than 2 scaling points.)

#### **DISPLAY VALUE FOR SCALING POINT 2**

di SP ,m 100,0 2

- 1999 to 9999

Enter the second coordinating Display Value by using the /F1 or F2 arrow keys. This is the same for kEY and RPLY scaling styles. (Follow the same procedure if using more than 2 scaling points.)

#### ENABLE SCALE LIST



ПО УЕЅ

When enabled, a second list of scaling points is active in the selected parameter list for List A and List B.

### USER INPUT/FUNCTION KEY PARAMETERS (USEr)

The two user inputs are individually programmable to perform specific meter control functions. While in the Display Mode or Program Mode, the function is executed the instant the user input transitions to the active state. The front panel function keys, f(x) and g(x) are also individually programmable to perform specific control functions. While in the Display Mode, the primary function is executed the instant the key is pressed. Holding the function key for three seconds executes a secondary function. It is possible to program a secondary function without a primary function.

In most cases, if more than one user input and/or function key is programmed for the same function, the maintained (level trigger) actions will be performed while at least one of those user inputs or function keys are activated. The momentary (edge trigger) actions will be performed every time any of those user inputs or function keys transition to the active state.

Note: In the following explanations, not all selections are available for both user inputs and front panel function keys. Displays are shown with each selection. Those selections showing both displays are available for both. If a display is not shown, it is not available for that selection.  $U_{5Er-n}$  will represent both user inputs.  $F_n$  will represent both function keys and second function keys.



FNI

Frut

FNC

operating mode.

Frut

activated (U5r = maintained action; Fn = toggle). The output is "bumpless" when transferring to/from either

F

#### **RESET MAXIMUM DISPLAY**



When activated (momentary action), r5EŁ flashes and the Maximum resets to the present Input Display value. The Maximum function then continues from that value. This selection functions independent of the selected display.

#### SELECT MINIMUM DISPLAY

USrn The Minimum display appears on Line 2 as long as activated (maintained). When the user input is released, the previously selected FND display is returned. The **D** or **P** keys override and disable the active d-Lo user input. The Minimum continues to function independent of the selected display.

#### **RESET MINIMUM DISPLAY**

Fn llarn FN FNF r. -Lo r-io

When activated (momentary action), r5EŁ flashes and the Minimum resets to the present Input Display value. The Minimum function then continues from that value. This selection functions independent of the selected display.

#### RESET MAXIMUM AND MINIMUM DISPLAY



15rn

r-AL

FO

ASEL

Un

ПО

Rn

Fn

r - AL

FOL

When activated (momentary action), r5EŁ flashes and the Maximum and Minimum readings are set to the present Input Display value. The Maximum and Minimum function then continues from that value. This selection functions independent of the selected display.

#### **RESET ALARMS**

When activated (momentary action), the controller will reset any active alarms that are selected in the User/ Function Alarm Selection Menu (#5EL).

Basic Mode: 4 Alarms Max Advanced Mode: 16 Alarms Max

#### ALARM MASK SELECTION

Selects the alarms that will be reset when the User Input/ Function keys are activated. Any alarms configured as "YE5" will be reset depending on the alarms configuration. Please see the Alarms section of the manual for more information on the alarm reset operation.



When activated (momentary action), the display intensity changes to the next intensity level.

#### DISPLAY SELECT

IFn USrn FOC FOC di SP di SP

When activated (momentary action), Line 2 advances to the next display that is not locked out from the Display Mode.

| <b>U5rn</b><br>mc | Fn<br>m<br>LI SE | (<br>a<br>tl<br>a |
|-------------------|------------------|-------------------|
|                   |                  | a<br>(:           |

#### SELECT PARAMETER LIST

Two lists of input scaling points and alarm values including band and deviation) are available. The two lists are named L5EA and L5Eb. If a user input is used to select he list then LSER is selected when the user input is not active and L5Lb is selected when the user input is active maintained action). If a front panel key is used to select the list then the list will toggle for each key press

(momentary action). The display will only indicate which list is active when the list is changed. To program the values for List-A and List-B, first complete the programming of all the parameters. Exit programming and switch to the other list. Re-enter programming and enter the desired values for the input scaling points, alarms, band, and deviation if used.

PRINT REQUEST

| USrn<br>m | Fn,  | E |
|-----------|------|---|
| Prnt      | Prnl | L |
|           |      |   |

The meter issues a block print through the serial port when activated, and the serial type is set to rLC. The data transmitted during a print request and the serial type is programmed in Module 7. If the user input is still active after the transmission is complete (about 100 msec), an additional transmission occurs. As long as the user input is held active, continuous transmissions occur.

### OUTPUT PARAMETERS (Dub)

OUTPUT SELECT

Out I NP d6tL

dGFT Anl 6

Select the Digital or Analog output to be programmed. The Analog output selection only appears if an analog output and/or digital output plug-in card is installed in the meter. When there is no output card installed, "No Card" will be displayed on the display when trying to enter the Output Configuration.

### DIGITAL OUTPUT PARAMETERS (dbtl)

To have digital output capabilities, a digital output Plug-in card needs to be installed into the PAX2C (see Ordering Information). Depending on the output card installed, there will be two or four digital outputs available.



# 5

DIGITAL OUTPUT SELECTION

0011 0012 0013 0014

lects the digital output to be programmed. The "lubn" in the **DuEn** following parameters will reflect the chosen output number. After the chosen output is completely programmed, the display returns to the Output Select menu. Repeat steps for each output to be programmed. The number of outputs available is digital output card (PAXCDS) dependent (2 or 4).

#### DIGITAL OUTPUT ASSIGNMENT



1 61 E

SAEL

On

NONE HERE [ 0 0 L AL r глял

This selection is used to assign the controller's digital outputs to various internal values or conditions. It is possible to assign the same properties to more than one output.

- $\Pi \square \Pi E = Digital Output is disabled$
- **HERE** = Heat Output Power
- $\begin{bmatrix} \square \square L \end{bmatrix} = \text{Cool Output Power}$
- $\pi L r = Alarm$
- $\Pi \Pi \Pi =$  Manual Control Mode

#### ALARM LOGIC MODE

#### SNGL And n.

The PAX2C supports three different modes when an output is assigned as an alarm:

- $5\pi 5L$  = Any single alarm. Selecting YES to any selection will change other alarm selections to NO.
- Hnd = Allows multiple alarms to be mapped to an output using AND Boolean logic. For example: If AL1 and AL2 are active, the output will energize.

 $\prod r$  = Allows multiple alarms to be mapped to an output using OR Boolean logic. For example: If AL1 or AL2 are active, the output will energize.

#### ALARM MASK ASSIGNMENT

ПΩ 9E 5

Selects the alarms to be logically combined per the Alarm Logic Mode selection. Any alarms configured as "45" will be used in the Boolean logic calculation. If the Alarm Logic Mode is assigned as Single (5/16L), only one alarm may be selected at a time.

> Basic Mode: 4 Alarms Max Advanced Mode: 16 Alarms Max

#### **DIGITAL OUTPUT CYCLE TIME**

### 1 01 20 SEC

ASEL

lin

ПО

Rn

00 to 600 seconds

The Cycle Time value is the sum of a time-proportioned output's on and off cycles. With time proportional outputs, the percentage of output power is converted into output on time of the cycle time value eg. if the controller's algorithm calls for 65% power, and has a Cycle

Time of 10 seconds, the output will be on for 6.5 seconds and off for 3.5 seconds. A Cycle Time equal to, or less than, one-tenth of the process time constant is recommended.

This parameter is only available when the digital output assignment is configured as HEAL or EDDL.

### 566

#### www.redlion.net

### **Analog Output Parameters (ROL5)**

This section is only accessible with the optional PAXCDL Analog card installed (see Ordering Information).



### A260 Rnl поле

YPE

4-20

Bal

| ПОЛЕ | і ПРЕ | HI | L 0 | 01 |
|------|-------|----|-----|----|
| 5 P  | dEu   |    |     |    |

Enter the source for the analog output to retransmit:

- = Manual Mode operation. (See Serial RLC попе
  - Protocol in the Communications Port module).
- I TIPE = Input Value
  - **H** = Maximum Display Value
  - $L \square = Minimum Display Value$
  - $\mathbf{DP} = \text{Output Power}$
  - 5P = Active Setpoint Value
  - $dE_u$  = Deviation from the Setpoint value



### ANALOG LOW SCALE VALUE

#### - 1999 to 9999

Enter the Display Value that corresponds to 0 mA (0-20 mA), 4 mA (4-20 mA) or 0 VDC (0-10 VDC).

Enter the Display Value that corresponds to 20 mA (0-20 mA), 20



#### ANALOG UPDATE TIME

0.0 to 10.0 seconds

Enter the analog output update rate in seconds. A value of 0.0 allows the meter to update the analog output at the ADC Conversion Rate.

The following programming step is only available when Input Type in the Input Menu is set for a temperature input (TC/RTD).

### FLE Rol LO

Lo

#### **PROBE BURN-OUT ACTION**

H,

Enter the probe burn-out action. In the event of a temperature probe failure, the analog output can be programmed for low or high scale.

### DISPLAY PARAMETERS (dl 5P)

#### **DISPLAY SELECT**



ЕЛЕБ 200E HILD EDde

ENF6

Select the display parameters to be programmed.

### **DISPLAY PARAMETERS: GENERAL CONFIGURATION ([]]F5)**



NF 6

### **DISPLAY INTENSITY LEVEL**

#### 0 to 4

Enter the desired Display Intensity Level (0-4) by using the arrow keys. The display will actively dim or brighten as the levels are changed. This parameter can also be accessed in the Display, Parameter or Hidden Loops when enabled.



dlEU

dSI

Ч

### 0 to 15

1

Enter the desired Display Contrast Level (0-15) by using the arrow keys. The display contrast / viewing angle will actively adjust up or down as the levels are changed. This parameter can also be accessed in the Display, Parameter or Hidden Loops when enabled.

### dSPE dSI 2

#### **DISPLAY UPDATE RATE (/SEC)**

2 5

**DISPLAY CONTRAST LEVEL** 

This parameter configures the display update rate. It does not affect the response time of the setpoint output or analog output option cards

10 20

#### **OPERATING MODE**

#### 651 C AGAE

This parameter configures the unit to operate in Basic or Advanced 65I C Mode. Basic mode offers a reduced menu structure geared towards simpler applications that may not require the more advanced features of the PAX2C.

#### Basic Mode (65/ [):

Maximum of four alarms

Configuration of Display Color Zones is limited to a default color (no dynamic changing of zone colors based on mapped parameters)

#### Advanced Mode(RdUE):

Maximum of sixteen alarms Full configuration on all seven Display Color Zones

The following programming step is only available when switching from Advanced Operating Mode to Basic Operating Mode. The PAX2C Factory default is Basic Operating Mode.

#### **BASIC MODE RESET**

#### YES

ПО

Resets the unit back to Basic Operating Mode factory defaults.

Warning: Any Advanced Operating Mode configuration in the unit that is not supported in Basic Operating Mode will be cleared and reset back to factory defaults.

5EE

ΠΠ

### **DISPLAY PARAMETERS: ZONE SELECT (2002)**

#### ZONE SELECT



Lol Lo2 UAol UAo2 UAo3 UAo4 Mo

Select the zone to be programmed.

### DISPLAY PARAMETERS: ZONE CONFIGURATION - LINE 1 & LINE 2 (Lo 1 & Lo2)



#### 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

234567892c29h , m n o 9 r u w - : []r'°\_ blank

Two character spaces are required to display this character.

#### LINE n GREEN BACKLIGHT ASSIGNMENT

brn Lor NONE

NONE OUEI OUEZ OUEJ OUEY ALF MAN Select the parameter to be assigned to Line n Green Backlight.

#### LINE n ORANGE BACKLIGHT ASSIGNMENT



#### ЛОЛЕ OUEI OUEZ OUEJ OUEY ALA MAA



#### LINE n RED BACKLIGHT ASSIGNMENT



NONE Out∣ Out2 Out3 Out4 ALr MAN

Select the parameter to be assigned to Line n Red Backlight.

#### LINE n GREEN-ORANGE BACKLIGHT ASSIGNMENT



NONE OUEI OUEZ OUEJ OUEY ALF MAN

Select the parameter to be assigned to Line n Green-Orange Backlight.

#### LINE n RED-ORANGE BACKLIGHT ASSIGNMENT



NONE Outi Outi Outi Outi Alr MAN

Select the parameter to be assigned to Line n Red-Orange Backlight.

#### LINE n RED-GREEN BACKLIGHT ASSIGNMENT



NONE Out∣ Out2 Out3 Out4 ALr MAN

Select the parameter to be assigned to Line n Red-Green Backlight.

The following programming steps are only available in the Advanced Operating Mode.

These parameters allow Line n backlights to change color, or alternate between two colors when the mapped parameter is activated. When multiple backlight assignments are programmed for a particular zone, the color priority is defined as follows (from Lowest to Highest): 6rn, 0r9, Red, 6n0r, RdOr, Rdon

#### **BACKLIGHT ASSIGNMENT SELECTIONS**

- $\Pi \square \Pi E = \text{Backlight color change disabled}$  $\square \sqcup \vdash I = Output 1$
- $\square u E Z = Output 2$
- $[] \cup E ] = Output 3$
- $\Box \cup E \Psi = Output 4$
- HLr = Alarm

The following two programming steps are only available when the Backlight Assignment is configured as an Alarm ( $\beta h$ ). These steps apply to each of the six different backlight color assignment parameters.

#### ALARM LOGIC MODE

#### 161 E Lni SN6L

The PAX2C supports three different modes when an output is assigned as an alarm:

5*N*6L

- $5\Pi 6L = Any single alarm$
- = Allows multiple alarms to be mapped to an output Rnd using AND Boolean logic. For example: If AL1 and AL2 are active, the output will energize.

And

0r

= Allows multiple alarms to be mapped to an output Ūr using OR Boolean logic. For example: If AL1 or AL2 are active, the output will energize.

#### ALARM MASK ASSIGNMENT



ПП 4E S

Selects the alarms to be logically combined per the Alarm Logic Mode selection. Any alarms configured as 4E5 will be used in the Boolean logic calculation. If the Alarm Logic Mode is assigned as Single (SNGL), the last alarm selected as 425 will be used.
### DISPLAY PARAMETERS: ZONE CONFIGURATION - UNIVERSAL ANNUNCIATORS 1-4 (URnn)



#### UNIVERSAL ANNUNCIATOR n DISPLAY COLOR



Enter the desired Universal Annunciator Display color.  $\beta r n = \text{Green}$  $\beta r n = 6 \text{Green}$ 

r E d = Red

#### UNIVERSAL ANNUNCIATOR n UNITS MNEMONIC

UNE 5 01

OFF ON

This parameter allows programming of the display mnemonics characters. Two individual characters may be selected from a preprogrammed list.

The characters available for the programmable modes include:

A b [ d E F 6 H I J K L M II O P O P 5 E U V W Y 2 O 1 2 3 4 5 6 7 8 9 3 c E 9 h , m n o 9 r u w - : [ ] r <sup>o</sup> . blank Two character spaces are required to display this character.

#### UNIVERSAL ANNUNCIATOR n DISPLAY MODE

RdSP <sup>um</sup> nor

nor rEu FLSh

Enter the desired Universal Annunciator Display Mode. This parameter is available when the Universal Annunciator is in List  $(l \ 5 \ L)$  Mode.

- **nar** = Displays the configured universal annunciator when the mapped parameter is activated (on).
- r E u = Displays the configured universal annunciator when the mapped parameter is deactivated (off).
- FL5h = Flashes the configured universal annunciator when the mapped parameter is activated (on).

#### **UNIVERSAL ANNUNCIATOR n ASSIGNMENT**



NONE Out 1 Out 2 Out 3 Out 4 ALr MAN

Selects the parameter that enables the Universal Annunciator mnemonic to be displayed. If the mapped parameter is active, the mnemonic is displayed. If the mapped parameter is not active, the mnemonic will be disabled (off).

> $\Pi \square \Pi E = \text{Universal Annunciator text is disabled}$  $\Pi \sqcup E = \text{Output 1}$  $\Pi \sqcup E = \text{Output 2}$  $\Pi \sqcup E = \text{Output 3}$

- $\square \square \vdash = 0$  Utput 4
- BLr = Alarm

The following programming steps are only available in the Advanced Operating Mode.

These parameters allow Universal Annunciator n backlights to change color, or alternate between two colors when the mapped parameter is activated. When multiple backlight assignments are programmed for a particular zone, the color priority is defined as follows (from Lowest to Highest): brn, 0rb, rEd, bn0r, rd0r, rd0r, rdbn

#### **BACKLIGHT ASSIGNMENT SELECTIONS**

 $\Pi \square \Pi E = \text{Backlight color change disabled}$  $\square \mu E I = \text{Output 1}$ 

- $\square u E = Output 2$
- $\Box \sqcup L \exists$  = Output 3
- $\square u E \Psi = \text{Output } 4$
- ALr = Alarm
- התחות = Manual Control Mode

The following two programming steps are only available when the Backlight Assignment is configured as an Alarm ( $\Re l_r$ ). These steps apply to each of the six different backlight color assignment parameters.



#### 1-717-767-6511

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com



#### **UNIVERSAL ANNUNCIATOR n GREEN BACKLIGHT ASSIGNMENT**

NONE Out∣ Out2 Out3 Out4 ALr MAN

Select the parameter to be used to activate the Green backlight on Universal Annunciator n.



#### **UNIVERSAL ANNUNCIATOR n ORANGE BACKLIGHT ASSIGNMENT**

NONE Out∣ Out2 Out3 Out4 ALr MAN

Select the parameter to be used to activate the Orange backlight on Universal Annunciator n.



LIRI ПОЛЕ

rdūr

URi поле

LIRn

#### **UNIVERSAL ANNUNCIATOR n RED BACKLIGHT ASSIGNMENT**

NONE OUEI OUEZ OUEJ OUEY ALF MAN

Select the parameter to be used to activate the Red backlight on Universal Annunciator n.

#### **UNIVERSAL ANNUNCIATOR n GREEN-ORANGE BACKLIGHT ASSIGNMENT** 6n0r

NONE OUEI OUEZ OUEJ OUEY ALA MAN

Select the parameter to be used to activate the Green-Orange backlight on Universal Annunciator n.

#### **UNIVERSAL ANNUNCIATOR n RED-ORANGE BACKLIGHT ASSIGNMENT**

NONE OUEI OUEZ OUEJ OUEY ALF MAN

Select the parameter to be used to activate the Red-Orange backlight on Universal Annunciator n.

#### **UNIVERSAL ANNUNCIATOR n RED-GREEN BACKLIGHT ASSIGNMENT**

rdbn F ПОЛЕ

NONE Out∣ Out2 Out3 Out4 ALr MAN

Select the parameter to be used to activate the Red-Green backlight on Universal Annunciator n.

### DISPLAY PARAMETERS: ZONE CONFIGURATION - MNEMONICS (1797)



The following programming steps are only available in the Advanced Operating Mode.

These parameters allow the mnemonic backlights to change color, or alternate between two colors when the mapped parameter is activated. When multiple backlight assignments are programmed for a particular zone, the color priority is defined as follows (from Lowest to Highest): 6rn, 0r6, rEd, 6n0r, rd0r, rd6n

#### **BACKLIGHT ASSIGNMENT SELECTIONS**

- $\Pi \square \Pi E = \text{Backlight color change disabled}$  $\square u l = Output 1$
- $\square \sqcup \vdash = Output 2$
- $\Box \cup E \exists = Output 3$  $\Box_{\mu} E \Psi = Output 4$

6ł [

SABL

95FI

ПО

HBr

- $\mathcal{HLr} = Alarm$
- הקרח = Manual Control Mode

The following two programming steps are only available when the Backlight Assignment is configured as an Alarm ( $\Re h$ ). These steps apply to each of the six different backlight color assignment parameters.

#### ALARM LOGIC MODE Пr 586L And The PAX2C supports three different modes when an output is assigned as an alarm: $5\Pi 6L = Any single alarm$ Rnd = Allows multiple alarms to be mapped to an output using AND Boolean logic. For example: If AL1 and AL2 are active, the output will energize. $\int r$ = Allows multiple alarms to be mapped to an output using OR Boolean logic. For example: If AL1 or AL2 are active, the output will energize. ALARM MASK ASSIGNMENT ПО YE S

Selects the alarms to be logically combined per the Alarm Logic Mode selection. Any alarms configured as YES will be used in the Boolean logic calculation. If the Alarm Logic Mode is assigned as Single (5/15L), only one alarm may be selected at a time.



Select the parameter to be used to activate the mnemonic Green

#### **MNEMONICS ORANGE BACKLIGHT ASSIGNMENT**



NONE Out∣ Out2 Out3 Out4 ALr MAN

Select the parameter to be used to activate the mnemonic Orange backlight.

#### **MNEMONICS RED BACKLIGHT ASSIGNMENT**



NONE OUEI OUEZ OUEJ OUEY ALF MAN Select the parameter to be used to activate the mnemonic Red backlight.

#### **MNEMONICS GREEN-ORANGE BACKLIGHT ASSIGNMENT**

6nür NONE Out 1 Out 2 Out 3 Out 4 ALr MAN Ph-Select the parameter to be used to activate the mnemonic Greenполе Orange backlight.

#### **MNEMONICS RED-ORANGE BACKLIGHT ASSIGNMENT**



rdbn

поле

NONE Out∣ Out2 Out3 Out4 ALr MAN Select the parameter to be used to activate the mnemonic Red-

#### MNEMONICS RED-GREEN BACKLIGHT ASSIGNMENT

NONE Out∣ Out2 Out3 Out4 ALr MAN

Select the parameter to be used to activate the mnemonic Red-Green backlight.

## DISPLAY PARAMETERS: LINE 2 PARAMETERS (LOES)

This section details programming for the Line 2 (Bottom Line) Display. Various Input, Display, PID, Alarm, and Function Parameters can be shown on the Line 2 display. The display loops described below are used to view, reset and modify the selected display values, based on the Line 2 Value Access setting programmed for each available value.

#### Main Display Loop

In the Main display loop, the selected values can be consecutively read on Line 2 by pressing the **D** key. The lower 3-character units mnemonic indicates which Line 2 value is currently shown. When in the Main display loop, the Function keys  $\boxed{F1}$  and  $\boxed{F2}$  perform the User functions programmed in the User Input program section.

## Parameter Display Loop and Hidden Parameter Loop

These display loops provide quick access to selected parameters that can be viewed and modified on Line 2 without having to enter Full Programming Mode. To utilize the Hidden Parameter display loop, a security code (1-250) must be programmed. (See Security Code Configuration at the end of this section.)The Parameter display loop is accessed by pressing the **P** key. The selected Parameter display loop values can be viewed and/or changed per the Line 2 Value Access setting programmed for each available value. The Hidden Parameter loop follows the Parameter display loop, and can only be accessed when the correct security code is entered at the Code prompt.

#### Line 2 Value Access Configuration

Line 2 values can be made accessible in either the Main (**D** key), Parameter (**P** key) or Hidden (**P** key following code entry) display loops. When the List parameter is configured for an Ent setting, a List assignment submenu will follow. Refer to Input module, User sub-menu section for a description of the function. Each parameter must be configured for one of the following settings. Not all settings are available for each parameter, as shown in the Parameter Value Access table.

#### SELECTION DESCRIPTION

- LOL Not viewed on Line 2 Display (Factory Default Setting).
- *dr E d* View in Main display loop. Cannot change or reset.
- dEnt View and change in Main display loop.
- **PrEd** View in Parameter display loop. Cannot change or reset.
- **PEnE** View and change in Parameter display loop.
- HrEd View in Hidden display loop. Cannot change or reset.
- HEnt View and change in Hidden display loop.

| DISPLAY | DESCRIPTION                                          | NOT<br>VIEWED | MENU DISI<br>(D F | PLAY LOOP<br>(EY) | PARAMETER DISPLAY<br>LOOP (P KEY) |      | HIDDEN LOOP |      |
|---------|------------------------------------------------------|---------------|-------------------|-------------------|-----------------------------------|------|-------------|------|
|         |                                                      | LOC           | dr Ed             | dEnt              | PrEd                              | PEnt | HrEd        | HEnt |
| i NPE   | Input                                                | х             | x                 |                   | х                                 |      | х           |      |
| H       | Max Value                                            | х             | х                 | х                 | х                                 | х    | х           | х    |
| LO      | Min Value                                            | х             | x                 | x                 | х                                 | х    | х           | х    |
| dLEU    | Display Intensity Level                              | х             | x                 | x                 | х                                 | х    | х           | х    |
| dEnt    | Display Contrast Level                               | х             | x                 | x                 | х                                 | х    | х           | х    |
| 5P      | Actual Setpoint Value                                | х             | x                 | x                 | х                                 | х    | х           | х    |
| 5P (    | Setpoint 1 Value                                     | х             | х                 | х                 | х                                 | х    | х           | х    |
| 5P2     | Setpoint 2 Value                                     | х             | x                 | x                 | х                                 | х    | х           | х    |
| OP      | Output Power (must be in manual mode to edit)        | х             | x                 | x                 | х                                 | х    | х           | х    |
| dEu     | Deviation                                            | х             | x                 |                   | х                                 |      | х           |      |
| SPrP    | Setpoint Ramping                                     | х             | x                 | x                 | х                                 | х    | х           | х    |
| Pid ACE | Actual PID Values: P, I & D                          | х             | x                 | x                 | х                                 | х    | х           | х    |
| PidPri  | Primary PID Values: P, I & D                         | х             | x                 | x                 | х                                 | х    | х           | х    |
| Pid ALL | Alternate PID Values: P, I & D                       | х             | х                 | х                 | х                                 | х    | х           | х    |
| ALn     | Alarm Values: Basic Mode (1-4), Advanced Mode (1-16) | х             | x                 | x                 | х                                 | х    | х           | х    |
| bdn     | Band/Deviation                                       | х             | х                 | х                 | х                                 | х    | х           | х    |
| SPSL    | Setpoint Selection                                   | х             | x                 | x                 | х                                 | х    | х           | х    |
| SPrP    | Setpoint Ramping                                     | х             | x                 | x                 | х                                 | х    | х           | х    |
| ILOE    | Integral Lock                                        | х             | x                 | x                 | х                                 | х    | х           | х    |
| ErnF    | Manual/Auto Control Mode                             | х             | x                 | x                 | х                                 | х    | х           | х    |
| PSEL    | PID Parameter Selection                              | х             | х                 | х                 | х                                 | х    | х           | х    |
| EunE    | Tuning Enable                                        | х             | x                 | x                 | х                                 | х    | х           | х    |
| r-Hl    | Reset Maximum Value                                  | х             |                   | x                 |                                   | х    |             | х    |
| r-Lo    | Reset Minimum Value                                  | х             |                   | x                 |                                   | х    |             | х    |
| r-HL    | Reset Max and Min Values                             | х             |                   | x                 |                                   | х    |             | x    |
| r-AL    | Reset Alarms                                         | х             |                   | x                 |                                   | х    |             | х    |
| LI SE   | Parameter List A/B Access                            | х             | x                 | x                 | x                                 | х    | х           | х    |
| Prot    | Print Request                                        | x             |                   | x                 |                                   | х    |             | х    |

#### LINE 2 PARAMETER VALUE ACCESS

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### LINE 2 VALUE ACCESS PARAMETER SELECTION

INPE dISP Pid ALr FNCE

Select the display parameters to be displayed.

1005

I NPE

**NP**E

H

LOE

L0[

## DISPLAY PARAMETERS: LINE 2 PARAMETER VALUE ACCESS - INPUT (1992)



L0

LnZ

LOC

LOC

drEd

#### LINE 2 INPUT ACCESS

LOC drEd PrEd HrEd

Displays the controller process input reading on Line 2.

#### LINE 2 MAX ACCESS

LOE dred dent Pred Pent Hred Hent

When configured for dEnk, PEnk or HEnk, the Max Display value can be reset using a front keypad sequence. To reset, push the **P** key while viewing the Hi value on Line 2. The display will show rHI RD. Press the (FR) key to select 4E5 and then press **P** key. The display will indicate r5Ek and then return to the Hi value parameter.

#### LINE 2 MIN ACCESS

When configured for dEnt, PEnt or HEnt, the Min Display value can be reset using a front keypad sequence. To reset, push the **P** key while viewing the Lo value on Line 2. The display will show rLo  $\Pi$ . Press the  $\overline{\text{Ft}}$  key to select  $\frac{4}{5}$  and then press **P** key. The display will indicate r5 and then return to the Lo value parameter.

dEnt PrEd PEnt HrEd HEnt

## DISPLAY PARAMETERS: LINE 2 PARAMETER VALUE ACCESS - DISPLAY (# 5P)





#### LINE 2 DISPLAY INTENSITY LEVEL

LOC drEd dEnt PrEd PEnt HrEd HEnt

When configured for dEnE, PEnE or HEnE, the display intensity can be adjusted in the selected display loop by using the  $\underline{F1}$  and  $\underline{F2}$  keys while viewing dLEU.

| LINE 2 | DISPLAY | CONTRAST | LEVEL |
|--------|---------|----------|-------|
|        |         |          |       |



LOC drEd dEnt PrEd PEnt HrEd HEnt

When configured for dEnk, PEnk or HEnk, the display contrast can be adjusted in the selected display loop by using the  $\boxed{F1}$  and  $\boxed{F2}$  keys while viewing dEnk.

### DISPLAY PARAMETERS: LINE 2 PARAMETER VALUE ACCESS - PID (P d)



SPrP

LOC

Lnd

#### LINE 2 ACTIVE SETPOINT VALUE

<u>59</u> Lnd LOE

#### LOC dred dent Pred Pent Hred Hent

When configured for dEnt, PEnt or HEnt, the active setpoint value can be adjusted in the selected display loop by using the  $\underline{F1}$  and  $\underline{F2}$ keys while viewing SP. When configured for d-ENt, the P key must be pressed to select the item prior to changing the value.



592

1 07

LOE

#### LINE 2 SETPOINT 1 VALUE

LOC dred dent Pred Pent Hred Hent

When configured for dEnt, PEnt or HEnt, the Setpoint 1 value can be adjusted in the selected display loop by using the  $\underline{FI}$  and  $\underline{F2}$  keys while viewing 591. When configured for dEnt, the P key must be pressed to select the item prior to changing the value.

#### LINE 2 SETPOINT 2 VALUE

#### 100 deed deal peed peak Heed Heat

When configured for dEnt, PEnt or HEnt, the Setpoint 2 value can be adjusted in the selected display loop by using the  $\underline{FI}$  and  $\underline{FI}$  keys while viewing 5P2. When configured for dEnt, the P key must be pressed to select the item prior to changing the value.

## ΩP Ln2 LOC

#### LINE 2 OUTPUT POWER VALUE

LOC dred dent Pred Pent Hred Hent

Displays the Output Power value on Line 2 in the selected display loop. In manual mode, the value can be adjusted in the selected display loop by using the F1 and F2 keys. When configured for dEnt, the **P** key must be pressed to select the item prior to changing the value



#### **LINE 2 DEVIATION VALUE**

LOC drEd PrEd HrEd

Displays the difference between Temp/Process and the Actual Setpoint value on Line 2 in the selected display loop.

#### LINE 2 SETPOINT RAMPING VALUE

LOC drEd dEnt PrEd PEnt HrEd HEnt When configured for dEnt, PEnt or HEnt, the Setpoint Ramping value can be adjusted in the selected display loop by using the  $\overline{F1}$  and Weys while viewing 5PrP. When configured for dEnt, the P key must be pressed to select the item prior to changing the value.

#### LINE 2 ACTUAL PID VALUES



#### LINE 2 PRIMARY PID VALUES



D ιď

Lnd

RLE

LOE

LOC dred dent Pred Pent Hred Hent When configured for dEnt, PEnt or HEnt, the Primary PID values (P, I & D) can be adjusted in the selected display loop by using the F1 and 🖾 keys while viewing the selected parameter. When configured for dEnt, the P key must be pressed to select the item prior to

#### LINE 2 ALTERNATE PID VALUES

LOC dred dent Pred Pent Hred Hent

When configured for dEnt, PEnt or HEnt, the Alternate PID values (P, I & D) can be adjusted in the selected display loop by using the  $\overrightarrow{F1}$  and  $\overleftarrow{F2}$  keys while viewing the selected parameter. When configured for dEnt, the P key must be pressed to select the item prior to changing the value.

### DISPLAY PARAMETERS: LINE 2 PARAMETER VALUE ACCESS - ALARMS (船)



#### **LINE 2 ALARM ACCESS**



| LINE 2 BAND/DEVIATION ACCESS |  |
|------------------------------|--|
|                              |  |

**bdn** LOE drEd dEnt PrEd PEnt HrEd HEnt LOE When configured for dEnt, PEnt or HEnt, the Band/Deviation n value can be adjusted in the selected display loop by using the  $\underline{Fh}$  and  $\underline{FP}$  keys while viewing bdn. When configured for dEnt, the **P** key must be pressed to select the item prior to changing the value.

Basic Mode: 4 alarms max Advanced Mode: 16 alarms max

## DISPLAY PARAMETERS: LINE 2 USER FUNCTION ACCESS - FUNCTIONS (Frick)



### LINE 2 USER FUNCTION ACCESSIBLE ITEMS

The following list of User functions can be made available in the Display (dEnt), Parameter (PEnt) or Hidden (HEnt) display loops. The more critical and frequently used Functions should be first assigned to the User Inputs and User Function keys. If more functions are needed than what can be obtained with User Inputs, this feature will provide a means to provide that access. Please refer to the USER INPUT / FUNCTION KEY PARAMETERS (dSEr) section for a detailed description of the available functions.

| SPSL | ILDE    | PSEL | r – Hl | r-HL   | LI 5E * |
|------|---------|------|--------|--------|---------|
| SPrP | t r n F | EunE | r-Lo   | r - AL | Prnt    |

\* Also available as a read-only item in the Display (drEd), Parameter (PrEd) or Hidden (HrEd) Display loops.

#### LINE 2 PARAMETER LIST A/B ACCESS



LOC drEd dEnt PrEd PEnt HrEd HEnt

When configured for dEnk, PEnk or HEnk, the Parameter list can be selected using a front keypad sequence. To select, push the **P** key while viewing lJ 5k x". "x" will begin to flash, press the <u>FR</u> key to select "A" or "b" and then press **P** key. The selected Parameter List

will become active and the display will advance to the next available item or menu loop. See User Functions "Select Parameter List" for a description of the list function. The Line 2 Parameter List provides a means of setting or viewing the active parameter list.

### **DISPLAY PARAMETERS: DISPLAY MIN/MAX CONFIGURATION (HELD)**



#### MAX CAPTURE DELAY TIME



0.0 to 25.0 seconds

When the Input Display is above the present MAX value for the entered delay time, the controller will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.



00 to 250 seconds

When the Input Display is below the present MIN value for the entered delay time, the controller will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

### DISPLAY PARAMETERS: SECURITY CODE CONFIGURATION ([0df)



#### **PROGRAMMING SECURITY CODE**



#### 0 to 250

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (PLOC) in the User Input Function parameter (Input [User] module).

To activate the Hidden Parameter display loop, a security code (1-250) must be entered. If a "0" security code is programmed, Full Programming Mode is available following the Parameter Loop. Pressing the P key takes you into, and is used to step through the Parameter Loop. Two modes are available. Full Programming mode allows all parameters to be viewed and modified. Parameter display loop mode provides access to those selected parameters that can be viewed and/or modified without entering the Full Programming mode.

The following chart indicates the levels of access based on various LodE and User Input PLOE settings.

| SECURITY<br>CODE | USER INPUT<br>CONFIGURED | USER INPUT<br>STATE | HIDDEN AND FULL<br>PROGRAMMING MODE ACCESS                       |
|------------------|--------------------------|---------------------|------------------------------------------------------------------|
| >0               | PLDE or<br>Not Active    | Any State           | After Parameter Display Loop with correct code # at [DdE prompt. |
| 0                | PLOC                     | Active              | No Access                                                        |
| 0                | PLDE or<br>Not Active    | Not Active          | Access after Parameter Display Loop                              |

MIN CAPTURE DELAY TIME

## PID PARAMETERS (P d)

#### **PID PARAMETER MENU SELECTION**



Etrl 5 P Pid PWr ONDF LunE

Select the PID parameter menu to be programmed.

## PID PARAMETERS: CONTROL PARAMETERS (Etrl)



#### **PID CONTROL TYPE**

EAbE HEAF

ErnF

HERE [ 0 0 L вогн

Select the type of PID control desired. When programmed for Heating action (reverse), the output power decreases when the Process Value is above the setpoint value. When programmed for Cooling (direct), the output power will increase if the Process value is above the Setpoint Value.

## **PID CONTROL MODE**

Ruto глял

Select Automatic or Manual Operation. In Automatic (Auto) mode Auto (closed loop; On/Off, or PID Control), the controller calculates the required output to reach and maintain setpoint, and acts accordingly. In manual mode (MMI), the calculated PID algorithm heat and cool output percentages are not used to control the controller outputs. The unit is instead placed into an open loop mode where the control does not work from a setpoint or process feedback.

The following programming step is only available when PID Control Mode is set to Manual Mode (MAR).

#### **OUTPUT POWER**

ΩP USr 00

- 1000 to 1000 %

Manual Output Power is the level the PID module will assume in manual mode.

## **PID PARAMETERS: SETPOINT PARAMETERS (5**<sup>p</sup>)



#### SETPOINT SELECTION

SPSL SP I

#### 5P1 5P2

Select the desired Setpoint Value (SP1 or SP2) to use as the control point. The SP Select function can also be configured in the Display Parameter L025 Menu ( $P_{id}$  L025) or a User Input or Function Key can be assigned to the Setpoint Select Function.



### SETPOINT 1 VALUE

#### - 1999 to 9999

One of the two values that may be selected as the target setpoint of the process.



#### **SETPOINT 2 VALUE**

- 1999 to 9999

One of the two values that may be selected as the target setpoint of the process.

#### SETPOINT LOW LIMIT

# 5PL0 0.0,

#### \_\_\_\_\_

- 1999 to 9999

Select the desired Setpoint Low Limit value. This value should be selected so that the controller setpoint value cannot be set outside the safe operating range of the process.

#### SETPOINT HIGH LIMIT

**SPHI** 999.9 se

SPrP

OFF

SPrr

00

- 1999 to 9999

Select the desired Setpoint High Limit value. This value should be selected so that the controller setpoint value cannot be set outside the safe operating range of the process.

#### SETPOINT RAMPING TIMEBASE

OFF SEC MIN hour

Select the desired unit of time for ramping of the process:

- hour = Hours

#### SETPOINT RAMP RATE

#### 0 to 9999

The Ramp Rate property is used to reduce sudden shock to a process during setpoint changes and system startup, a setpoint ramp rate can be used to increase or decrease the Target Setpoint at a controlled rate. The value is entered in units/time. A value of 0 disables setpoint ramping. If the Setpoint Ramp Rate is a non-zero

value, and the Actual Setpoint is changed or the controller is powered up, the controller sets the Target Setpoint to the current process measurement, and uses that value as its setpoint. It then adjusts the Target Setpoint according to the setpoint Ramp Rate. When the Target Setpoint reaches the Actual Setpoint, the controller resumes use of the Actual Setpoint value. (In a properly designed and functioning system, the process will have followed the Target Setpoint value to the Actual Setpoint value.)

### PID PARAMETERS: PID PARAMETERS (P d)



FLEr

OPOF

00

10

#### PID PARAMETER SELECTION



#### Pri ALE

Select the desired set of PID Values (Primary or Alternate) that will be used in the PID calculation. The PID Parameter Selection function can also be configured in the Display Parameter LOE5 Menu (P of LOE5) or a User Input or Function Key can be assigned to the PID Parameter Selection Function.

#### PRIMARY/ALTERNATE PROPORTIONAL BAND



l nEE

120

dErt

F

### 0 to 99999 %

The Proportional Band property, entered as a percentage of the full input range, is the amount of input change required to vary the output full scale. For temperature inputs, the input range is fixed per the entered thermocouple or RTD type. For process inputs, the input range is the difference between the Process at 0%, and Process at

100% values. The Proportional Band is adjustable from 0.0% to 999.9%, and should be set to a value that provides the best response to a process disturbance while minimizing overshoot. A Proportional Band of 0.0% forces the controller into On/Off Control with its characteristic cycling at setpoint. The optimal value may be established by invoking Auto-tune.

#### PRIMARY/ALTERNATE INTEGRAL TIME

#### 0 to 65000 seconds

The Integral Time is the time in seconds that it takes the integral action to equal the proportional action, during a constant process error. As long as the error exists, integral action is repeated each Integral Time. The higher the value, the slower the response. The optimal value may be established by invoking autotune.

#### PRIMARY/ALTERNATE DERIVATIVE TIME

#### 0 to 9999 seconds

The Derivative Time is the seconds per repeat that the controller looks ahead at the ramping error to see what the proportional contribution will be and then matches that value every Derivative Time. As long as the ramping error exists, the derivative contribution is repeated every derivative time. Increasing the value helps to stabilize the response. Too high of a value, coupled with noisy signal

processes, may cause the output to fluctuate too greatly, yielding poor control. Setting the time to zero disables derivative action. The optimal Derivative Time may be established by invoking auto-tune.

#### **PRIMARY/ALTERNATE POWER FILTER**

#### I to I I seconds

The Power Filter is a time constant, entered in seconds, that dampens the calculated output power. Increasing the value increases the dampening effect. Generally, a Power Filter in the range of one-twentieth to one-fiftieth of the controller's integral time (or process time constant) is effective. Values longer than these may cause controller instability due to the added lag effect.

#### **PRIMARY/ALTERNATE OUTPUT OFFSET**

#### - 1000 to 1000

This value effectively shifts the zero output point of the module's output power calculation. This feature is most commonly used in proportional-only applications to remove steady-state error.

### PID PARAMETERS: OUTPUT POWER PARAMETERS (Plus )



#### FAULT CONDITION POWER VALUE

FLEP 50.0

#### - 1999 to 2000 %

Enter the desired control output value for the controller to assume in the event that the input sensor fails. You may enter values in excess of 100% and -100% to overcome limitations caused by Power Transfer Values, such as Gains and Offsets, that would otherwise limit the output to less than their maximums.



#### OUTPUT DEADBAND

#### - 100.0 to 100.0 %

The Output Deadband property defines the area in which both the heating and cooling outputs are inactive, known as deadband, or the area in which they will both be active, known as overlap. A positive value results in a deadband, while a negative value results in an overlap.



#### **OUTPUT HEAT GAIN**

0 to 500.0 %

The Output Heat Gain defines the gain of the heating output relative to the gain established by the Proportional Band. A value of 100% causes the heat gain to mimic the gain determined by the proportional band. A value less than 100% can be used in applications in which the heater is oversized, while a value greater than 100% can

be used when the heater is undersized. For the majority of applications the default value of 100% is adequate, and adjustments should only be made if the process requires it.



#### HEAT POWER LOW AND HIGH LIMITS

The Heat Low Limit and Heat High Limit properties may be used



#### 0 to 2000 %

to limit controller power due to process disturbances or setpoint changes. Enter the safe output power limits for the process. You may enter values in excess of 100% to overcome limitations caused by power transfer values, such as gains and offsets, which would otherwise limit the output to less than their maximums.

# 100.0

#### **OUTPUT COOL GAIN**

0 to 500,0 %



The Output Cool Gain defines the gain of the cooling output relative to the gain established by the Proportional Band. A value of 100% causes the cool gain to mimic the gain determined by the proportional band. A value less than 100% can be used in applications

in which the cooling device is oversized, while a value greater than 100% can be used when the cooling device is undersized. For the majority of applications the default value of 100% is adequate, and adjustments should only be made if the process requires it.

#### COOL POWER LOW AND HIGH LIMITS

#### 0 to 2000 %

The Cool Low Limit and Cool High Limit properties may be used to limit controller power due to process disturbances or setpoint changes. Enter the safe output power limits for the process. You may enter values in excess of -100% to overcome limitations caused by power transfer values, such as gains and offsets, which would otherwise limit the output to less than their maximums.

ELH,

Ella

00

### PID PARAMETERS: ON/OFF PARAMETERS (UNDF)



#### **ON/OFF HYSTERESIS**



#### 0 to 50,0 units

The On/Off Hysteresis property is used to eliminate output chatter by separating the on and off points of the output(s) when performing on/off control. The hysteresis value is centered around the setpoint, that is, the transition points of the output will be offset above and below the setpoint by half of the On/Off Hysteresis value. This value

effects outputs programmed for Heat or Cool. During auto-tune, the controller cycles the process through 4 on/off cycles, so it is important to set the On-Off Hysteresis to an appropriate value before initializing auto-tune.

**ON/OFF DEADBAND** 



0.0

#### - 1999 to 9999 units

The On-Off Deadband property provides a means of offsetting the on-points of heat and cool outputs programmed for on/off operation. This results in a deadband if the value is positive, and overlap if the value is negative. When determining the actual transition points of the outputs, the On/Off Hysteresis value must also be taken into consideration.

### PID PARAMETERS: PID TUNING PARAMETERS (LunE)



#### **PID TUNING CODE**



#### 0 to 4

The Tune Response property is used to ensure that an auto-tune yields the optimal P, I, and D values for various applications. A setting of Very Aggressive (0) results in a PID set that will reach setpoint as fast as possible, with no concern for overshoot, while a setting of Very Conservative sacrifices speed in order to prevent

overshoot. Note: If the Tune Response property is changed, auto-tune needs to be reinitiated for the changes to affect the PID settings. See the PID Tuning Explanations Section for more information.

- I = Very Aggressive
- 1 = Aggressive
- $\mathbf{2} = \text{Default}$
- $\mathbf{I} = \text{Conservative}$
- 4 = Very Conservative

#### **PID INITIATE TUNING**



Auto-tune may be used to establish the optimal P, I, D, and Power Filter values for a particular process. See the PID Tuning Explanations Section for more information

## ALARM PARAMETERS (ALr)

#### ALARM PARAMETER MENU SELECTION

SLEE P2( AL I

ALI ALZ ALJ ALY } Basic Mode AL S through RL 16 } Advanced Mode

Select the Alarm parameter to be programmed.

The PID Initiate Tuning is used to initiate an auto-tune sequence.

## ALARM PARAMETERS (RLn)



#### **Setpoint Alarm Figures**

With reverse logic r Eu, the below alarm states are opposite.



#### 586

F

#### www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### ALARM VALUE



bdEU

00

#### - 1999 to 9999

Enter desired alarm value. Alarm values can also be entered when the alarm is programmed as *dEnt*, *PEnt* or *HEnt*. The decimal point position is determined by the Decimal Resolution setting in the Analog Input Parameter Menu.

#### **BAND/DEVIATION VALUE**

#### - 1999 to 9999

This parameter is only available in band and deviation alarm actions. Enter desired alarm band or deviation value. When the Alarm Action is programmed for Band, this value can only be a positive value.



#### HYSTERESIS VALUE

#### 1 to 9999

Enter desired hysteresis value. See Alarm Figures for visual indication or representation of how alarm actions (balanced and unbalanced) are affected by the hysteresis. When the alarm is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced

hysteresis modes, the hysteresis functions on the low side for high acting alarms and functions on the high side for low acting alarms. Note: Hysteresis eliminates output chatter at the switch point, while on/off time delay can be used to prevent false triggering during process transient events.



#### ON TIME DELAY

#### 0 to 9999 seconds

Enter the time value in seconds that the alarm is delayed from turning on after the trigger point is reached. A value of 0.0 allows the controller to update the alarm status per the response time listed in the Specifications. When the output logic is rEu, this becomes off time delay. Any time accumulated at power-off resets during power-up.



#### OFF TIME DELAY

#### 0 to 9999 seconds

Enter the time value in seconds that the alarm is delayed from turning off after the trigger point is reached. A value of 0.0 allows the controller to update the alarm status per the response time listed in the Specifications. When the output logic is  $rE_u$ , this becomes on time delay. Any time accumulated at power-off resets during power-up.



## ALARM LOGIC

nor rEu

Enter the logic of the alarm. The nor logic leaves the alarm operation as normal. The  $r\mathcal{E}u$  logic reverses the alarm logic. In  $r\mathcal{E}u$ , the alarm states in the Alarm Figures are reversed.

#### **RESET ACTION**

SEŁ Auto

Ruto Lt[1 Lt[2

Enter the reset action of the alarm.

Automatic action; This action allows the alarm to automatically reset off at the trigger points per the Alarm Action shown in Alarm Figures. The "on" alarm may be manually reset (off) immediately by a front panel function key or user input. The alarm remains reset off until the trigger point is crossed again.

- Lt[ 1 = Latch with immediate reset action; This action latches the alarm on at the trigger point per the Alarm Action shown in Alarm Figures. Latch means that the alarm can only be turned off by front panel function key or user input manual reset, serial reset command or controller power cycle. When the user input or function key is activated (momentary or maintained), the corresponding "on" alarm is reset immediately and remains off until the trigger point is crossed again. Any alarms that are latched at power down will be reset.
- LEC2 = Latch with delay reset action; This action latches the alarm on at the trigger point per the Alarm Action shown in Alarm Figures. Latch means that the alarm can only be turned off by front panel function key or user input manual reset, serial reset command or controller power cycle. When the user input or function key is activated (momentary or maintained), the controller delays the event until the corresponding "on" alarm crosses the trigger off point. Any alarms that are latched at power down will be reset.



#### ALARM STANDBY OPERATION



9E 5

ПП

When  $\frac{1}{5}$ , the alarm is disabled (after a power up) until the trigger point is crossed. After the alarm trigger is reached, the alarm operates normally per the Alarm Action and Reset Mode.

The following programming step is only available when Input Type in the Input Menu is set for a temperature input (TC/RTD).

### **BURN-OUT ACTION**

00

OFF

Enter the probe burn-out action. In the event of a temperature probe failure (TC open; RTD open or short), the alarm output can be programmed to be on or off.



## Port Parameters (Port)



Ш5ь SErL

PORT PARAMETER MENU SELECTION

Select the Communication Port Mode.

### USB Port Parameters (USb)





SERIAL PORT PARAMETERS (58rL)



Select the desired communications protocol. Modbus is preferred as it provides access to all meter values and parameters. Since the

Modbus protocol is included within the PAX2C, the PAX Modbus option card, PAXCDC4, should not be used. The PAXCDC1 (RS485), or PAXCDC2 (RS232) card should be used instead.



Set the parity bit to match that of the other serial communications equipment on the serial link. The meter ignores the parity when receiving data and sets the parity bit for outgoing data. If no parity is selected with 7 bit word length, an additional stop bit is used to force the frame size to 10 bits.

Odd

**PARITY BIT \*** 

ЕИЕЛ

\* Available when Data Bit = 7.

ПО



PArb

SR

ΠΩ

and receiving.

#### METER UNIT ADDRESS

Addr sr 247

0 to 99 = RLC Protocolto 247 = Modbus

Select a Unit Address that does not match an address number of any other equipment on the serial link.

#### TRANSMIT DELAY



0000 to 0250 seconds

Following a transmit value ("\*" terminator) or Modbus command, the PAX2C will wait this minimum amount of time in seconds before issuing a serial response.

The following programming steps are only available when Communications Type(UPE) is programmed for rLL.

#### ABBREVIATED PRINTING



### NO 4E5

Select  $\Re D$  for full print or Command T transmissions (meter address, mnemonics and parameter data) or  $\Im E5$  for abbreviated print transmissions (parameter data only). This will affect all the parameters selected in the print options. If the meter address is 00, the address will not be sent during a full transmission.

#### **PRINT OPTIONS**



ПО УЕБ

425 - Enters the sub-menu to select the meter parameters to appear during a print request. For each parameter in the sub-menu, select 425for that parameter information to be sent during a print request or nDfor that parameter information not to be sent. A print request is sometimes referred to as a block print because more than one

parameter information (meter address, mnemonics and parameter data) can be sent to a printer or computer as a block.

| DISPLAY | DESCRIPTION        | FACTORY | MNEMONIC |
|---------|--------------------|---------|----------|
| і пре   | Signal Input       | Ч E 5   | INP      |
| 5 P     | *Setpoint          | по      | SET      |
| SPrr    | Setpoint Ramp Rate | ПО      | RMP      |
| 0 P     | Output Power       | ПО      | PWR      |
| ProP    | *Proportional Band | ПО      | PBD      |
| lnt     | *Integral Time     | ПО      | INT      |
| dEr     | *Derivative Time   | ПО      | DER      |
| Alr     | Alarm Status (1-4) | ПО      | ALR      |
| AL I    | *Alarm Value 1     | ПО      | AL1      |
| AT5     | *Alarm Value 2     | ПО      | AL2      |
| AT 3    | *Alarm Value 3     | ПО      | AL3      |
| AL 4    | *Alarm Value 4     | ПО      | AL4      |
| [trl    | Control Parameters | ПО      | CTL      |

\* Active values

## SERIAL COMMUNICATIONS

The PAX2 supports serial communications using the optional serial communication cards or via the USB programming port located on the side of the unit. When USB is being used (connected), the serial communication card is disabled. When using the standard RS232 and RS485 PAX option cards, the PAX2 supports both the RLC protocol and also supports Modbus communications. The PAX Modbus option card should not be used with the PAX2, as the PAX2 internal Modbus protocol supports complete unit configuration, and is much more responsive.

### **USB**

The USB programming port is primarily intended to be used to configure the PAX2 with the Crimson programming software. It can also be used as a virtual serial communications port following installation of the PAX2 USB drivers that are supplied with the Crimson software. When the USB port is being used, i.e. the USB cable is connected between PAX2 and PC, all serial communications with the serial option card (if used) is disabled.

USB Cable type required: USB A to Mini-B (not supplied)

#### PAX2 CONFIGURATION USING CRIMSON AND USB

- 1. Install Crimson software.
- 2. Supply power to PAX2.
- 3. Insure USB Setup in USB Port Parameters is set to ERFE (factory default setting)
- 4. Attach USB cable (USB A to Mini-B) between PC and PAX2.
- 5. Create a new file (File, New) or open an existing PAX2 database within Crimson.
- 6. Configure Crimson Link options (Link, Options) to the PC port which the USB cable is attached (in Step 4).

## SERIAL MODBUS COMMUNICATIONS

Modbus Communications requires that the Serial Communications Type Parameter (LYPE) be set to Modbus RTU (r Lu) or Modbus ASCII (ASE).

#### PAX2 CONFIGURATION USING CRIMSON AND SERIAL COMMUNICATIONS CARD

- 1. Install Crimson software.
- 2. Install RS232 or RS485 card and connect communications cable from PAX2 to PC
- 3. Supply power to PAX2.
- 4. Configure serial parameters as Modbus RTU (r Ł u), 38,400 baud, address 247
- 5. Create a new file (File, New) or open an existing PAX2 database within Crimson.
- 6. Configure Crimson 2 Link options (Link, Options) to the serial port which the communication cable is attached (in step 2).

### SUPPORTED FUNCTION CODES

#### FC03: Read Holding Registers

- 1. Up to 64 registers can be requested at one time.
- 2. HEX <8000> is returned for non-used registers.

#### FC04: Read Input Registers

1. Up to 64 registers can be requested at one time.

- 2. Block starting point can not exceed register boundaries.
- 3. HEX <8000> is returned in registers beyond the boundaries.
- 4. Input registers are a mirror of Holding registers.

#### FC06: Preset Single Register

1. HEX <8001> is echoed back when attempting to write to a read only register. 2. If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit. It is also returned in the response.

#### FC16: Preset Multiple Registers

- 1. No response is given with an attempt to write to more than 64 registers at a time
- 2. Block starting point cannot exceed the read and write boundaries (40001-41711).
- 3. If a multiple write includes read only registers, then only the write registers will change.
- 4. If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit.

#### **FC08: Diagnostics**

The following is sent upon FC08 request:

Module Address, 08 (FC code), 04 (byte count), "Total Comms" 2 byte count, "Total Good Comms" 2 byte count, checksum of the string

"Total Comms" is the total number of messages received that were addressed to the PAX2. "Total Good Comms" is the total messages received by the PAX2 with good address, parity and checksum. Both counters are reset to 0 upon response to FC08 and at power-up.

#### FC17: Report Slave ID

The following is sent upon FC17 request:

RLC-PX2C ab<0100h><40h><10h>

a = SP Card, "0"-No SP, "2" or "4" SP

b = Linear Card "0" = None, "1" = Yes

- <0100> Software Version Number (1.00)
- <20h>Max Register Reads (64) <20h>Max Register Writes (64)
- <10h> Number Guid/Scratch Pad Regs (16)

#### SUPPORTED EXCEPTION CODES

#### 01: Illegal Function

Issued whenever the requested function is not implemented in the meter.

#### 02: Illegal Data Address

Issued whenever an attempt is made to access a single register that does not exist (outside the implemented space) or to access a block of registers that falls completely outside the implemented space.

#### 03: Illegal Data Value

Issued when an attempt is made to read or write more registers than the meter can handle in one request.

#### 07: Negative Acknowledge

Issued when a write to a register is attempted with an invalid string length.

### PAX2C FREQUENTLY USED MODBUS REGISTERS

Only frequently used registers are shown below. The entire Modbus Register Table can be found at www.redlion.net and on the included flash drive. Values less than 65,535 will be in (LO word). Values greater than 65,535 will continue into (Hi word). Negative values are represented by two's complement of the combined (Hi word) and (LO word). Note 1: The PAX2C should not be powered down while parameters are being changed. Doing so may corrupt the non-volatile memory resulting in checksum errors.

| REGISTER<br>ADDRESS | REGISTER NAME                     | LOW LIMIT | HIGH LIMIT | FACTORY<br>SETTING | ACCESS     | COMMENTS                                                                                                                                                                                                                                         |
|---------------------|-----------------------------------|-----------|------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | FREQUENTLY USED REGISTERS         |           |            |                    |            |                                                                                                                                                                                                                                                  |
| 40001               | Process Value                     | N/A       | N/A        | N/A                | Read       | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40002               | Maximum Value                     | -1999     | 9999       | N/A                | Read       | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40003               | Minimum Value                     | -1999     | 9999       | N/A                | Read       | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40004               | Active Setpoint Value             | -1999     | 9999       | 0                  | Read/Write | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40005               | Setpoint 1 Value                  | -1999     | 9999       | 0                  | Read/Write | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40006               | Setpoint 2 Value                  | -1999     | 9999       | 0                  | Read/Write | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40007               | Setpoint Deviation                | N/A       | N/A        | N/A                | Read Only  |                                                                                                                                                                                                                                                  |
| 40008               | Output Power                      | -1000     | 1000       | N/A                | Read/Write | Output Power: Heat/Cool; * writable only in manual mode; 1 = 0.1%                                                                                                                                                                                |
| 40009               | Active Proportional Band          | 0         | 9999       | 40                 | Read/Write | 1 = 0.1 Display Unit                                                                                                                                                                                                                             |
| 40010               | Active Integral Time              | 0         | 65000      | 120                | Read/Write | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40011               | Active Derivative Time            | 0         | 9999       | 30                 | Read/Write | 1 = 0.1 Display Unit                                                                                                                                                                                                                             |
| 40012               | Active Power Filter               | 0         | 600        | 10                 | Read/Write | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40013               | Auto-Tune Code                    | 0         | 4          | 2                  | Read/Write | 0 = Very Aggressive, 1 = Aggressive, 2 = Default,<br>3 = Conservative, 4 = Very Conservative                                                                                                                                                     |
| 40014               | Auto-Tune Request                 | 0         | 1          | 0                  | Read/Write | 0 = Off, 1 = Invoke Auto-Tune                                                                                                                                                                                                                    |
| 40015               | Auto-Tune Phase                   | 0         | 4          | 0                  | Read       | 0 = Off, 4 = Last Phase of Auto-Tune                                                                                                                                                                                                             |
| 40016               | Auto-Tune Done                    | 0         | 1          | 0                  | Read       | 1 = Successful Auto-Tune since last power cycle.                                                                                                                                                                                                 |
| 40017               | Auto-Tune Fail                    | 0         | 1          | 0                  | Read/Write |                                                                                                                                                                                                                                                  |
| 40018               | Control Mode                      | 0         | 1          | 0                  | Read/Write | 0 = Automatic, 1 = Manual Mode                                                                                                                                                                                                                   |
| 40019               | Setpoint Selection                | 0         | 1          | 0                  | Read/Write | 0 = Setpoint 1, 1 = Setpoint 2                                                                                                                                                                                                                   |
| 40020               | Remote/Local Setpoint Selection   | 0         | 1          | 0                  | Read/Write | 0 = Local, 1 = Remote                                                                                                                                                                                                                            |
| 40021               | PID Parameter Selection           | 0         | 1          | 0                  | Read/Write | 0 = Primary PID Values, 1 = Alternate PID Values                                                                                                                                                                                                 |
| 40022               | Disable Integral Action           | 0         | 1          | 0                  | Read/Write | 0 = Enabled, 1 = Disabled                                                                                                                                                                                                                        |
| 40023               | Disable Setpoint Ramping          | 0         | 1          | 0                  | Read/Write | 0 = Enabled, 1 = Disabled                                                                                                                                                                                                                        |
| 40024               | Setpoint Ramping In Process       | 0         | 1          | 0                  | Read/Write | 0 = Off. 1 = In Process                                                                                                                                                                                                                          |
| 40025               | Setpoint Ramp Rate Value          | -1999     | 9999       | 0                  | Read/Write | 1 = 1 Display Unit                                                                                                                                                                                                                               |
| 40026               | Alarm (1-16) Status Register      | 0         | 65535      | 0                  | Read       | Bit 15 = A16 Bit $0 = A1$                                                                                                                                                                                                                        |
| 40027               |                                   | 0         | 1          | 0                  | Read       |                                                                                                                                                                                                                                                  |
| 40028               | User Input Status                 | 0         | 2          | 0                  | Read       | Bit 1 = User Input 2 Bit 0 = User Input 1                                                                                                                                                                                                        |
| 40029               | Digital Output Status             | 0         | 15         | N/A                | Read/Write | Status of Digital Outputs. Bit State: 0 = Off, 1 = On<br>Bit 3 = Out1, Bit 2 = Out2, Bit 1 = Out3, Bit 0 = Out4<br>Outputs can only be activated/reset with this register when the<br>respective bits in the Manual Mode Register (MMR) are set. |
| 40030               | Output Manual Mode Register (MMR) | 0         | 31         | 0                  | Read/Write | Bit State: 0 = Auto Mode, 1 = Manual Mode<br>Bit 4 = DO1, Bit 3 = DO2, Bit 2 = DO3, Bit 1 = DO4,<br>Bit 0 = Linear Output                                                                                                                        |
| 40031               | Reset Output Register             | 0         | 15         | 0                  | Read/Write | Bit State: 1 = Reset Output, bit is returned to zero following reset processing; Bit 3 = DO1, Bit 2 = DO2, Bit 1 = DO3, Bit 0 = DO4                                                                                                              |
| 40032               | Analog Output Register (AOR)      | 0         | 4095       | 0                  | Read/Write | Functional only if Linear Output is in Manual Mode.<br>(MMR bit 0 = 1)<br>Linear Output Card written to only if Linear Out (MMR bit 0) is<br>set.                                                                                                |
| 40033               | Active Alarm 1 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40034               | Active Alarm 2 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40035               | Active Alarm 3 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40036               | Active Alarm 4 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40037               | Active Alarm 5 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40038               | Active Alarm 6 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40039               | Active Alarm 7 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40040               | Active Alarm 8 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40041               | Active Alarm 9 Value              | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40042               | Active Alarm 10 Value             | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40043               | Active Alarm 11 Value             | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40044               | Active Alarm 12 Value             | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40045               | Active Alarm 13 Value             | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40046               | Active Alarm 14 Value             | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40047               | Active Alarm 15 Value             | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40048               | Active Alarm 16 Value             | -1999     | 9999       | 0                  | Read/Write | Active List (A or B)                                                                                                                                                                                                                             |
| 40049               | Active Alarm 1 Band/Dev. Value    | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action.                                                                                                                                                                                   |
| 40050               | Active Alarm 2 Band/Dev. Value    | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action.                                                                                                                                                                                   |

#### 1-717-767-6511

| REGISTER<br>ADDRESS | REGISTER NAME                   | LOW LIMIT | HIGH LIMIT | FACTORY<br>SETTING | ACCESS     | COMMENTS                                                       |
|---------------------|---------------------------------|-----------|------------|--------------------|------------|----------------------------------------------------------------|
| 40051               | Active Alarm 3 Band/Dev. Value  | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40052               | Active Alarm 4 Band/Dev. Value  | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40053               | Active Alarm 5 Band/Dev. Value  | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40054               | Active Alarm 6 Band/Dev. Value  | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40055               | Active Alarm 7 Band/Dev. Value  | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40056               | Active Alarm 8 Band/Dev. Value  | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40057               | Active Alarm 9 Band/Dev. Value  | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40058               | Active Alarm 10 Band/Dev. Value | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40059               | Active Alarm 11 Band/Dev. Value | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40060               | Active Alarm 12 Band/Dev. Value | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40061               | Active Alarm 13 Band/Dev. Value | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40062               | Active Alarm 14 Band/Dev. Value | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40063               | Active Alarm 15 Band/Dev. Value | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |
| 40064               | Active Alarm 16 Band/Dev. Value | -1999     | 9999       | 0                  | Read/Write | Active List (A or B). Only for Band or Deviation Alarm Action. |

#### SERIAL RLC PROTOCOL COMMUNICATIONS

RLC Communications requires the Serial Communications Type Parameter ( $\$  UPE) be set to "rLL".

#### SENDING SERIAL COMMANDS AND DATA TO THE METER

When sending commands to the meter, a string containing at least one command character must be constructed. A command string consists of a command character, a value identifier, numerical data (if writing data to the meter) followed by a command terminator character \* or \$.

#### **Command Chart**

| COMMAND | DESCRIPTION                          | NOTES                                                                                                   |
|---------|--------------------------------------|---------------------------------------------------------------------------------------------------------|
| N       | Node (Meter)<br>Address<br>Specifier | Address a specific meter. Must be followed by a two digit node address. Not required when address = 00. |
| Т       | Transmit Value (read)                | Read a register from the meter. Must be followed<br>by register ID character                            |
| V       | Value Change<br>(write)              | Write to register of the meter. Must be followed by register ID character and numeric data.             |
| R       | Reset                                | Reset a register or output. Must be followed by register ID character.                                  |
| Р       | Block Print<br>Request               | Initiates a block print output. Registers are defined in programming.                                   |
| *.\$    | Terminator                           | Signifies end of transmission                                                                           |

#### **Command String Construction**

The command string must be constructed in a specific sequence. The meter does not respond with an error message to invalid commands. The following procedure details construction of a command string:

- 1. The first characters consist of the Node Address Specifier (N) followed by a 2 character address number. The address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
- 2. After the optional address specifier, the next character is the command character.
- 3. The next character is the Register ID. This identifies the register that the command affects. The P command does not require a Register ID character. It prints according to the selections made in print options.
- 4. If constructing a value change command (writing data), the numeric data is sent next.
- 5. All command strings must be terminated with the string termination characters \*, or \$. The meter does not begin processing the command string until this character is received. See Timing Diagram figure for differences between terminating characters.

#### **Register Identification Chart**

| ID | VALUE DESCRIPTION       | MNEMONIC | APPLICABLE COMMANDS/COMMENTS     |
|----|-------------------------|----------|----------------------------------|
| А  | Signal Input            | INP      | T, P                             |
| В  | Active Setpoint         | SET      | T, V, P                          |
| С  | Setpoint Ramp Rate      | RMP      | T, V, P                          |
| D  | Output Power            | PWR      | T, V, P (V only in manual mode)  |
| Е  | Proportional Band       | PBD      | T, V, P                          |
| F  | Integral Time           | INT      | T, V, P                          |
| G  | Derivative Time         | DER      | T, V, P                          |
| Н  | Alarm Status (1-4)      | ALR      | T, R, P                          |
| Ι  | Alarm Value 1           | AL1      | T, V, R, P (Reset command resets |
| J  | Alarm Value 2           | AL2      | Alarm Outputs)                   |
| К  | Alarm Value 3           | AL3      |                                  |
| L  | Alarm Value 4           | AL4      |                                  |
| Μ  | Control Parameters      | CTL      | T, V, P                          |
| 0  | Auto/Manual Register    | MMR      | T, V                             |
| Q  | Analog Output Register  | AOR      | T, V                             |
| S  | Digital Output Register | DOR      | T, V                             |

#### **Command String Examples:**

- 1. Node address = 17, Write 350 to Alarm 1.
- String: N17VI350\$
- 2. Node address = 5, Read Input value.
- String: N5TA\*
- 3. Node address = 0, Reset Alarm 4 output. String: RL\*

#### Sending Numeric Data

Numeric data sent to the controller must be limited to 4 digits (-1999 to 9999). Leading zeros are ignored. Negative numbers must have a minus sign. The controller ignores any decimal point and conforms the number to the scaled resolution. (For example: the meter's scaled decimal point position = 0.0 and 25 is written to a register. The value of the register is now 2.5.

Note: Since the controller does not issue a reply to value change commands, follow with a transmit value command for readback verification.

#### **RECEIVING DATA FROM THE CONTROLLER**

Data is transmitted by the controller in response to either a transmit command (T), a print block command (P) or User Function print request. The response from the controller is either a full field transmission or an abbreviated transmission. The controller response mode is selected via the Rbru parameter in the Serial Port Parameters.

#### Full Field Transmission (Address, Mnemonic, Numeric data) Byte Description

- 1, 2 2 byte Node Address field [00-99]
- 3 <SP> (Space)
- 4-6 3 byte Register Mnemonic field
- 7-18 2 byte data field, 10 bytes for number, one byte for sign, one byte for
- decimal point 19 <CR> carriag
- 19 <CR> carriage return20 <LF> line feed
- 21 <SP>\* (Space)
- 22 <CR>\* carriage return
- 23 <LF>\* line feed

\* These characters only appear in the last line of a block print.

The first two characters transmitted are the node address, unless the node address assigned = 0, in which case spaces are substituted. A space follows the node address field. The next three characters are the register mnemonic.

The numeric data is transmitted next. The numeric field is 12 characters long (to accommodate the 10 digit totalizer), with the decimal point position floating within the data field. Negative values have a leading minus sign. The data field is right justified with leading spaces.

The end of the response string is terminated with a carriage return  $\langle CR \rangle$  and  $\langle LF \rangle$ . When block print is finished, an extra  $\langle SP \rangle \langle CR \rangle \langle LF \rangle$  is used to provide separation between the blocks.

#### Abbreviated Transmission (Numeric data only)

#### Byte Description

- 1-12 12 byte data field, 10 bytes for number, one byte for sign, one byte for decimal point
- 13 <CR> carriage return
- 14 <LF> line feed
- 15 <SP>\* (Space)
- 16 <CR>\* carriage return
  17 <LF>\* line feed

\* These characters only appear in the last line of a block print.

#### **Controller Response Examples:**

- 1. Node address = 17, full field response, Input = 875 17 INP 875 <CR><LF>
- 2. Node address = 0, full field response, Alarm 2 = -250.5 SP2 -250.5<CR><LF>
- 3. Node address = 0, abbreviated response, Alarm 2 = 250, last line of block print 250<CR><LF><SP><CR><LF>

#### Auto/Manual Mode Register (MMR) ID: O

This register sets the controlling mode for the outputs. In Auto Mode (0) the controller controls the digital outputs and analog output. In Manual Mode (1) the outputs are defined by the registers DOR and AOR. When transferring from auto mode to manual mode, the controller holds the last output value (until the register is changed by a write). Each output may be independently changed to auto or manual. In a write command string (VO), any character besides 0 or 1 in a field will not change the corresponding output mode.



Example: VO00011\* places DO4 and Analog in manual.

#### Analog Output Register (AOR) ID: Q

This register stores the present signal value of the analog output. The range of values of this register is 0 to 4095, which corresponds to the analog output range per the following chart:

| Register | Output Signal* |         |        |  |  |  |
|----------|----------------|---------|--------|--|--|--|
| Value    | 0-20 mA        | 4-20 mA | 0-10 V |  |  |  |
| 0        | 0.00           | 4.00    | 0.000  |  |  |  |
| 1        | 0.005          | 4.004   | 0.0025 |  |  |  |
| 2047     | 10.000         | 12.000  | 5.000  |  |  |  |
| 4094     | 19.995         | 19.996  | 9.9975 |  |  |  |
| 4095     | 20.000         | 20.000  | 10.000 |  |  |  |

\*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (0-20 mA, 4-20 mA or 0-10 V).

Writing to this register (VQ) while the analog output is in the Manual Mode causes the output signal level to update immediately to the value sent. While in the Automatic Mode, this register may be written to, but it has no effect until the analog output is placed in the manual mode. When in the Automatic Mode, the controller controls the analog output signal level. Reading from this register (TQ) will show the present value of the analog output signal.

**Example**: VQ2047 will result in an output of 10.000 mA, 12.000 mA or 5.000V depending on the range selected.

#### Digital Output Register (DOR) ID: S

This register stores the states of the setpoint outputs. Reading from this register (TS) will show the present state of all the digital outputs. A "0" in the setpoint location means the output is off and a "1" means the output is on.

| а | bcd |         |
|---|-----|---------|
|   |     | d = DO4 |
|   |     | c = DO3 |
|   |     | b = DO2 |
|   |     | a = DO1 |
|   |     |         |

S

In Automatic Mode, the controller controls the digital output state. In Manual Mode, writing to this register (VS) will change the output state. Sending any character besides 0 or 1 in a field or if the corresponding output was not first in manual mode, the corresponding output value will not change. (It is not necessary to send least significant 0s.)

Example: VS10\* will result in output 1 on and output 2 off.

#### COMMAND RESPONSE TIME

The controller can only receive data or transmit data at any one time (halfduplex operation). When sending commands and data to the controller, a delay must be imposed before sending another command. This allows enough time for the controller to process the command and prepare for the next command.

At the start of the time interval  $t_1$ , the computer program prints or writes the string to the com port, thus initiating a transmission. During  $t_1$ , the command characters are under transmission and at the end of this period, the command terminating character (\*) is received by the controller. The time duration of  $t_1$  is dependent on the number of characters and baud rate of the channel.

#### $t_1 = (10 * \# of characters) / baud rate$

At the start of time interval  $t_2$ , the controller starts the interpretation of the command and when complete, performs the command function. This time interval  $t_2$  varies from 2 msec to 15 msec. If no response from the controller is expected, the controller is ready to accept another command.

If the controller is to reply with data, the time interval  $t_2$  is controlled by the use of the command terminating character and the (Serial Transmit Delay parameter (d(RY))). The standard command line terminating character is "\*". This terminating character results in a response time window of the Serial Transmit Delay time (d(RY) plus 15 msec. maximum. The d(RY parameter should be programmed to a value that allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with "\$" results in a response time window ( $t_2$ ) of 2 msec minimum and 15 msec maximum. The response time of this terminating character requires that sending drivers release within 2 msec after the terminating character is received.

At the beginning of time interval  $t_3$ , the controller responds with the first character of the reply. As with  $t_1$ , the time duration of  $t_3$  is dependent on the number of characters and baud rate of the channel.

 $t_3 = (10 * \# of characters) / baud rate.$ 

At the end of  $t_3$ , the controller is ready to receive the next command. The maximum serial throughput of the controller is limited to the sum of the times  $t_1$ ,  $t_2$  and  $t_3$ .

#### Timing Diagrams





#### **RESPONSE FROM CONTROLLER**



#### COMMUNICATION FORMAT

Data is transferred from the controller through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character.

The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

| LOGIC                            | INTERFACE STATE | RS232*               | RS485*        |
|----------------------------------|-----------------|----------------------|---------------|
| 1                                | mark (idle)     | TXD,RXD; -3 to -15 V | a-b < -200 mV |
| 0                                | space (active)  | TXD,RXD; +3 to +15 V | a-b > +200 mV |
| * Voltage levels at the Receiver |                 |                      |               |

Data is transmitted one byte at a time with a variable idle period between characters (0 to  $\infty$ ). Each ASCII character is "framed" with a beginning start bit, an optional parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the controller.

#### Start bit and Data bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted. Since the sending and receiving devices operate at the same transmission speed (baud rate), the data is read without timing errors.



#### Parity bit

After the data bits, the parity bit is sent. The transmitter sets the parity bit to a zero or a one, so that the total number of ones contained in the transmission (including the parity bit) is either even or odd. This bit is used by the receiver to detect errors that may occur to an odd number of bits in the transmission. However, a single parity bit cannot detect errors that may occur to an even number of bits. Given this limitation, the parity bit is often ignored by the receiving device. The PAX controller ignores the parity bit of incoming data and sets the parity bit to odd, even or none (mark parity) for outgoing data.

#### Stop bit

The last character transmitted is the stop bit. The stop bit provides a single bit period pause to allow the receiver to prepare to re-synchronize to the start of a new transmission (start bit of next byte). The receiver then continuously looks for the occurrence of the start bit. If 7 data bits and no parity is selected, then 2 stop bits are sent from the PAX controller.

## FACTORY SERVICE OPERATIONS (FREE)



#### FACTORY SERVICE CODE

0 to 250

Enter the Service Code for the desired operation.

#### **RESTORE FACTORY DEFAULTS**



Use the f and  $\overline{F}$  keys to display [Ddf  $\overline{b}\overline{b}$  and press **P**. The controller will flash r 5Et and then return to [Ddf  $\overline{5}\overline{b}$ . This will overwrite all user settings with the factory settings.





The controller will briefly display the model (PE) on Line 1, and the current firmware version ( $UE_r = x.xx$ ) on Line 2, and then return to LDE 50.

#### CONTROLLER CALIBRATION



The controller has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed in Input Parameters. If the controller appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the controller. When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment. Calibration does not change any user programmed parameters. However, it will affect the accuracy of the input signal and the values previously stored using the Apply (RPLY) Scaling Style.

#### Preparation for Current, Volt, and Ohm Input Calibration



UdE

FE9 50

Warning: Input Calibration of this controller requires a signal source capable of producing a signal greater than or equal to the range being calibrated with an accuracy of 0.01% or better.

Before starting, verify that the Input Range, T/V, and Excitation Jumper is set for the range to be calibrated. Verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the controller. Selecting  $\Pi I$  at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting  $\Psi E5$  and pressing the **P** key will cause the unit to store new calibration settings for the range selected. Pressing **D** at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

#### **Current, Volt and Ohm Calibration Procedure**

- 1. After entering LodE 40, select the input signal type (Lurr, Wolk, rE5) to be calibrated.
- 2. Press the **P** key until the desired range along with 2EP is displayed in the Line 2 units mnemonic.
- 3. Apply the zero input limit of the range indicated on Line 1 of the controller.
- 4. Press /F1 to select 425.
- 5. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 6. Display will indicate the desired range along with *FUL* in the Line 2 units mnemonic
- 7. Apply the signal level indicated on Line 1 of the controller.
- 8. Press **F1** to select YE5.
- 9. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 10. Repeat Preparation and Calibration Procedure for each Input Range to be calibrated.

#### 1-717-767-6511

#### Preparation for TC calibration

TC calibration parameters will affect RTD calibration. If using an RTD, it is recommended that the RTD calibration be performed after completing the TC calibration.



Warning: TC Input Calibration of this controller requires a signal source capable of producing a 60 mV signal with an accuracy of 0.01% or better.

Before starting, verify the T/V jumper is in the T position. Verify the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the controller. Selecting  $\Pi I$  at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting  $\Psi E$  and pressing **P** key will cause the unit to store new calibration settings for the range selected. Pressing **D** at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

#### **TC Calibration Procedure**

1. After entering LodE 48, select the Lc.

- 2. Press the **P** key. Display will indicate **blml** with **ZEP** displayed in the Line 2 units mnemonic.
- 3. Apply 0 mV to input.
- 4. Press fil to select YE5.
- 5. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- Display will indicate 60ml with FUL displayed in the Line 2 units mnemonic.
   Apply 60 mV to input.
- 7. Apply 60 mV to input.
- 8. Press **F** to select **YE5**.
- 9. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 10. TC Calibration complete.

#### Preparation for RTD Input Calibration

RTD calibration is dependent on TC calibration parameters. Therefore, the TC calibration should be performed prior to attempting the RTD calibration.



Warning: RTD Input Calibration of this controller requires a signal source capable of producing a 300 ohm resistance with an accuracy of 0.01% or better.

Before starting, verify that the T/V Jumper is in the T position. Verify the RTD jumper is in the proper range. Verify the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the controller. Selecting nD at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting 4E5 and pressing **P** key will cause the unit to store new calibration settings for the range selected. Pressing **D** at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

#### **RTD Calibration Procedure**

- 1. After entering Code 48, select rEd.
- 2. Press the **P** key until the desired range along with **1** is displayed in the Line 2 units mnemonic.
- 3. Apply zero ohms to the input of the controller.
- 4. Press **F1** to select YE5.
- 5. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 6. Display will indicate the desired range along with a value in the upper right corner, in ohms, to be applied in the next step in the Line 2 units mnemonic of the controller.
- 7. Apply the signal level, in ohms, as indicated by the Line 2 units mnemonic on the controller.
- 8. Press /F1 to select 4E5.
- 9. Press **P**. Display will indicate ---- on Line 2 as the unit reads and stores the new calibration parameter.
- 10. Repeat Preparation and Calibration Procedure for each Input Range to be calibrated.

#### Ice Point Calibration Procedure

- 1. Remove all option cards.
- 2. Verify ambient temperature of controller environment is between 20°C and 30°C.
- 3. Set T/V jumper in the T position.
- 4. Connect a thermocouple with an accuracy of  $1\,^{\circ}\mathrm{C}$  or better to the controller.
- 5. In the Analog Input Parameters, verify Input Type (ŁSPE) is set to the type of thermocouple connected in step 4, Temperature Scale (5LFL) is °C, Ice Point Compensation (*l*LE) is turned ON, Decimal Resolution (*d*LPL) is 0.0, Rounding Increment (*rnd*) is 0.1 and Display Offset (JF5L) is set to 0.
- 6. Place the thermocouple in close thermal contact to a reference thermometer probe. (Use a reference thermometer with an accuracy of 0.25% °C or better.)

The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (A calibration bath could be used in place of the thermometer.)

- 7. If a difference exits between PAX2C display and reference thermometer, continue calibration.
- 8. Note the PAX2C display reading as the "Display Mode" reading to be used in Step 12.
- 9. Enter the Factory Service Operations, select LodE 48 and press P.
- 10. Select *IEE* and press **P**.
- 11. Display will indicate the Existing ICE Point Value.
- 12. Calculate a new ICE Point Value using: Existing ICE Point Value + (reference temperature Display Mode reading). All values are in °C.
- 13. Using Fi and 27 change Existing ICE Point Value to indicate the new ICE Point Value calculated in Step 12.
- 14. Press **P** and return to Display Mode. Verify the Display Mode reading (with 0 Display Offset) matches the reference temperature. If not, repeat steps 8 thru 14.

#### Preparation for Analog Output Card Calibration



Warning: Calibration of this controller requires an external meter with an accuracy of 0.005% or better.

Before starting, verify that the precision voltmeter (voltage output) or current meter (current output) is connected and ready. Perform the following procedure. 1. After entering LadE 40, select RnLb.

2. Using the chart below, step through the five selections to be calibrated. At each prompt, use the PAX2C /Ft and 12 keys to adjust the external meter display to match the selection being calibrated. When the external reading matches, or if the particular range is not in need of calibration, press the **P** key to advance to the next range.

| PAX2C DISPLAY | EXTERNAL METER | ACTION                                                |
|---------------|----------------|-------------------------------------------------------|
| 00 mR         | 0.00 mA        | <u>F</u> f and <sup>E</sup> to adjust External Meter  |
| ዛወ ጣቶ         | 4.00 mA        | /Ft and ₺ to adjust External Meter                    |
| 200 mR        | 20.00 mA       | <u>F</u> f∖ and <sup>E</sup> to adjust External Meter |
| 0.0 U         | 0.00 V         | /Fr and 10 to adjust External Meter                   |
| 10,0 U        | 10.00 V        | ▲ and 2 to adjust External Meter                      |

3. Calibration Complete.

#### www.redlion.net

## **OPERATION OVERVIEW**

#### **CONTROLLER POWER-UP**

Upon applying power, the controller delays control action and temperature indication for several seconds to perform several self-diagnostic tests and display basic controller information. Initially, the controller illuminates both displays and all annunciators to verify that all display elements are functioning. The controller then displays the unit model type on the top display as well as the current firmware revision number on the bottom display. The controller then checks for correct internal operation and displays an error message (E-XX) if an internal fault is detected (see Troubleshooting for further information). Upon completion of this sequence, the controller begins control action by displaying the temperature/process value and updating the output(s) based on the PID control calculation.

#### **PROCESS START-UP**

After starting the process, the controller's PID settings must be initially "tuned" to the process for optimum control. Minimal tuning consists of adjusting the Proportional Band, Integral Time, and Derivative Time parameters to achieve the optimum response to a process disturbance. The controller can be tuned once, but must be re-tuned if the process has been changed significantly. Several options exist for tuning these parameters:

A) Use the controller's built-in Auto-Tune feature (see Auto-Tune).

- B) Use a manual tuning technique (see Manual Tuning).
- C) Use a third party tuning software package (generally expensive and not always precise).
- D) Use values based on control loop experience, calculated values or values from a similar process.

If the controller is a replacement, the PID settings from the unit being replaced may be used as good initial values. Be sure to consider any differences in the units and the PID settings when replacing. The PID settings may be fine tuned by using the techniques outlined in the PID Control section. After tuning the controller to the process, it is important to power the load and the controller at the same time for best start-up response.

#### CONTROLLER POWER-DOWN

At power down, all parameters and control modes are saved to provide a quick and predictable process response on the next power-up. When powering down the process, it is important to power down the controller at the same time. This prevents the reset action of the controller from shifting the proportional band while the temperature/process value is dropping and prevents excessive overshoot on the next process start-up.

## **CONTROL MODE EXPLANATIONS**

#### **ON/OFF CONTROL**

The controller operates in On/Off Control when the Proportional Band is set to 0.0%. In this control mode, the process will constantly oscillate around the setpoint value. The On/Off Control Hysteresis (balanced around the setpoint) can be used to eliminate output chatter. The Output Assignment can be set for heating (reverse - output on when below the setpoint) or for cooling(direct output on when above the setpoint) applications.



Note: Hyst in the On/Off Control Figures is a user defined value in the PID Configuration Parameters.

For heat and cool systems, one Digital Output is assigned as HER (reverse) and another Digital Output is assigned as LDL (direct). The Proportional Band is set to 0.0 and the Relative Gain in Cooling to 0.0. The Deadband in Cooling sets the amount of operational deadband or overlap between the outputs. The setpoint and the On/Off Control Hysteresis applies to both O1 and O2 outputs. The hysteresis is balanced in relationship to the setpoint and deadband value.

**ON/OFF CONTROL - HEAT/COOL OUTPUT FIGURES** 



## 1-717-767-6511

#### **PID CONTROL**

In PID Control, the controller processes the input and then calculates a control output power value by use of a specialized Proportional Band, IntegralTime, and Derivative Time control algorithm. The system is controlled with the new output power value to keep the process at the setpoint. The Control Action for PID Control can be set to reverse for heating (output on when below the setpoint) or direct for cooling (output on when above the setpoint) applications.For heat and cool systems, the heat and cool outputs are both used. The PID parameters can be established by using Auto-Tune, or they can be Manually tuned to the process.

#### **TYPICAL PID RESPONSE CURVE**



#### TIME PROPORTIONAL PID CONTROL

In Time Proportional applications, the output power is converted into output On time using the Cycle Time. For example, with a four second cycle time and 75% power, the output will be on for three seconds ( $4 \times 0.75$ ) and off for one second.

The cycle time should be no greater than 1/10 of the natural period of oscillation for the process. The natural period is the time it takes for one complete oscillation when the process is in a continuously oscillating state.

#### LINEAR PID CONTROL

In Linear PID Control applications, the Analog Output Assignment RRF5 is set to % Output Power, DP. The Analog Low Scaling, RRLD, is set to 0.0 and the Analog High Scaling, RRH, is set to 100.0. The Analog Output will then be proportional to the PID calculated % output power for Heat or Cooling per the Control Action DPRE. For example, with 0 VDC to 10 VDC (scaled 0 to 100%) and 75% power, the analog output will be 7.5 VDC.

#### MANUAL CONTROL MODE

In Manual Control Mode, the controller operates as an open loop system (does not use the setpoint or process feedback). The user adjusts the percentage of power through the % Power display to control the output power. Manual operation provides 0 to 100% power to the HERL output and -100 to 0% power to the EDDL output. The Low and High Output Power limits are ignored when the controller is in Manual.

#### **MODE TRANSFER**

When transferring the controller mode between Automatic and Manual, the controlling outputs remain constant, exercising true "bumpless" transfer. When transferring from Manual to Automatic, the power initially remains steady, but Integral Action corrects (if necessary) the closed loop power demand at a rate proportional to the Integral Time.

#### AUTOMATIC CONTROL MODE

In Automatic Control Mode, the percentage of output power is automatically determined by PID or On/Off calculations based on the setpoint and process feedback.

## **PID CONTROL**

#### **PROPORTIONAL BAND**

Proportional band is defined as the "band" of temperature the process changes to cause the percent output power to change from 0% to 100%. The band may or may not be centered about the setpoint value depending upon the steady state requirements of the process. The band is shifted by manual offset or integral action (automatic reset) to maintain zero error. Proportional band is expressed as percent of input sensor range.



Example: Thermocouple type T with a temperature range of 600°C is used and is indicated in degrees Celsius with a proportional band of 5%. This yields a band of  $600^{\circ}$ C X 5% =  $30^{\circ}$ C.

The proportional band should be set to obtain the best response to a disturbance while minimizing overshoot. Low proportional band settings (high gain) result in quick controller response at expense of stability and increased overshoot. Settings that are excessively low produce continuous oscillations at

setpoint. High proportional band settings (low gain) result in a sluggish response with long periods of process "droop". A proportional band of 0.0% forces the controller into ON/OFF control mode with its characteristic cycling at setpoint (See ON/OFF Control for more information).

#### INTEGRAL TIME

Integral time is defined as the time, in seconds, in which the output due to integral action alone equals the output due to proportional action with a constant process error. As long as a constant error exists, integral action repeats the proportional action every integral time. Integral action shifts the center point position of the proportional band to eliminate error in the steady state. The units of integral time are seconds per repeat.

Integral action (also known as "automatic reset") changes the output power to bring the process to setpoint. Integral times that are too fast (small times) do not allow the process to respond to the new output value. This causes over compensation and leads to an unstable process with excessive overshoot. Integral times that are too slow (large times) cause a slow response to steady state errors. Integral action may be disabled by setting the time to zero. If time is set to zero, the previous integral output power value is maintained.

If integral action is disabled, manual reset is available by modifying the output power offset (*BPDF* initially set to zero) to eliminate steady state errors. This parameter appears in unprotected parameter mode when integral time is set to zero. The controller has the feature to prevent integral action when operating outside the proportional band. This prevents "reset wind-up".





#### DERIVATIVE TIME

Derivative time is defined as the time, in seconds, in which the output due to proportional action alone equals the output due to derivative action with a ramping process error. As long as a ramping error exists, the derivative action is "repeated" by proportional action every derivative time. The units of derivative time are seconds per repeat.

Derivative action is used to shorten the process response time and helps to stabilize the process by providing an output based on the rate of change of the process. In effect, derivative action anticipates where the process is headed and changes the output before it actually "arrives". Increasing the derivative time helps to stabilize the response, but too much derivative time coupled with noisy signal processes, may cause the output to fluctuate too greatly, yielding poor control. None or too little derivative action usually results in decreased stability with higher overshoots. No derivative action usually requires a wider proportional and slower integral times to maintain the same degree of stability as with derivative action. Derivative action is disabled by setting the time to zero.

#### PRIMARY/ALTERNATE PID VALUES

The PAX2C incorporates two different groups of PID parameters in memory. These are designated as the Primary ( $Pr_{-1}$ ) and Alternate ( $R_{-}$ ) PID values. It is possible to toggle between these values using the PID Selection parameter which is available in the PID configuration menu. This functionality (*PSEL*) is also available via the user inputs, function keys or Line 2 user function.

The Active PID parameters reflect the PID values that are selected via the *PSEL* parameter. If a change is made to an active PID value, such as a user change or after an Auto-tune, the values will automatically be copied into the Primary or Alternate group depending on which group is selected by the *PSEL* parameter.

## **PID TUNING EXPLANATIONS**

#### **AUTO-TUNE**

Auto-Tune is a user-initiated function where the controller automatically determines the Proportional Band, Integral Time, Derivative Time, Digital Filter, Control Ouput Dampening Time, and Relative Gain (Heat/Cool) values based upon the process characteristics. The Auto-Tune operation cycles the controlling output(s) at a control point three-quarters of the distance between the present process value and the setpoint. The nature of these oscillations determines the settings for the controller's parameters.

Prior to initiating Auto-Tune, it is important that the controller and system be verified. (This can be accomplished in On/Off Control or Manual Control Mode.) If there is a wiring, system or controller problem, Auto-Tune may give incorrect tuning or may never finish. Auto-Tune may be initiated at start-up, from setpoint or at any other process point. However, insure normal process conditions (example: minimize unusual external load disturbances) as they will have an effect on the PID calculations.

TEMPERATURE



#### **INITIATE AUTO-TUNE**

Below are the parameters and factory settings that affect Auto-Tune calculations. If changes are needed, then they must be made before starting Auto-Tune. Please note that it is necessary to configure the input and control outputs prior to initiating auto-tune.

| DISPLAY | PARAMETER                 | FACTORY SETTING                           | MENU |
|---------|---------------------------|-------------------------------------------|------|
| FLEr    | Digital Filtering         | (0                                        | INPE |
| [ну5    | On/Off Control Hysteresis | 간 (Temperature Mode)<br>값간 (Process Mode) | Pid  |
| ŁCod    | Auto-Tune Code            | 2                                         | Pid  |
| dERd    | Deadband                  | 0,0                                       | Pid  |
| ЕПЦЕ    | Auto-Tune Access          | LOC                                       | Pid  |

1. Enter the Setpoint value via the PID Menu or via the Display, Parameter or Hidden Menu Loop Menu (if enabled).

2. Initiate Auto-Tune by changing Auto-Tune tuffe to  $\frac{1}{25}$  via the PID Menu or via the Display, Parameter or Hidden Menu Loop Menu (if enabled).

AUTO-TUNING CODE FIGURE

#### **AUTO-TUNE PROGRESS**

The controller will oscillate the controlling output(s) for four phases. The bottom display will flash the phase number. Parameter viewing is permitted during Auto-Tune. The time to complete the Auto-Tune cycles is process dependent. The controller should automatically stop Auto-Tune and store the calculated values when the four phases are complete. If the controller remains in Auto-Tune unusually long, there may be a process problem. Auto-Tune may be stopped by entering  $\pi$  in Auto-Tune Start  $\mu$ 



#### **PID ADJUSTMENTS**

In some applications, it may be necessary to fine tune the Auto-Tune calculated PID parameters. To do this, a chart recorder or data logging device is needed to provide a visual means of analyzing the process. Compare the actual process response to the PID response figures with a step change to the process. Make changes to the PID parameters in no more than 20% increments from the

starting value and allow the process sufficient time to stabilize before evaluating the effects of the new parameter settings.

In some unusual cases, the Auto-Tune function may not yield acceptable control results or induced oscillations may cause system problems. In these applications, Manual Tuning is an alternative.





#### MANUAL TUNING

A chart recorder or data logging device is necessary to measure the time between process cycles. This procedure is an alternative to the controller's Auto-Tune function. It will not provide acceptable results if system problems exist.

- 1. Set the Proportional Band (*ProP*) to 10.0% for temperature models (Temperature) and 100.0% for process models (Voltage/Current).
- 2. Set both the Integral Time (Intt) and Derivative Time (dErt) to 0 seconds.
- 3. Set the active PID Power Filter (FLEr) in the PID Menu to 0 seconds.
- Set the Output Cycle Time (LYLk) in the Digital Output Menu to no higher than one-tenth of the process time constant (when applicable).
- 5. Place the controller into Manual Control Mode (MAR) via the krnF parameter in the PID Menu and adjust the % Power to drive the process value to the Setpoint value. Allow the process to stabilize after setting the % Power.
- 6. Place the controller in Automatic (Auto) Control Mode via the *krnF* parameter in the PID Menu. If the process will not stabilize and starts to oscillate, set the Proportional Band two times higher and go back to Step 5.
- 7. If the process is stable, decrease Proportional Band setting by two times and change the Setpoint value a small amount to excite the process. Continue with this step until the process oscillates in a continuous nature.
- 8. Fix the Proportional Band to three times the setting that caused the oscillation in Step 7.
- 9. Set the Integral Time to two times the period of the oscillation.
- 10. Set the Derivative Time to 1/8 (0.125) of the Integral Time.
- 11. Set the Output Dampening Time to 1/40 (0.025) the period of the oscillation.

## TROUBLESHOOTING GUIDE

| PROBLEM                                   | REMEDIES                                                                                                                                                                                  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Display At Power-Up                    | Check power level and power connections                                                                                                                                                   |
| No Display After Power-Up                 | Check dLEU and dEnt program settings in the Display menu.                                                                                                                                 |
| Program Locked-Out                        | Check for Active User Input, programmed for PLIC. Deactivate User Input.                                                                                                                  |
|                                           | Enter proper access code at [Ide I] prompt.                                                                                                                                               |
| No Line 1 Display                         | Check program settings for Line 1 Display Assignment.                                                                                                                                     |
| No Line 2 Display                         | Check program settings for Line 2 Value Access. Confirm at least one Line 2 Parameter Value is enabled in Main Display Loop.                                                              |
| No Programmable Units Display             | Check program settings for Line 1/2 Units Mnemonic(s).                                                                                                                                    |
| Incorrect Process Display Value           | Check Input Jumper Setting, Input Level, and Input Connections.                                                                                                                           |
|                                           | Verify Input Menu settings.                                                                                                                                                               |
|                                           | Contact factory                                                                                                                                                                           |
| Display of OLOL, ULUL, Short, OPEN, or "" | See General Controller Specifications, Display Messages.                                                                                                                                  |
| Modules or Parameters Not Accessible      | Check for corresponding plug-in option card.                                                                                                                                              |
|                                           | Verify parameter is valid in regard to previous program settings.                                                                                                                         |
| Error Code: EVEY                          | Keypad is active at power up. Check for depressed or stuck keypad. Press any key to clear Error Code.                                                                                     |
| Error Code: EPAr<br>Error Code: EdYn      | Parameter Data Checksum Error. Press any key to clear Error Code, verify<br>all program settings and cycle power. Contact factory if Error Code returns at<br>next power-up.              |
| Error Code: EPro                          | Parameter Data Validation Error. Press any key to clear Error Code, verify all<br>program settings and cycle power. Contact factory if Error Code returns at<br>next power-up.            |
| Error Code: ELAL                          | Calibration Data Validation Error. Contact factory.                                                                                                                                       |
| Error Code: EL in                         | Linear Output Card Data Validation Error. Press any key to clear Error Code<br>and cycle power. If Error Code returns at next power-up, replace Linear<br>Option Card or contact factory. |

**601** 

## **MODEL TCU - TEMPERATURE CONTROL UNIT**





- 100 msec SAMPLING PERIOD WITH 0.15% ACCURACY
- ON DEMAND AUTO-TUNING OF PID CONTROL SETTINGS
- DUAL LED DISPLAYS FOR SIMULTANEOUS INDICATION OF TEMPERATURE AND SETPOINT, SECOND ANALOG INPUT OR HEATER CURRENT
- ACCEPTS 10 DIFFERENT TYPES OF SENSOR INPUTS (Thermocouple or RTD)

- SELF-DIAGNOSTICS
- FULL PID CONTROL WITH REDUCED OVERSHOOT
- OPTIONAL RS485 SERIAL COMMUNICATIONS INTERFACE
- OPTIONAL DUAL ALARM OUTPUTS (USES OUTPUT MODULES)
- OPTIONAL COOLING OUTPUT (USES OUTPUT MODULE)
- OPTIONAL LINEAR 4 to 20 mA or 0 to 10 VDC OUTPUT FOR CONTROL OR TEMPERATURE RE-TRANSMISSION
- OPTIONAL HEATER CURRENT MONITOR AND BREAK ALARM
- OPTIONAL MOTORIZED VALVE POSITION CONTROL AND VALVE FAIL ALARM
- OPTIONAL SECOND ANALOG INPUT FOR REMOTE SETPOINT AND CASCADE CONTROL
- OPTIONAL TYPE 4X/IP65 SEALED FRONT BEZEL
- STATUS INDICATORS FOR OUTPUTS AND CONTROL MODES
- PROGRAMMABLE USER INPUT (DIGITAL) FOR ADDED FLEXIBILITY
- SENSOR ERROR COMPENSATION (Slope and Offset) AND BREAK DETECTION
- MANUAL/AUTOMATIC AND LOCAL/REMOTE SETPOINT CONTROL MODES
- SETPOINT RAMPING FOR PROCESS STARTUP
- PARAMETER SECURITY VIA PROGRAMMABLE LOCKOUTS
- FIELD REPLACEABLE AND INTERCHANGEABLE OUTPUT MODULES (Relay, Logic/SSR Drive and Triac)

#### DESCRIPTION

The TCU Controller accepts signals from a variety of temperature sensors (*thermocouple or RTD elements*), precisely displays the process temperature, and provides an accurate output control signal (*time proportional or linear*) to maintain a process at the desired control point. A comprehensive set of easy to use steps allows the controller to solve various application requirements.

The controller can operate in the PID control mode for both heating and cooling, with on-demand auto-tune, which will establish the tuning constants. The PID tuning constants may be fine-tuned by the operator at any time and then locked out from further modification. The controller employs a unique overshoot suppression feature, which allows the quickest response without excessive overshoot. The unit can be transferred to operate in the manual mode, providing the operator with direct control of the output. The controller may also be programmed to operate in the ON/OFF control mode with adjustable hysteresis.

Dual 4-digit displays allow viewing of the process temperature and setpoint simultaneously. Front panel indicators inform the operator of the controller and output status. Replaceable and interchangeable output modules *(relay, SSR drive, or triac)* can be installed for the main control output, alarm output(s) and cooling output.

Optional dual alarms can be configured to activate according to a variety of actions (Absolute HI or LO, Deviation HI or LO, Band IN or OUT, Heater Break and Valve Fail Detect) with adjustable hysteresis. A standby feature suppresses the output during power-up until the temperature stabilizes outside the alarm region. An optional secondary output is available (*for processes that require cooling*) which provides increased control accuracy and response.



#### www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### DESCRIPTION (Cont'd) **OPTIONS**

A linear 4 to 20 mA or 0 to 10 VDC output signal is available to interface with actuators, chart recorders, indicators, or other controllers. The output signal can be digitally scaled and selected to transmit one of the following: % output power, process temperature value, process temperature value deviation or setpoint value. For Linear DC control applications, the adjustable output demand dampening, output deadband and output update time parameters expand the versatility of the TCU with final control devices.

The optional Heater Current Monitor serves as a digital ammeter for heater current monitoring. Current transformer accessory (CT005001), is required. An alarm event output can be programmed to signal when the heater or heater control devices have failed, before damage to process material occurs. The Heater Break alarm triggers under two conditions:

1) The main output (OP1) is "on" and the heater current is below the heater current alarm value, indicating an aged or failed heater.

2) Output (OP1) is "off" and the heater current is more than 10% of the alarm value, indicating a shorted heater control device or other problem.

The optional Motorized Valve Positioner directly controls the position of a valve by the use of twin outputs (open and close) to control the direction of motor rotation. The motor position defines the opening position of the valve. Two control modes are possible: position control, which makes use of the slidewire feedback signal supplied with the positioner and velocity control, in which no slidewire feedback signal is used. Parameters are provided to adjust the operation of the valve. These include:

> Valve activity hysteresis Valve update time Variable control dampening Slidewire signal fail action Adjustable valve position limits.

The valve positioner TCU achieves tight process control, yet minimizes unnecessary valve activity. An alarm event output or display alarm can be programmed under loss of slidewire feedback or under valve fail detection.

The optional Second Analog Input (0-20 mA DC) can be configured as a remote setpoint signal or as a secondary process signal. Configuration of the second analog input as a remote setpoint signal allows ratio control, master setpoint/multiple slave operation, and the ability to cascade the TCU with another controller (external cascade). Configuration of the second input as a secondary process signal allows operation as a two-process cascade controller within a single unit (internal cascade). In either control mode, parameters are provided to scale, configure, communicate and monitor the activity of both analog inputs. A square law linearizer function can be used to linearize signals derived from flow transmitters.

The optional RS485 multidrop serial communication interface provides twoway communication between a TCU unit and other compatible equipment such as a printer, a programmable controller, or a host computer. In multipoint applications the address number of each unit on the line can be programmed from 0-99. Up to thirty-two units can be installed on a single pair of wires. The Setpoint value, % Output Power, Setpoint Ramp Rate, etc. can be interrogated or changed by sending the proper command code via serial communications. Alarm output(s) may also be reset via the serial communications interface option.

An optional Type 4X/IP65 rated bezel is available for wash down and/or dirty environments, when properly installed. Modern surface-mount technology, extensive testing, plus high immunity to noise interference makes the controller extremely reliable in industrial environments.

#### SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the TCU to directly command motors, valves, or other actuators not equipped with safeguards. To do so, can be potentially harmful to persons or equipment in the event of a fault to the unit. An independent and redundant temperature limit indicator with alarm outputs is strongly recommended. The indicators should have input sensors and AC power feeds independent from other equipment.

#### SPECIFICATIONS

#### 1. DISPLAY: Dual 4-digit

Upper Temperature Display: 0.4" (10.2 mm) high red LED Lower Auxiliary Display: 0.3" (7.6 mm) high green LED Display Messages (Model dependent):

- "OLOL'
- Appears when measurement exceeds + sensor range. "UI UI ' Appears when measurement exceeds - sensor range.
- "OPEN" Appears when open sensor is detected
- "SHrt" Appears when shorted sensor is detected (RTD only)
  - Appears when display values exceed + display range
  - Appears when display values exceed display range.

- Appears when loss of slidewire signal is detected. "SLid"

- "VALV" - Appears when valve actuator error is detected.
- 2. POWER: Switch selectable for 115/230 VAC (+10%, -15%) no observable line variation effect, 48 to 62 Hz, 10 VA
- 3. ANNUNCIATORS:

  - LED Backlight Status Indicators (Model dependent): %PW Lower auxiliary display shows power output in (%). Lower auxiliary display shows deviation (error) DEV from temperature setpoint. OP1 Main control output is active. AL1 Alarm #1 is active. AI 2 Alarm #2 is active (for Dual Alarm Option). OP2 Cooling output is active (for Cooling Option). Valve positioner OPEN output is active OPN (for Valve Positioner option). CLS Valve positioner CLOSE output is active (for Valve Positioner option). CUR Lower auxiliary display shows heater current (for Heater Current Monitor option). Lower auxiliary display shows second analog input SEC (For Second Analog Input option). MAN Flashing: Controller is in manual mode. REM ON: controller is in remote setpoint mode (Second Analog Input option). OFF: controller is in local setpoint mode
    - (Second Analog Input option).
    - Flashing: controller is in Manual control mode
    - (Second Analog Input optional)
  - 4. CONTROLS: Four front panel push buttons for modifying and setup of controller functions and one external input for parameter lockout or other functions.
  - 5. MAIN SENSOR INPUT:
    - Sample Period: 100 msec

Response Time: 300 msec (to within 99% of final value w/step input; typically, response is limited to response time of probe)

Failed Sensor Response:

Main Control Output(s): Programmable preset output Display: "OPEN"

- Alarms: Upscale drive
- DC Linear: Programmable preset output
- Normal Mode Rejection: 40 dB @ 50/60 Hz (improves with increased digital filtering
- Common Mode Rejection: 100 dB, DC to 60 Hz
- Protection: Input overload 120 VAC for 30 seconds.
- 6. THERMOCOUPLE:
  - Types: T, E, J, K, R, S, B, N, Linear mV
  - **Input Impedance**: 20 M  $\Omega$  all types
  - Lead resistance effect:  $20 \ \mu V/350 \ \Omega$
  - **Cold junction compensation**: Less than  $\pm 1^{\circ}$ C error over 0 50°C ambient temperature range. Disabled for Linear mV type.
- Resolution: 1°C/F all types, or 0.1°C/F for T, E, J, K, and N only.
- 7. **RTD**: 2, 3 or 4 wire, 100  $\Omega$  platinum, alpha = 0.00385 (DIN 43760), alpha = 0.003916
  - Excitation: 0.175 mA Resolution: 1 or 0.1 degree
  - Lead Resistance:  $7 \Omega$  maximum

8. RANGE AND ACCURACY:

Errors include NIST conformity and A/D conversion errors at 23°C after 20 min. warm-up. Thermocouple errors include cold junction effect. Errors are expressed as  $\pm$  percent of reading and  $\pm \frac{3}{4}$  LSD unless otherwise noted.

| TC TYPE      | RANGE                              | ACCURACY                       | WIRE COLOR<br>(ANSI) |
|--------------|------------------------------------|--------------------------------|----------------------|
| т            | -200 to +400°C<br>-328 to +752°F   | 0.20% + 1.5°C<br>0.20% + 2.7°F | blue                 |
| E            | -200 to 750°C<br>-328 to +1382°F   | 0.20% + 1.5°C<br>0.20% + 2.7°F | violet               |
| J            | -200 to +760°C<br>-328 to +1400°F  | 0.15% + 1.5°C<br>0.15% + 2.7°F | white                |
| к            | -200 to +1250°C<br>-328 to +2282°F | 0.20% + 1.5°C<br>0.20% + 2.7°F | yellow               |
| R            | 0 to +1768°C<br>+32 to +3214°F     | 0.15% + 2.5°C<br>0.15% + 4.5°F | black                |
| S            | 0 to +1768°C<br>+32 to +3214°F     | 0.15% + 2.5°C<br>0.15% + 4.5°F | black                |
| В            | +200 to +1820°C<br>+300 to +3308°F | 0.15% + 2.5°C<br>0.15% + 4.5°F | grey                 |
| N            | -200 to +1300°C<br>-328 to +2372°F | 0.20% + 1.5°C<br>0.20% + 2.5°F | orange               |
| mV           | -5.00 to 56.00                     | 0.15% + 1 LSD                  | —                    |
| RTD<br>(385) | -200 to +600°C<br>-328 to +1100°F  | 0.10% + 0.5°C<br>0.10% + 0.9°F | _                    |
| RTD<br>(392) | -160 to +600°C<br>-256 to +1100°F  | 0.10% + 0.5°C<br>0.10% + 0.9°F | _                    |
| OHMS         | 1.0 to 320.0                       | 0.15% + 1 LSD                  | _                    |

603

#### 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

9. OUTPUT MODULES [Optional] (For All Output Channels): Relay: Type: Form-C (Form-A with some models. See Ordering Information.) Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120 VAC (inductive load) Life Expectancy: 100,000 cycles at max. load rating. (Decreasing load and/or increasing cycle time, increases life expectancy). Logic/SSR Drive: Can drive multiple SSR Power Units. Type: Non-isolated switched DC, 12 VDC typical Drive: 45 mA max. Triac: Type: Isolated, Zero Crossing Detection Rating: Voltage: 120/240 VAC Max. Load Current: 1 Amp @ 35°C 0.75 Amp @ 50°C Min. Load Current: 10 mA max. Offstate Leakage Current: 7mA max. @ 60 Hz Operating Frequency: 20 to 400 Hz Protection: Internal Transient Snubber, Fused 10. MAIN CONTROL OUTPUT (Heating or Cooling): Control: PID or ON/OFF Output: Time proportioning or linear DC Hardware: Plug-in, replaceable output modules Cycle time: Programmable Auto-tune: When selected, sets proportional band, integral time, and derivative time values. Probe Break Action: Programmable 11 . COOLING OUTPUT (Optional): Control: PID or ON/OFF Output: Time proportioning or linear DC Hardware: Plug-in, replaceable output modules Cycle time: Programmable Proportional Gain Adjust: Programmable Heat/Cool Deadband Overlap: Programmable 12. LINEAR DC OUTPUT (Optional): With digital scale and offset, programmable deadband and update time. 4 to 20 mA: Resolution: 1 part in 3500 typ. Accuracy:  $\pm (0.1\% \text{ of reading} + 25 \ \mu A)$ **Compliance**: 10 V (500  $\Omega$  max. loop impedance) 0 to 10 VDC: Resolution: 1 part in 3500 typ. Accuracy:  $\pm (0.1\% \text{ of reading} + 35 \text{ mV})$ Min. Load Resistance: 10 KQ (1 mA max.) Source: % output power, setpoint, deviation, or temperature (Available for heat or cool, but not both.) 13. HEATER CURRENT MONITOR (Optional): Type: Single phase, full wave monitoring of load currents controlled by main output (OP1) Input: 100 mA AC output from current transformer RLC part number CT005001 or any current transformer with 100 mA AC output Display Scale Range: 1.0 to 999.9 amperes or 100.0% Input resistance: 5  $\Omega$ Accuracy: 1% of full scale ±1 LSD (10 to 100% of range) Frequency: 50 to 400 Hz Alarm mode: Dual acting; heater element fail detect and control device fail detect Overload: 200 mA (steady state) Min. output "on" time for Heater break alarm detect: 400 msec 14. MOTORIZED VALVE POSITIONER (Optional): Two Outputs: Valve open and valve close or Linear DC (optional) Hardware: Plug-in, replaceable output modules Three Inputs: Slidewire feedback, signal fail detect (Isolated from main input) Slidewire Resistance: 100 to 100 K $\Omega$ Slidewire Exciting Voltage: 0.9 VDC Slidewire Fail Action: programmable Control Mode: Position mode (with slidewire) and velocity mode (w/o slidewire). Control Deadband: 1% to 25.0% (position mode) 0.1 to 25.0 seconds (velocity mode) Update Time: 1 to 250 seconds Motor Time (open, close): 1 to 9999 seconds Position Limits: Adjustable 0.0 to 100.0% of valve stroke Valve Fail Time: Off to 9999 seconds

Alarm mode: Dual acting; loss of slidewire feedback signal and valve fail detection 15. SECOND ANALOG INPUT: Range: 0 to 20 mA (Isolated from main input) Overload: 100 mA (steady state) Input Resistance:  $10 \Omega$ Voltage Drop (@ 20 mA): 0.2 V Accuracy: 0.15% of reading  $\pm 10 \ \mu A \pm 1 \ LSD$ Scale Range: -999 to 9999 16. SERIAL COMMUNICATION: Type: RS485 Multi-point, Balanced Interface **Communication Format** Baud Rate: Programmable from 300 to 9600 Parity: Programmable for odd, even, or no parity Frame: 1 start bit, 7 data bits, 1 or no parity bit, 1 stop bit Unit Address: Programmable from 0 to 99, max. of 32 units per line Transmit Delay: 100 msec min., 200 msec max RS485 Common: Isolated from signal input common Auto Print Time: Off to 9999 seconds between print-outs 17. USER INPUT (Optional): Internally pulled up to +5 VDC.  $V_{IN MAX} = 5.25 VDC, V_{IL} = 0.85 V_{MAX}; V_{IH} = 3.0 V_{MIN},$ Available on all second input (HCM, MVP & ANA) models, and on models with RS485 Response Time: 100 msec max. Functions: Program Lock Integral Action Lock Auto/Manual Mode Select Setpoint Ramp Select Reset Alarms Print Request Local/Remote Setpoint Select 18. ALARMS (Optional): Hardware: Plug-in, replaceable output module Modes: Absolute high acting Absolute low acting Deviation high acting Deviation low acting Inside band acting Heater break Valve fail Second Analog Input monitoring Reset Action: Programmable; automatic or latched Standby Mode: Programmable; enable or disable Hysteresis: Programmable Probe Break Action: Upscale Annunciator: LED backlight for "AL1", "AL2", (Alarm #2 not available with cooling output or motorized valve position option.) 19. ENVIRONMENTAL CONDITIONS: Operating Temperature Range: 0 to 50°C Storage Temperature Range: -40 to 80°C Vibration to IEC 68-2-6: Operational 5-150 Hz, 1 g Shock to IEC 68-2-27: Operational 5 g Span Drift (maximum): 100 ppm/°C, main input; 150 ppm/°C, second input **Operating and Storage Humidity:** 85% max. (non-condensing) from 0 to 50°C Zero Drift (maximum): 1 µV/°C, main input;2 µA/°C, second input Altitude: Up to 2000 meters 20. ISOLATION BREAKDOWN RATINGS: All inputs and outputs with respect to AC line: 2300 V Analog Outputs, Second Analog Input, Heater Current Input or Slidewire Input with respect to main input: 500 V 21. CERTIFICATIONS AND COMPLIANCES: **CE** Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A EN 61010-1 **RoHS** Compliant UL Recognized Component: File #E156876 UL Listed: File #E137808 Type 2 Enclosure rating (Face only) for TCU0 Type 4X/IP65 Enclosure rating (Face only) for TCU1 Refer to EMC Installation Guidelines section of the manual for additional information. 22. CONNECTION: Jaw-type terminal block Wire Range: 12-30 AWG copper wire Torque: 5-7 inch-lbs (56-79 N-cm)

#### 23. CONSTRUCTION:

Front Panel: Flame and scratch resistant tinted plastic

**Case**: High impact black plastic. (Mounting collar included) **Type 4X/IP65 model only**: Sealed bezel utilizing two captive mounting

screws (panel gasket included). This unit is rated for Type 4X/IP65 indoor use. Installation Category II, Pollution Degree 2

24. WEIGHT: 1.3 lbs (0.6 kgs)

#### ACCESSORIES:

**External SSR Power Unit:** 

Switched Voltage Range: 50 to 280 VAC (Nominal: 240 VAC)
Load Current: 45 Amps @ 25°C ambient temperature 35 Amps @ 50°C ambient temperature
On State Input: 3 to 32 VDC @ 1500 Ω impedance. (isolated) (Use Logic/SSR drive output module.)
Off State Input: 0.0 to 1.0 VDC
Size: 5.5" (14 cm) L x 4.75" (12 cm) W x 2.62" (6.6 cm) H
Current Transformer:
Current Ratio: 50:0.1 (Amperes)
Accuracy: ±5.0%
Operating Frequency: 50 to 400 Hz
Insulation Class: 0.6 Kv BIL 10 Kv full wave

**Terminals**: Brass studs No. 8-36, (flat washer, washer, nut) **Weight**: 8.0 oz (226 g)

Approvals: UL recognized component

#### **BASIC OPERATION**

The TCU controls a process temperature by measuring the temperature via an input probe, then calculating a control output power value by use of a modified PID control algorithm. The unit controls the system with the new output power value to keep the process temperature at setpoint. The PID control algorithm incorporates features which provide for high control accuracy and low temperature overshoot from process disturbances.

#### FRONT PANEL FEATURES

In the normal operating mode, the unit will display the process temperature in the upper display. One of six other parameters can be viewed in the lower display:

- Setpoint
- % Power Output
- Temperature Deviation
- Heater Current
- Second Input Process Value
- Temperature Symbol (F or C)

The six parameters can be scrolled through by pressing the DSP button. If enabled, the control setpoint or power output (manual mode only) can be directly modified in this mode.

In the normal operating mode, parameters are selected by use of the PAR button and modified by use of the UP and DOWN buttons. Parameters are then entered by the PAR button, which advances the user to the next parameter. Pressing the DSP button immediately returns the controller to the normal operating mode when making a parameter change. The controller's configuration and parameter settings are stored in an internal  $E^2PROM$  device.

#### HARDWARE FEATURES

The fast 100 msec input sampling rate provides quick controller response to a process disturbance, thus providing excellent temperature control. Measurement accuracy of 0.15% or better, provides closer process control conforming to the desired control setpoint value. One model accepts a variety of both thermocouple or RTD temperature probes. The AC input power is switch selectable, allowing the unit to operate from either 115 VAC or 230 VAC. Since the controller is serviceable from the front of the panel, the output modules may be easily changed or replaced without disturbing the wiring behind the panel. No re-programming is required when changing or replacing modules.

The optional Type 4X/IP65 rated model utilizes two bezel securing screws and a neoprene gasket to guarantee a water tight seal, when properly installed. The standard model simply requires pressing a latch to remove the unit.

Low-drift, highly stable circuitry ensures years of reliable and accurate temperature control. The recommended two-year re-calibration interval is easily accomplished via the programming menu.

#### SETPOINT FEATURES

The controller setpoint can be protected from out of range values by programming the setpoint range limit values. Additionally, safeguards from inadvertent data entry can be programmed.

The setpoint ramp feature ramps the setpoint value at start-up or any time a setpoint change is made, at a user programmable rate. This feature reduces thermal shock to the process and helps to minimize temperature overshoot. The setpoint may also be transmitted by the optional linear DC output for slave control loops.

The second analog input may be configured as a remote setpoint. As such, the controller is easily switched from local/remote setpoint operation via the front panel or user input. Ratio and bias parameters provide on-line scaling of the remote setpoint. Absolute limit values and maximum rate of change of the remote setpoint further enhance controller flexibility.

#### **INPUT FEATURES**

A programmable input filter can be used to stabilize readings from a process with varying or oscillating temperature characteristics, helping to provide better temperature control. A programmable temperature shift and slope function can be used to compensate for probe errors or to have multiple TCU units indicate the same nominal temperature.

The programmable User Input can be used to control a variety of functions, such as auto/manual transfer of the controller, reset alarm output(s), etc.

The second analog input has independent scaling parameters to match the units of other processes or transmitters, or to match the controller's range.

#### **OUTPUT FEATURES**

Programmable output power limits provide protection for processes where excessive power can cause damage. Automatic sensor probe break detection, for fail-safe operation, causes the controller to default to a programmed output power (upscale or downscale burnout). With adjustable time proportioning-cycle time, and programmable DC linear output, the controller can satisfy a wide variety of output requirements.

Programmable dampening output hysteresis and output update time parameters can dramatically reduce actuator activity without degrading control accuracy.

The RS485 Communication option allows the user to access various controller parameters such as the setpoint, % output power, % proportional band, etc. The controller may be setup to transmit various parameters at a programmable automatic print rate.

#### AUTO-TUNE

The TCU has an auto-tune feature which, on demand, automatically determines the PID control parameters for a particular thermal process. After completion of auto-tune, the PID parameters are automatically optimized for that process and loaded into nonvolatile memory. The operator may view and modify the parameters as desired.

Auto-tune may be invoked either at start-up or at setpoint, depending on the process requirements. An auto-tune programmable dampening factor produces various levels of process control and response characteristics.

#### **OPTIONS** HEATING AND COOLING CONTROL



The TCU has dual outputs for providing heating and cooling to those processes that require them. Many extruder applications require both heating and cooling to maintain accurate extruder barrel and die temperatures. The TCU is easily configured for these applications.

#### **Cooling Configuration Parameters**

- "CYC2" Enter cooling time proportioning cycle time "GAN2" - Enter cooling relative gain
- "db-2" Enter heat/cool deadband or overlap

#### HEATER CURRENT MONITOR



The Heater Current Monitor serves as a heater element fail sentry, so operators can take corrective action before significant process errors occur in the event of a failure. The actual heater current can be viewed in the secondary display and/or a heater break alarm output can be programmed.





#### **MOTORIZED VALVE POSITIONER**



The motorized valve positioner controls the position of a valve directly, by use of "open" and "close" control outputs. The slidewire feedback signals of the valve may optionally be connected to the controller. Alternatively, the controller may be configured for linear input valve control using the 4 to 20 mA DC output.

| Motorized valve | Positioner       | Configuration Parameters                                                   |
|-----------------|------------------|----------------------------------------------------------------------------|
| Position mode:  | "VPS1"           | - Enter or measure valve closed position                                   |
|                 | "VPS2"           | <ul> <li>Enter or measure valve open position</li> </ul>                   |
|                 | "VUdt"           | <ul> <li>Enter Valve update time</li> </ul>                                |
|                 | "VPdb"           | <ul> <li>Enter valve control deadband</li> </ul>                           |
|                 | "VFAL"           | <ul> <li>Enter valve fail detect time</li> </ul>                           |
|                 | "Act1"           | <ul> <li>Program alarm as valve fail output</li> </ul>                     |
| Velocity mode:  | "VUdt"<br>"VOPt" | <ul> <li>Enter Valve update time</li> <li>Enter valve open time</li> </ul> |

Enter valve close time

Enter valve control deadband (minimum on time)

"VCLt"

"VONt"

#### **INTERNAL CASCADE**



Cascade control allows the process to be divided into two control loops: the primary control loop and the secondary control loop. The secondary loop receives it's setpoint from the primary loop to control an intermediate variable (steam pressure). The control level of the intermediate variable is the input to the primary process. The primary loop (temperature) controller maintains loop regulation by manipulating the setpoint of the secondary controller. The setpoint of the secondary controller, in turn, changes the intermediate variable. The secondary loop can react faster to disturbances of the intermediate variable, thereby minimizing the effects to the primary control loop. Control loops cascaded in such a manner provide greater control quality than would be possible with single loop control. A single TCU can accomplish two-process

#### Internal Cascade Configuration Parameters

| Conngui |                                                         |
|---------|---------------------------------------------------------|
| "OPer"  | <ul> <li>Select cascade mode</li> </ul>                 |
| "root"  | - Select second input square root linearization         |
| "dPt2"  | <ul> <li>Select second input decimal point</li> </ul>   |
| "dSP1"  | <ul> <li>Enter scaling units of second input</li> </ul> |
| "INP1"  | <ul> <li>Enter scaling units of second input</li> </ul> |
| "dSP2"  | <ul> <li>Enter scaling units of second input</li> </ul> |
| "INP2"  | <ul> <li>Enter scaling units of second input</li> </ul> |
| "OPd2"  | <ul> <li>Output dampening of secondary</li> </ul>       |
|         |                                                         |

#### Internal Cascade Operational Parameters "SP-2" - View second

"Pb-2"

"It-2"

"dt-2"

View secondary setpoint value

- Enter secondary proportional band
- Enter secondary integral time
- Enter secondary derivative time

#### EXTERNAL CASCADE



Similar to internal cascade control, external cascade control differs by the employment of two controllers, one of which is equipped with a second analog input configured as a remote setpoint. A PCU controls the secondary loop, while a TCU controls the primary loop.

| External Cascade Configu                               | ration Parameters                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "OPEr"<br>"root"<br>"dPt2"<br>"INP1"<br>"MP2"<br>"SP2" | <ul> <li>Select ratio mode</li> <li>Select second input square root linearization</li> <li>Select second input decimal point</li> <li>Enter scaling units of second input</li> <li>Enter scaling units of second input</li> <li>Enter scaling units of second input</li> </ul> |
| "SPtr"                                                 | - Local/Remote select options                                                                                                                                                                                                                                                  |
| External Cascade Operation                             | onal Parameters                                                                                                                                                                                                                                                                |
| "rtio"<br>"bIAS"                                       | <ul> <li>Remote setpoint ratio</li> <li>Remote setpoint bias</li> </ul>                                                                                                                                                                                                        |
## SETPOINT MASTER CONTROL

Setpoint Master Control allows automatic setpoint changes to slave controller units (up to 50 units total) from a master TCU controller. The linear DC output of the master is looped with the second analog input of the slave TCU controllers. Each slave unit can have unique remote setpoint ratio and bias values.

**Setpoint Slave Configuration Parameters** 

| <ul> <li>"OPEr" - Select remote setpoint mode</li> <li>"root" - Select second input square root<br/>Linearization</li> <li>"dPt2" - Select second input decimal point</li> <li>"dSP1" - Enter scaling units of second input</li> <li>"INP1" - Enter scaling units of second input</li> <li>"dSP2" - Enter scaling units of second input</li> <li>"SPLO"</li> <li>Limit range of remote setpoint</li> <li>"SPrP" - Limit rate of change of remote</li> </ul> |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| setpoint Setpoint Slave Operational Parameters "rtio" - Second input ratio "bIAS" - Second input bias                                                                                                                                                                                                                                                                                                                                                       |  |



## **CONTROLLER PROGRAMMING**

The TCU has been designed to reduce the operator interaction with the controller while still maintaining a high degree of control accuracy and user flexibility. Front Panel Program Disable allows all of the controller's set-ups to be locked-out from further operator intervention after the initial parameter set-up.

- The programming of the controller is divided into four sections: Unprotected Parameter Mode Configuration Parameter Mode
- Protected Parameter Mode
- Hidden Function Mode

These four programming modes allow the controller to adapt to any required user-interface level.

#### **UNPROTECTED PARAMETER MODE \***

The unprotected parameter mode is accessible when program disable is inactive or when the proper access code number from the protected mode is entered. The configuration parameter modes can be accessed only from this mode.

| "SP"            | <ul> <li>Enter Setpoint</li> </ul>                                                         |
|-----------------|--------------------------------------------------------------------------------------------|
| "OP"            | <ul> <li>Enter output power</li> </ul>                                                     |
| "ProP"          | <ul> <li>Enter proportional band</li> </ul>                                                |
| "Intt"          | - Enter integral time                                                                      |
| "dErt"          | <ul> <li>Enter derivative time</li> </ul>                                                  |
| "rtio"          | <ul> <li>Enter Remote Setpoint ratio value</li> </ul>                                      |
| "bIAS"          | <ul> <li>Enter Remote Setpoint bias value</li> </ul>                                       |
| "SP-2"          | - View internal cascade secondary setpoint                                                 |
|                 | demand                                                                                     |
| "Pb-2"          | <ul> <li>Enter internal cascade, secondary</li> </ul>                                      |
|                 | proportional band                                                                          |
| "lt-2"          | - Enter internal cascade, secondary integral                                               |
|                 | time                                                                                       |
| "dt-2"          | <ul> <li>Enter internal cascade, secondary</li> </ul>                                      |
|                 | derivative time                                                                            |
| "AL-1"          | <ul> <li>Enter value for alarm #1</li> </ul>                                               |
| "AL-2"          | <ul> <li>Enter value for alarm #2</li> </ul>                                               |
| "CNFP"          | <ul> <li>Select basic configuration mode</li> </ul>                                        |
| "End"           | <ul> <li>Return to normal display mode</li> </ul>                                          |
| "CNFP"<br>"End" | <ul> <li>Select basic configuration mode</li> <li>Return to normal display mode</li> </ul> |

 These parameters may not appear due to option configuration or other programming.

## **CONFIGURATION PARAMETER MODE**

The configuration parameter mode allows the operator to set-up the basic requirements of the controller. It is divided into sections which group together related programming steps, such as inputs, outputs, alarms, etc. Upon completion of each section, the program returns to the configuration selection stage allowing the user to return to the normal display mode.

#### **Configuration 1, Inputs**

| "tYPE" | <ul> <li>Select input probe type</li> </ul>           |
|--------|-------------------------------------------------------|
| "SCAL" | <ul> <li>Select temperature scale</li> </ul>          |
| "dCPt" | <ul> <li>Select temperature resolution</li> </ul>     |
| "FLtr" | <ul> <li>Select level of input filtering</li> </ul>   |
| "SPAN" | - Enter input correction span (slope)                 |
| "SHFt" | - Enter input correction shift (offset)               |
| "SPLO" | <ul> <li>Enter setpoint lower limit</li> </ul>        |
| "SPHI" | <ul> <li>Enter setpoint higher limit</li> </ul>       |
| "SPrP" | <ul> <li>Enter setpoint ramp rate</li> </ul>          |
| "InPt" | <ul> <li>Select user input function *</li> </ul>      |
| "HCur" | <ul> <li>Enter full scale heater current *</li> </ul> |
|        |                                                       |

#### **Configuration 2, Outputs**

| , _,   |   | 5410                                      |
|--------|---|-------------------------------------------|
| "CYCt" | - | Enter time proportioning cycle time       |
| "OPAC" | - | Select control action                     |
| "OPLO" | - | Enter output power low limit              |
| "OPHI" | - | Enter output power high limit             |
| "OPFL" | - | Enter probe fail power preset             |
| "OPdP" | - | Enter output control dampening            |
| "CHYS" | - | Enter ON/OFF control hysteresis           |
| "tcod" | - | Select auto-tuning dampening              |
| "ANAS" | - | Select linear DC output assignment *      |
| "ANLO" | - | Enter linear DC output low scaling value  |
| "ANHI" | - | Enter linear DC output high scaling value |
| "ANdb" | - | Enter linear DC output control deadband   |

"ANUt" - Enter linear DC output update time \*

#### **Configuration 3, Parameter lock-outs**

| "SP"   | - | Select degree of setpoint access         |
|--------|---|------------------------------------------|
| "OP"   | - | Select degree of power access            |
| "dEv"  | - | Enable deviation display *               |
| "IN-2" | - | Enable second input display *            |
| "HCur" | - | Enable heater current display            |
| "UdSP" | - | Enable temperature scale display         |
| "CodE" | - | Enter parameter access code              |
| "Pld"  | - | Select degree of PID access              |
| "Pld2" | - | Select degree of secondary PID access    |
| "rtbS" | - | Select degree of ratio/bias access *     |
| "AL"   | - | Select degree of alarm access *          |
| "ALrS" | - | Enable alarm reset access *              |
| "SPSL" | - | Enable local/remote setpoint selection * |
| "trnF" | - | Enable auto/manual mode selection        |
| "tUNE" | - | Enable auto-tune invocation              |
|        |   |                                          |

#### Configuration 4, Alarms \*

- "Act1" Select operation mode of alarm #1
- "rSt1" Select reset mode of alarm #1
  - "Stb1" Enable activation delay of alarm #1
- "AL-1" Enter value for alarm #1
- "Act2" Select operation mode of alarm #2 "rSt2" - Select reset mode of alarm #2
- "Stb2" Enable activation delay of alarm #2
- "AL-2" Enter value for alarm #2
- "AHYS" Enter hysteresis value for both alarms

#### Configuration 5, Cooling \*

- "CYC2" Enter cooling time proportioning cycle time
- "GAN2" Enter cooling relative gain
- "db-2" Enter heat/cool deadband or overlap

#### **Configuration 6, Serial Communications \***

"bÁUd" - Select baud rate

- "PArb" - Select parity bit
- "Addr" - Enter unit address number "Abrv' - Select abbreviated or full mnemonic
- transmissions
- "PrAt" - Enter automatic print rate
- "PoPt" - Select parameters to be included in print-out

#### Configuration 7, Second Input \*

| ,                                |                                                        |  |  |  |  |
|----------------------------------|--------------------------------------------------------|--|--|--|--|
| "OPEr"                           | <ul> <li>Select remote setpoint or internal</li> </ul> |  |  |  |  |
|                                  | cascade mode                                           |  |  |  |  |
| "root"                           | - Select second input square root linearization        |  |  |  |  |
| "dPt2"                           | <ul> <li>Select second input decimal point</li> </ul>  |  |  |  |  |
| "dSP1"                           | - Enter scaling parameters of second input             |  |  |  |  |
| "INP1"                           | - Enter scaling parameters of second input             |  |  |  |  |
| "dSP2"                           | - Enter scaling parameters of second input             |  |  |  |  |
| "INP2"                           | - Enter scaling parameters of second input             |  |  |  |  |
| "SPtr"                           | <ul> <li>Enter local/remote select options</li> </ul>  |  |  |  |  |
| "OPd2"                           | - Enter Secondary output control dampening             |  |  |  |  |
| n 9 Motorized Valve Desitioner * |                                                        |  |  |  |  |
| 11 O. IVI                        |                                                        |  |  |  |  |

## Configuratio

| Position mode: | "VPS1" - Enter or measure valve closed position |
|----------------|-------------------------------------------------|
|                | "VPS2" - Enter or measure valve open position   |
|                | "VUdt" - Enter valve update time                |
|                | "VPdb" - Enter valve control deadband           |
|                | "VFAL" - Enter valve fail detect time           |
| Velocity mode: | "VUdt" - Enter valve update time                |
|                | "VOPt" - Enter valve open time                  |
|                | "VCLt" - Enter valve close time                 |
|                | "VONt" - Enter valve control deadband           |
|                | (minimum on time)                               |
|                |                                                 |

## ACCESSORY - EXTERNAL RLY50000 SSR **POWER UNIT SHOWN** (External DIN Rail mount SSR power units available)

The external SSR Power Unit is used with the Logic/SSR Drive Module (OMD00003) to switch loads up to 240 VAC @ 45 amps, 25°C ambient. The unit is operated by applying a low level DC control signal to the isolated input. The unit features zero cross detection circuits which reduces radiated RFI when switching load currents. With no contacts to wear out, the SSR Power Unit provides virtually limitless operational life. The unit is supplied with an integral heat sink for immediate installation.



## **HIDDEN FUNCTION MODE \***

The hidden function mode is accessible from the normal operating mode. The four functions in this mode may be locked-out individually in configuration 3 parameter lock-out section.

- "SPSL" Select Local/Remote Setpoint "trnF"
  - Transfer between automatic (PID) control and manual control "tUNE" - Invoke/cancel PID Auto-tune
  - Reset latched alarms "ALrS"

## **PROTECTED PARAMETERS MODE \***

The protected parameters mode is enabled when program disable is active. This mode prevents access to the configuration modes without the proper access code number. Only the parameters that are selected in the configuration 3 parameter lock-out section can be accessed.

| "ProP  | " - Enter Proportional band                           |
|--------|-------------------------------------------------------|
| "Intt" | - Enter integral time                                 |
| "dErt" | <ul> <li>Enter derivative time</li> </ul>             |
| "rtio" | <ul> <li>Enter remote setpoint ratio value</li> </ul> |
| "bIAS  | <ul> <li>Enter remote setpoint bias value</li> </ul>  |
| "SP-2  | " - Enter internal cascade, secondary setpoint        |
| "Pb-2  | " - Enter internal cascade, secondary                 |
| "!! 0" | proportional band                                     |
| "It-2" | - Enter internal cascade, secondary                   |
|        | integral time                                         |
| "dt-2" | <ul> <li>Enter internal cascade, secondary</li> </ul> |
|        | derivative time                                       |
| "AL-1  | <ul> <li>Enter value for alarm #1</li> </ul>          |
| "AL-2  | " - Enter value for alarm #2                          |
| "CodE  | E" - Enter access value to unprotected                |
|        | parameters & configuration parameters                 |

\* These parameters may not appear due to option configuration or other programming.

## ACCESSORY - CT005001 CURRENT **TRANSFORMER SHOWN** (Lower current CT available)

The external Current Transformer is used when specifying TCUs equipped with the Heater Current Monitor. The primary current rating is 50 amperes.



## **OUTPUT MODULES**

#### **TYPICAL CONNECTIONS**



#### Relay:

Type: Form-C (Form-A with some models. See ordering information.) Rating: 5 amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120 VAC (inductive).

Life Expectancy: 100,000 cycles at maximum load rating. LOGIC/SSR DRIVE MODULE +12VDC UNREG. 4 SSR POWER POWER B NOT UNIT 3 2 ISOLATED C DO NOT CONNECT 0 LOAD

(Decreasing load and/or increasing cycle time, increases life expectancy). Logic/SSR Drive: Can drive multiple SSR Power Units.





## **ORDERING INFORMATION**

## MODELS WITHOUT SECOND INPUT OPTIONS

| Type 4X/IP65<br>BEZEL                                                                                            | 4 to 20 mA<br>ANALOG<br>OUTPUT | 0 to 10 VDC<br>ANALOG<br>OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER<br>115/230 VAC |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------------------|-------------------|-----------|----------------------------|--|
| NO                                                                                                               | NO                             | NO                              | NO               | NO                | NO        | TCU00000                   |  |
| NO                                                                                                               | NO                             | NO                              | 2                | NO                | NO        | TCU00001                   |  |
| NO                                                                                                               | NO                             | NO                              | 1                | YES               | NO        | TCU00002                   |  |
| NO                                                                                                               | YES                            | NO                              | 2                | NO                | NO        | TCU01001                   |  |
| NO                                                                                                               | YES                            | NO                              | 2                | NO                | YES       | TCU01004                   |  |
| NO                                                                                                               | YES                            | NO                              | 1                | YES               | YES       | TCU01005                   |  |
| YES                                                                                                              | NO                             | NO                              | NO               | NO                | NO        | TCU10000                   |  |
| YES                                                                                                              | NO                             | NO                              | 2                | NO                | NO        | TCU10001                   |  |
| YES                                                                                                              | NO                             | NO                              | 1                | YES               | NO        | TCU10002                   |  |
| YES                                                                                                              | YES                            | NO                              | 2                | NO                | NO        | TCU11001                   |  |
| YES                                                                                                              | YES                            | NO                              | 1                | YES               | NO        | TCU11002                   |  |
| YES                                                                                                              | YES                            | NO                              | 2                | NO                | YES       | TCU11004                   |  |
| YES                                                                                                              | YES                            | NO                              | 1                | YES               | YES       | TCU11005                   |  |
| YES                                                                                                              | NO                             | YES                             | 2                | NO                | NO        | TCU12001                   |  |
| YES                                                                                                              | NO                             | YES                             | 2                | NO                | YES       | TCU12004                   |  |
| YES                                                                                                              | NO                             | YES                             | 1                | YES               | YES       | TCU12005                   |  |
| These models have dual alarm outputs, or single alarm with cooling outputs, with shared common terminals (Form A |                                |                                 |                  |                   |           |                            |  |

Type). As a result, these outputs should be fitted with the same type of output module. The main output (OP1) may be fitted with any type of output module.

## HEATER CURRENT MONITOR MODELS (HCM)

| Type 4X/IP65<br>BEZEL                                                                                                                                                                                                                                                        | 4 to 20 mA<br>ANALOG<br>OUTPUT | 0 to 10 VDC<br>ANALOG<br>OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------------------|-------------------|-----------|-------------|
| YES                                                                                                                                                                                                                                                                          | NO                             | NO                              | 2                | NO                | YES       | TCU10204    |
| YES                                                                                                                                                                                                                                                                          | YES                            | NO                              | 2                | NO                | NO        | TCU11208    |
| These models have dual alarm outputs, or single alarm with cooling outputs, with shared common terminals (Form A Type). As a result, these outputs should be fitted with the same type of output module. The main output (OP1) may be fitted with any type of output module. |                                |                                 |                  |                   |           |             |

## SECOND ANALOG INPUT MODELS (ANA)

| Type 4X/IP65<br>BEZEL                                                                                                                                                                                                                                                        | 4 to 20 mA<br>ANALOG<br>OUTPUT | 0 to 10 VDC<br>ANALOG<br>OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------------------|-------------------|-----------|-------------|--|--|
| YES                                                                                                                                                                                                                                                                          | NO                             | NO                              | 2                | NO                | YES       | TCU10104    |  |  |
| YES                                                                                                                                                                                                                                                                          | YES                            | NO                              | 2                | NO                | NO        | TCU11108    |  |  |
| YES                                                                                                                                                                                                                                                                          | NO                             | YES                             | 2                | NO                | NO        | TCU12108    |  |  |
| These models have dual alarm outputs, or single alarm with cooling outputs, with shared common terminals (Form A Type). As a result, these outputs should be fitted with the same type of output module. The main output (OP1) may be fitted with any type of output module. |                                |                                 |                  |                   |           |             |  |  |

## MOTORIZED VALVE POSITIONER MODELS (MVP)

| Type 4X/IP65<br>BEZEL | 4 to 20 mA<br>ANALOG<br>OUTPUT | 0 to 10 VDC<br>ANALOG<br>OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER |
|-----------------------|--------------------------------|---------------------------------|------------------|-------------------|-----------|-------------|
| YES                   | NO                             | NO                              | 1                | NO                | YES       | TCU10307    |
| YES                   | YES                            | NO                              | 1                | NO                | NO        | TCU11306    |
| YES                   | NO                             | YES                             | 1                | NO                | NO        | TCU12306    |

#### ACCESSORIES

| DESCRIPTION                          | PART NUMBER |
|--------------------------------------|-------------|
| Relay Module                         | OMD00000    |
| Triac Module                         | OMD00001    |
| Logic/SSR Drive Module               | OMD00003    |
| 45 A Single Phase Panel Mount SSR    | RLY50000    |
| 25 A Single Phase DIN Rail Mount SSR | RLY60000    |
| 40 A Single Phase DIN Rail Mount SSR | RLY6A000    |
| 25 A Three Phase DIN Rail Mount SSR  | RLY70000    |
| 50:0.1 Ampere Current Transformer    | CT005001    |
| 40:0.1 Ampere Current Transformer    | CT004001    |

Note: Output Modules are NOT supplied with the controller. When specifying the controller, be sure to purchase the appropriate output module for the Main Control Output and if necessary, the alarm output(s), the cooling output, and valve positioner outputs. The controller can be fitted with any combination of output modules.

The Logic/SSR Drive Module is a switched DC source, intended to drive the DC input of an SSR power unit. It should never be connected to line voltage.

All output modules are packaged separately and must be installed by the user.

## www.redlion.net

610

## **MODEL TSC - TEMPERATURE SETPOINT CONTROLLER**



IND. CONT. EQ. 51EB

- SETPOINT PROGRAM CONTROLLER FOR TIME VS. TEMPERATURE (RAMP/SOAK) AND SPECIAL BATCH/RECIPE APPLICATIONS
- ADVANCED PROGRAM PROFILING IN A 1/8 DIN PACKAGE
- ON-LINE MONITORING AND CONTROL OF PROGRAM STATUS, TIME, AND SETPOINT VALUE (Program Run, Pause, Stop, Advance, Modify Time, & Setpoint Value)

- AUTOMATIC PROGRAM DELAY FOR PROFILE CONFORMITY, PLUS PROGRAM LINKING, REPEATING AND AUTO POWER-ON FUNCTIONS FOR ENHANCED CAPABILITY
- DUAL EVENT OUTPUTS FOR TIMED ACTIVATION OF PROCESS EQUIPMENT SUCH AS STIRRERS, FANS, HEATERS, ETC. (Uses Alarm Output Channels)
- FOUR SETPOINT & PID PARAMETER SETS FOR QUICK RECALL OF SETPOINTS AND/OR GAIN VALUES DURING BATCH OR PROCESS CHANGEOVER
- PROGRAMMABLE USER INPUT FOR CONTROLLER AND SETPOINT PROGRAM CONTROL
- 100 MSEC SAMPLING PERIOD WITH 0.15% ACCURACY
- ON DEMAND AUTO-TUNING OF PID CONTROL SETTINGS
- DUAL LED DISPLAYS FOR SIMULTANEOUS INDICATION OF TEMPERATURE AND SETPOINT OR TEMPERATURE AND PROFILE STATUS
- ACCEPTS ANY ONE OF 10 DIFFERENT TYPES OF SENSOR INPUTS (Thermocouple or RTD)
- FIELD REPLACEABLE AND INTERCHANGEABLE OUTPUT MODULES (Relay, Logic/SSR drive, and Triac)
- OPTIONAL DUAL ALARM OUTPUTS (Uses Output Modules)
- OPTIONAL COOLING OUTPUT (Uses Output Module)
- OPTIONAL LINEAR 4 to 20 mA or 0 to 10 VDC OUTPUT FOR CONTROL OR TEMPERATURE RE-TRANSMISSION
- OPTIONAL RS485 SERIAL COMMUNICATIONS INTERFACE
- OPTIONAL TYPE 4X/IP65 SEALED FRONT BEZEL

## DESCRIPTION

The TSC is a setpoint controller suitable for time vs. temperature, process control applications. The TSC accepts signals from a variety of temperature sensors (thermocouple and RTD elements), precisely displays the process temperature, and provides an accurate output control signal (time proportional or linear) to maintain a process at the desired control point. A comprehensive set of easy to use steps allows the controller to satisfy various applications. The user input can be programmed to perform a variety of controller functions.

Dual 4-digit displays allow viewing of the measured temperature value and setpoint or temperature and profile status simultaneously. Front panel indicators inform the operator of controller status and output states. Replaceable output modules (Relay, logic/SSR drive or Triac) can be fitted to the main control output, alarm output(s) or timed event output(s), and cooling output.

The TSC has been designed to simplify the set-up and operation of a controlled setpoint profile program. The setpoint program is easily entered and controlled through the front panel. Full display capabilities keep the operator informed of the process temperature, profile status, output states, and setpoint value.

The controller can operate in the standard PID control mode for both heating or cooling with on-demand auto-tune which establishes the PID gain set. The PID gain set can be fine tuned by the operator at any time or may be locked from further modification. The unit can be transferred to the manual control mode providing the operator with direct control of the output.

The TSC features four programs or profile recipes, each with up to eight ramp/soak segments, which can be easily stored and executed at any time. Longer profiles can be achieved by linking one or more profiles together, creating a single profile of up to 32 ramp/soak segments. Temperature profile conformity is assured during either soak (hold) phases or both ramp and hold phases by an adjustable error band parameter. The program repeat function cycles the profile either continuously or a set number of times. Power-on options automatically re-start, stop, or resume a running profile. The profile can be controlled via the front panel buttons, the user input, or the optional serial communications port.

Four control points, each having a setpoint and PID parameter set, are available for instant front panel implementation during batch changeover, or



## 1-717-767-6511

## **DESCRIPTION** (Cont'd)

other process conditions. A control point may have its PID gain set values disabled when implementing the control point.

The optional RS485 multidrop serial communications interface provides the capability of two-way communication between a TSC unit and other compatible equipment such as a printer, a programmable controller, or a host computer. In multipoint applications the address number of each unit on the line can be programmed from 0-99. Up to thirty-two units can be installed on a single pair of wires. The Setpoint value, % Output Power, Setpoint Ramp Rate, etc. can be interrogated or changed by sending the proper command code via serial communications. Alarm output(s) may also be reset via the serial communications interface option.

Optional alarm output(s) may be configured to operate as a timed event output or as a standard alarm output. As an alarm output it may be configured to activate according to a variety of actions (Absolute HI or LO, Deviation HI or LO, or Band IN or OUT) with adjustable hysteresis. Also, a standby feature suppresses the output(s) on power-up until the temperature stabilizes outside the alarm region. Timed event output(s) allow the controller to activate other equipment while a programmed profile is running. Each profile can define up to 16 event states (phases), for each output(s).

An optional secondary output is available for processes that require cooling which provides increased control accuracy and response.

The optional linear 4 to 20 mA or 0 to 10 VDC output signal is available to interface with final actuators, chart recorders, indicators, or other controllers. The output signal can be digitally scaled and selected to transmit one of the following:

% Output Power

Measurement Value

Measurement Value Deviation

Setpoint Value

An optional Type 4X/IP65 rated bezel is available for washdown and/or dirty environments, when properly installed. Modern surface-mount technology, extensive testing, plus high immunity to noise interference, makes the controller extremely reliable in industrial environments.

## SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the TSC to directly command motors, valves, or other actuators not equipped with safeguards. To do so, can be potentially harmful to persons or equipment in the event of a fault to the unit. An independent and redundant temperature limit indicator with alarm outputs is strongly recommended. The indicators should have input sensors and AC power feeds independent from other equipment.

## **SPECIFICATIONS**

1. DISPLAY: Dual 4-digit

|    | Upper Temperature Display: 0.4" (10.2 mm) Red LED |         |                                                            |  |  |  |
|----|---------------------------------------------------|---------|------------------------------------------------------------|--|--|--|
|    | Lower Auxiliary Display: 0.3" (7.6 mm) Green LED  |         |                                                            |  |  |  |
|    | Display M                                         | essage  | S:                                                         |  |  |  |
|    | "ÔLŎL"                                            | -       | Appears when measurement exceeds + sensor range.           |  |  |  |
|    | "ULUL"                                            | -       | Appears when measurement exceeds - sensor range.           |  |  |  |
|    | "OPEN"                                            | -       | Appears when open sensor is detected.                      |  |  |  |
|    | "SHrt"                                            | -       | Appears when shorted sensor is detected (RTD only).        |  |  |  |
|    | "…"                                               | -       | Appears when display value exceeds + display range.        |  |  |  |
|    | ""                                                | -       | Appears when display value exceeds - display range.        |  |  |  |
| 2. | <b>POWER:</b>                                     | Switch  | selectable for 115/230 VAC (+10%, -15%) no observable      |  |  |  |
|    | line variation                                    | on effe | ct, 48-62 Hz, 10 VA.                                       |  |  |  |
| 3. | ANNUNC                                            | IATOF   | RS:                                                        |  |  |  |
|    | 6 LED Ba                                          | cklight | Status Indicators:                                         |  |  |  |
|    | %PW                                               | -       | Lower auxiliary display shows power output in (%).         |  |  |  |
|    | PGM                                               | -       | Lower auxiliary display shows profile status or profile    |  |  |  |
|    |                                                   |         | time remaining.                                            |  |  |  |
|    | MAN                                               | -       | Controller is in manual mode.                              |  |  |  |
|    | OP1                                               | -       | Main control output is active.                             |  |  |  |
|    | AL1                                               | -       | Alarm #1 is active.                                        |  |  |  |
|    | AL2                                               | -       | Alarm #2 is active (for Dual Alarm Option)                 |  |  |  |
|    | OP2                                               | -       | Cooling output is active (for Cooling Option).             |  |  |  |
| 4. | CONTRO                                            | LS: Fo  | our front panel push buttons for setup and modification of |  |  |  |
|    | controller functions and one external input.      |         |                                                            |  |  |  |

## 5. SETPOINT PROFILE:

**Profiles:** 4

Segments Per Profile: 8 ramp/hold segments (linkable to 32 segments).

- Ramp Rate: 0.1 to 999.9 degrees/minute or no ramp.
- Hold Time: Off or from 0.1 to 999.9 minutes, can be extended to 500 hours by linking.

Error Band Conformity: Off or from 1 to 9999 degrees deviation, + value for hold phases, - value for both ramp and hold phases.

Power-On Modes: Stop, auto-start, or profile resume.

Start Mode: Ramps from process temperature.

Program Auto Cycle: 1 to 249, or continuous. Event Outputs: 2, time activated with profile [uses Alarm output(s)]. Control: Front panel buttons, user input, or RS485 communications.

6. CONTROL POINTS:

Setpoints: 4

- PID gain sets: 4
- Control: Front panel buttons or user input.
- 7. SENSOR INPUT: Sample Period: 100 msec

Response Time: 300 msec (to within 99% of final value w/step input; typically, response is limited to response time of probe).

Failed Sensor Response:

Main Control Output(s): Programmable preset output.

Display: "OPEN"

Alarms: Upscale drive.

DC Linear: Programmable preset output.

- Normal Mode Rejection: 40 db @ 50/60 Hz (improves with increased digital filtering).
- Common Mode Rejection: 100 db, DC to 50/60 Hz.

Protection: Input overload voltage; 240 VAC @ 30 sec max.

8. THERMOCOUPLE:

Types: T, E, J, K, R, S, B, N or Linear mV.

Input Impedance: 20 M $\Omega$ , all types.

Lead Resistance Effect: 20  $\mu$ V/350  $\Omega$ .

- Cold Junction Compensation: Less than ±1°C error over 0-50°C ambient temperature range. Disabled for linear mV type.
- Resolution: 1°C/F all types, or 0.1°C/F for T, E, J, K, and N only.
- 9. **RTD:** 2, 3 or 4 wire,  $100 \Omega$  platinum, alpha = 0.00385 (DIN 43760), alpha = 0.003916
  - Excitation: 0.175 mA

Resolution: 1 or 0.1 degree

Lead Resistance: 7  $\Omega$  max.

- 10. RANGE AND ACCURACY:
- Errors include NIST conformity and A/D conversion errors at 23°C after 20 minutes warm-up. Thermocouple errors include cold junction effect. Errors are expressed as  $\pm$ (% of reading) and  $\pm$ 3/4 LSD unless otherwise noted.

| TC TYPE      | RANGE                              | ACCURACY                       | WIRE COLOR<br>(ANSI) |
|--------------|------------------------------------|--------------------------------|----------------------|
| т            | -200 to +400°C<br>-328 to +752°F   | 0.20% + 1.5°C<br>0.20% + 2.7°F | blue                 |
| E            | -200 to 750°C<br>-328 to +1382°F   | 0.20% + 1.5°C<br>0.20% + 2.7°F | violet               |
| J            | -200 to +760°C<br>-328 to +1400°F  | 0.15% + 1.5°C<br>0.15% + 2.7°F | white                |
| к            | -200 to +1250°C<br>-328 to +2282°F | 0.20% + 1.5°C<br>0.20% + 2.7°F | yellow               |
| R            | 0 to +1768°C<br>+32 to +3214°F     | 0.15% + 2.5°C<br>0.15% + 4.5°F | black                |
| s            | 0 to +1768°C<br>+32 to +3214°F     | 0.15% + 2.5°C<br>0.15% + 4.5°F | black                |
| В            | +200 to +1820°C<br>+300 to +3300°F | 0.15% + 2.5°C<br>0.15% + 4.5°F | grey                 |
| N            | -200 to +1300°C<br>-328 to +2372°F | 0.20% + 1.5°C<br>0.20% + 2.5°F | orange               |
| mV           | -5.00 to 56.00                     | 0.15% + 1 LSD                  |                      |
| RTD<br>(385) | -200 to +600°C<br>-328 to +1100°F  | 0.10% + 0.5°C<br>0.10% + 0.9°F | _                    |
| RTD<br>(392) | -200 to +600°C<br>-328 to +1100°F  | 0.10% + 0.5°C<br>0.10% + 0.9°F | _                    |
| OHMS         | 1.0 to 320.0                       | 0.15% + 1 LSD                  |                      |

#### 11. OUTPUT MODULES [Optional] (For All Output Channels): Relav:

Type: Form-C (Form-A with RS485 option)

- Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120 VAC (inductive load).
- Life Expectancy: 100,000 cycles at max. rating.(Decreasing load and/or increasing cycle time, increases life expectancy).
- Logic/SSR Drive: Can drive multiple SSR Power Units. Type: Non-isolated switched DC, 12 VDC typical.
- Drive: 45 mA max.

Triac:

- Type: Isolated, Zero Crossing Detection.
- Ratings:

Voltage: 120/240 VAC

Max Load Current: 1 AMP @ 35°C

0.75 AMP @ 50°C

Min Load Current: 10 mA

Off State Leakage Current: 7 mA max. @ 60 Hz

Operating Frequency: 20 to 500 Hz Protection: Internal Transient Snubber, Fused.

## www.redlion.net

## SPECIFICATIONS (Cont'd)

12. MAIN CONTROL OUTPUT (Heating or Cooling): Control: PID or ON/OFF. Output: Time proportioning or linear DC. Hardware: Plug-in, replaceable output modules. Cycle time: Programmable. Auto-tune: When performed, sets proportional band, integral time, and derivative time values. Probe Break Action: Programmable. 3. COOLING OUTPUT (Optional): Control: PID or ON/OFF. Output: Time proportioning or linear DC Hardware: Plug-in, replaceable output modules. Cycle time: Programmable. Proportional Gain Adjust: Programmable. Heat/Cool DeadBand: Programmable. 14. LINEAR DC DRIVE (Optional): With digital scale and offset, programmable deadband and update time. 4 to 20 mA: Resolution: 1 part in 3500 typ. Accuracy:  $\pm (0.1\% \text{ of reading} + 25 \ \mu A)$ . **Compliance**: 10 V (500  $\Omega$  max. loop impedance). 0 to 10 VDC: Resolution: 1 part in 3500 typ. Accuracy:  $\pm (0.1\% \text{ of reading} + 35 \text{ mV}).$ Min. Load Resistance: 10 KΩ (1 mA max.) Source: % output power, setpoint, deviation, or temperature. (Available for heat or cool, but not both.) 15. ALARMS (Optional): Hardware: Plug-in, replaceable output module. Modes: Absolute high acting Absolute low acting Deviation high acting Deviation low acting Inside band acting Outside band acting Timed event output(s) Reset Action: Programmable; automatic or latched. Delay: Programmable; enable or disable. Hysteresis: Programmable. Probe Break Action: Upscale. Annunciator: LED backlight for "AL1", "AL2", (Alarm #2 not available with cooling output). 16. SERIAL COMMUNICATIONS (Optional): Type: RS485 Multi-point, Balanced Interface. **Communication Format:** Baud Rate: Programmable from 300-9600. Parity: Programmable for odd, even, or no parity. Frame: 1 start bit, 7 data bits, 1 or no parity bit, 1 stop bit. Unit Address: Programmable from 0-99, max. of 32 units per line. Transmit Delay: 100 msec min., 200 msec max RS485 Common: Isolated from signal input common. Auto Print Time: Off to 9999 seconds between print-outs. 17. USER INPUT:  $V_{IN}$  max = 5.25 VDC,  $V_{IL}$  = 0.85  $V_{MAX}$ ;  $V_{IH}$  = 2.0  $V_{MIN}$ , Response time 100 msec max. Functions: Program Lock Print Request Integral Action Lock Load Control Point Auto/Manual Transfer Run/Hold Profile 1 Setpoint Ramp Select Run/Stop Profile 1 Reset Alarms 18. ENVIRONMENTAL CONDITIONS: Operating Temperature: 0 to 50°C Storage Temperature: -40 to 80°C Vibration to IEC 68-2-6: Operational 5-150 Hz, 1 g Shock to IEC 68-2-27: Operational 5 g Operating and Storage Humidity: 85% max. (non-condensing) from 0°C to 50°C. **Span Drift**:  $\leq 100 \text{ ppm/°C}$ 

**Zero Drift**:  $\leq 1 \mu \hat{V}/\hat{}^{\circ}C$ **Altitude**: Up to 2000 meters

19. CERTIFICATIONS AND COMPLIANCES: **CE** Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A EN 61010-1 **RoHS** Compliant UL Recognized Component: File #E156876 UL Listed: File #E137808 Type 2 Enclosure rating (Face only) for TSC0 Type 4X/IP65 Enclosure rating (Face only) for TSC1 Refer to EMC Installation Guidelines section of the manual for additional information. 20. CONNECTION: Jaw-type terminal block. 21. CONSTRUCTION: Front Panel: Flame and scratch resistant tinted plastic. Case: High impact black plastic. (Mounting collar included). Type 4X/IP65 model only: Sealed bezel utilizing 2 captive mounting screws (panel gasket included). This unit is rated for Type 4X/IP65 indoor use. Installation Category II, Pollution Degree 2. 22. WEIGHT: 1.3 lbs. (0.6 kgs)

## **BASIC OPERATION**

The TSC controls the temperature profile of a system by measuring the temperature via an input probe, compares the actual temperature to the setpoint profile in progress, and calculates the new output power value by use of a modified PID control algorithm. The unit controls the system with the new output power value so the process temperature conforms to the programmed profile. The PID control algorithm incorporates features which provide minimum overshoot and excellent temperature control accuracy for a process.

## FRONT PANEL FEATURES

In the normal display mode, the unit will display the process temperature in the upper display. One of five other parameters may be selected for viewing in the lower display:

 Target Setpoint
 Profile Phase Time Remaining

 % Output Power
 Temperature Symbol (F/C)

 Profile Status
 Profile Status

The program profile status display indicates the active profile number with the current ramp or hold phase of the profile. The profile can be started, stopped, advanced, etc. from the front panel when the profile status display is viewed, if not locked from access.

The phase time remaining display, shows the time remaining in a ramp or hold phase and, if not locked from access, may be changed on-line to effect temporary changes to the program. Additionally, the target setpoint and % output power (manual mode only) may also be changed on-line or locked from operator access.

From the normal operating mode, parameters are selected by use of the PAR button and modified by use of the UP and DOWN buttons. Parameters are then entered by the PAR button, which advances the user to the next parameter. Pressing the DSP button immediately returns the controller to the normal operating mode from any parameter module. The controller configuration and parameter settings are stored in an internal  $E^2$ PROM device.

| CONFIGURATION MODE                       |                                         | Configuration 5Coolin      | a *                                                              |
|------------------------------------------|-----------------------------------------|----------------------------|------------------------------------------------------------------|
| The configuration modules serve to       | provide the basic set-ups required by   | "CYC2"                     | - Enter cooling time proportioning cycle time                    |
| the controller. It is divided into sec   | ctions which group together related     | "GAN2"                     | - Enter cooling relative gain                                    |
| programming stong such as inputs out     | truts alarma ata Unan approlation of    | "db-2"                     | <ul> <li>Enter heat/cool deadband or overlap</li> </ul>          |
| programming steps, such as inputs, out   | a configuration colocition stage, which | Configuration a subla      | and the standard standards                                       |
| each section, the program returns to the | e configuration selection stage, which  | Configuration 6, Serial Co | ommunications *                                                  |
| allows the user to return to the norma   | I display mode, or advance to a later   | "DAUd"                     | - Select baud rate                                               |
| configuration stage.                     |                                         | "PArb"<br>"Adda"           | - Select parity bit                                              |
| Configuration 1 Inputs                   |                                         | "Addr"<br>"Abra"           | - Enter unit address number                                      |
|                                          | aat input proba type                    | ADrv                       | - Select abbreviated or full mnemonic                            |
|                                          |                                         | "D-A+"                     | transmissions                                                    |
| "dCPt" Sold                              | ect temperature scale                   | Prat<br>"Do Dt"            | - Enter automatic print rate                                     |
|                                          | ect temperature resolution              | POPL                       | - Select parameters to be included                               |
| FLII - JUI<br>"SDAN" Ent                 | ect degree of input intering            |                            | in print-out                                                     |
| SPAN - EIItt<br>"SUEt" Ent               | er input correction span (Slope)        | Configuration 7. Control   | D Points                                                         |
| "SPLO" Ent                               | er setpeint lower limit                 | "CSEt"                     | - Select control point number for set-up 1 2                     |
| "SPUI" Ente                              | or sotpoint higher limit                | 002(                       | 3 & 4                                                            |
| "SPrD" Ente                              | er setpoint nigher linnt                | "SP-x"                     | - Enter setpoint value for selected control                      |
| "InPt" - Solo                            | er serpoint ramp rate                   |                            | point                                                            |
|                                          |                                         | "PId"                      | - Select if PID gain set to be loaded with                       |
| Configuration 2. Outputs                 |                                         | T IG                       | setpoint                                                         |
| "CYCt" - Ente                            | er time proportioning cycle time        | "PB-x"                     | - Enter proportional band for selected                           |
| "OPAC" - Sele                            | ect control action                      |                            | control point *                                                  |
| "OPLO" - Ente                            | er output power low limit               | "It-x"                     | - Enter integral time for selected control                       |
| "OPHI" - Ente                            | er output power high limit              |                            | point *                                                          |
| "OPFL" - Ente                            | er probe fail power preset              | "dt-x"                     | - Enter derivative time for selected control                     |
| "CHYS" - Ente                            | er ON/OF control hysteresis             |                            | point *                                                          |
| "tcod" - Sele                            | ect auto-tuning damping                 |                            | 1                                                                |
| "ANAS" - Sele                            | ect linear DC output assignment *       | Configuration 8, Profile   | S                                                                |
| "ANLO" - Ente                            | er linear DC low scaling value *        | "PSEt"                     | <ul> <li>Select profile or event output for set-up 1,</li> </ul> |
| "ANHI" - Ente                            | er linear DC high scaling value *       |                            | 2, 3, or 4                                                       |
|                                          |                                         | "PnCC"                     | <ul> <li>Enter program-repeat cycle count for</li> </ul>         |
| Configuration 3, Parameter Io            | ock-outs                                |                            | selected profile                                                 |
| "SP" - Sele                              | ect degree of setpoint access           | "PnLn"                     | <ul> <li>Select link option for selected profile</li> </ul>      |
| "OP" - Sele                              | ect degree of power access              | "PnEb"                     | <ul> <li>Enter error band for temperature</li> </ul>             |
| "P-CS" - Sele                            | ect degree of profile status            |                            | conformity for selected profile                                  |
| acce                                     | ess                                     | "PnPC"                     | <ul> <li>Enter power-down resume status for</li> </ul>           |
| "P-tr" - Sele                            | ect degree of phase time remaining      | <i></i>                    | selected profile                                                 |
|                                          | ess                                     | "Pnr1"                     | - Enter ramp rate 1 for selected profile *                       |
| "UdSP" - Ena                             | able temperature units display          | "PnL1"                     | - Enter setpoint level 1 for selected profile *                  |
| "Code" - Ente                            | er parameter access code                | "PnH1"                     | <ul> <li>Enter hold time 1 for selected profile *</li> </ul>     |
|                                          | ect degree of PID access                |                            |                                                                  |
|                                          | ect degree of alarm access *            |                            |                                                                  |
| ALIS - ENA                               |                                         | "Pnr8"<br>"Dub 8"          | - Enter ramp rate 8 for selected profile *                       |
| CPAC - Ena<br>"DrAC" Ena                 | able control point access               | "PnL8"<br>"P.1.10"         | - Enter setpoint level 8 for selected profile *                  |
| PIAC - Ella                              | able ramp/noid program access           | "PnH8"<br>"D. 1"           | - Enter hold time 8 for selected profile *                       |
| trn⊢ - Ena<br>"+LNF" - Ena               |                                         | "Pn 1"                     | - Select event outputs at phase 1 for                            |
| tune - Ena                               | able auto-tune invocation               |                            | selected profile *                                               |
| Configuration 4. Alarms *                |                                         |                            |                                                                  |
| "Act 1" - Sele                           | ect operation mode of alarm #1          | "Do16"                     | Select event outputs at phase 16 for                             |
| "rSt1" - Sele                            | ect reset mode of alarm #1              | Philo                      | - Select event outputs at phase 16 for                           |
| "Sth1" - Fna                             | able activation delay of alarm #1       |                            | selected profile                                                 |

#### **Configuration 9, Factory Service Operations**

(Detailed in the operator's manual)

\* These parameters may not appear due to option configuration or other programming

## HARDWARE FEATURES

The fast 100 msec input sampling rate provides quick controller response to a process disturbance for excellent temperature control. Measurement accuracy of 0.15% provides closer process control conforming to the desired control setpoint value.

"AL-1'

'Act2"

rSt2"

"Stb2"

"AL-2

"AHYS"

The unit accepts a variety of both thermocouple or RTD temperature probes. The A.C. input power is switch selectable, allowing the unit to operate from either 115 VAC or 230 VAC. Since the controller is serviceable from the front of the panel, the output modules may be easily changed or replaced without disturbing the wiring behind the panel and NO re-programming is required. The standard model simply requires pressing a latch to remove the unit. The Type 4X/IP65 rated model utilizes two panel securing screws and a neoprene gasket to guarantee a water tight seal, when properly installed.

Low-drift, highly stable circuit design

ensures years of reliable and accurate temperature control. The recommended two year re-calibration interval is easily accomplished via the programming menu.

## Type 4X/IP65 BEZEL

- Enter value for alarm #1

- Select operation mode of alarm #2

- Enable activation delay of alarm #2 Enter value for alarm #2

- Enter hysteresis value for both alarms

Select reset mode of alarm #2



## SETPOINT FEATURES

The controller's setpoint can be protected from out of range values, by programming the setpoint range limit values. Additionally, safeguards from inadvertent data entry can also be programmed.

The setpoint ramp feature ramps the setpoint value at start-up or any time a setpoint change is made, at a user programmable rate, independent of a programmed profile. This feature reduces thermal shock to the process and also helps to minimize temperature overshoot.

The active setpoint, which can be a running profile, may also be transmitted by the linear DC output for slave control loops.

Four control points are available which can be implemented at any time. Each control point is programmed independently, with each having a setpoint and a PID gain set value. With gain value changes, the output power control signal will not "bump" resulting in a smooth control transition.

## INPUT FEATURES

A programmable input filter can be used to stabilize readings from a process with varying or oscillating temperature characteristics, helping to provide better temperature control.

A programmable temperature shift and slope function can be used to compensate for probe errors or to have multiple TSC units indicate the same nominal temperature.

A programmable User Input is available to control a variety of controller functions, such as profile control, auto/manual transfer, serial communication print requests, etc.

## **OUTPUT FEATURES**

Programmable output power limits provide protection for processes where too much power can cause damage. Automatic sensor probe break detection, for fail-safe operation, causes the controller to default to a programmed output power *(upscale or downscale burnout)*. With adjustable time proportioningcycle time and programmable D.C. Linear output, the controller can satisfy a wide variety of output requirements.

During execution of a profile, two independent, timed event outputs are available to control or signal other equipment. The event outputs use the alarm channels.

The RS485 Communication option allows the user to access various controller parameters such as the setpoint, % output power, % proportional band, etc. The controller may be setup to transmit various parameters at a programmable automatic print rate.

## AUTO-TUNE

The model TSC has an auto-tune feature which, on demand, automatically determines the PID control parameters for a particular thermal process. After completion of auto-tune, the PID parameters are automatically optimized for that process and loaded into nonvolatile memory. The operator may view and modify the parameters as desired.

Auto-tune may be invoked at start-up, while ramping, or at setpoint, depending on the process requirements. A programmable auto-tune damping factor produces various levels of process control and response characteristics.

## PROFILE PROGRAMMING

Profiles are programmed independently of each other and are separate from the configuration of other controller parameters. Each profile has parameters for error band (profile conformity), linking, auto-start and program repeat cycles. Profiles may be altered during execution, so changes take effect as the programmed profile advances.

## **CONTROLLER PROGRAMMING**

The model TSC has been designed to reduce the operator interaction with the controller while still maintaining a high degree of control accuracy and user flexibility. Front panel program disable allows all of the controller's set-ups to be locked-out from further operator intervention after the initial parameter set-up.

The programming of the controller is divided into four sections:

- Hidden Mode
- Protected Mode
- Unprotected Mode
- Configuration Mode

These four programming modes allow the controller to adapt to any required user-interface level.

## UNPROTECTED PARAMETER MODE

The unprotected mode is accessible when program disable is inactive or when the proper access code number from the protected mode is entered. Only from this mode can the configuration modes be accessed.

| "SP"   | <ul> <li>Enter setpoint *</li> </ul>                  |
|--------|-------------------------------------------------------|
| "OPOF" | <ul> <li>Enter %output power offset *</li> </ul>      |
| "OP"   | <ul> <li>Enter output power *</li> </ul>              |
| "ProP" | <ul> <li>Enter proportional band</li> </ul>           |
| "Intt" | <ul> <li>Enter integral time *</li> </ul>             |
| "dErt" | <ul> <li>Enter derivative time *</li> </ul>           |
| "AL-1" | <ul> <li>Enter value for alarm #1 *</li> </ul>        |
| "AL-2" | <ul> <li>Enter value for alarm #2 *</li> </ul>        |
| "CNFP" | <ul> <li>Select basic configuration module</li> </ul> |
| "End"  | <ul> <li>Return to normal display mode</li> </ul>     |

#### **PROTECTED PARAMETER MODE \***

The protected mode is accessible when program disable is active, also this mode prevents access to the configuration modes without the proper access code number. Only the parameters that are selected in the configuration 3 parameter lock-outs section can be accessed.

| 'ProP" | <ul> <li>Enter proportional band</li> </ul>                |
|--------|------------------------------------------------------------|
| 'Intt" | - Enter integral time                                      |
| 'dErt" | <ul> <li>Enter derivative time</li> </ul>                  |
| 'AL-1" | <ul> <li>Enter value for alarm #1</li> </ul>               |
| 'AL-2" | <ul> <li>Enter value for alarm #2</li> </ul>               |
| 'CodE" | <ul> <li>Enter access value to unprotected mode</li> </ul> |

"End" - Return to normal display mode

## **HIDDEN FUNCTIONS MODE \***

The hidden mode is accessible from the normal operating mode by holding the PAR button for 3 seconds. The five functions in this mode may be locked-out individually in configuration 3 parameter lock-outs section.

| " CP"            | - Load control point x                                                              |
|------------------|-------------------------------------------------------------------------------------|
| "Prun"           | <ul> <li>Control ramp/hold profile state</li> </ul>                                 |
| "trnF"           | <ul> <li>Transfer between automatic (PID) control<br/>and Manual control</li> </ul> |
| "tUNE"<br>"ALrS" | <ul> <li>Invoke/Cancel PID auto-tune</li> <li>Reset latched alarms</li> </ul>       |

## **OUTPUT VARIATIONS WITHOUT RS485 OPTION**

The Dual Alarm or the Cooling with Alarm output, without the RS485 option, has independent outputs. Therefore, the cooling output and/or alarm output(s) can be installed with any combination of output modules.



## **OUTPUT VARIATIONS WITH RS485 OPTION**

The Dual Alarm or the Cooling with Alarm output, with RS485 option, does not have independent outputs. In this case, the cooling output and/or alarm output(s) must have the same type of output modules installed since they share the common terminal.



\* These parameters may not appear due to option configuration or other programming

615

## **OUTPUT MODULES**

Units equipped with RS485 option must have the Dual Alarm or Cooling w/ alarm options fitted with the same type of output modules. The controller's main output (OP1) can be fitted with any output module. Output modules are shipped separately and must be installed by the user.



#### **Relay:**

Type: Form -C (Form-A with RS485 option only)

Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120 VAC (inductive).

Life Expectancy:100,000 cycles at maximum load rating.

(Decreasing load and/or increasing cycle time, increases life expectancy).



Min. Load Current: 10 mA Off State Leakage Current: 7 mA max. @ 60 Hz Operating Frequency: 20 to 500 Hz. Protection: Internal Transient Snubber, Fused.

## **APPLICATION**

## **TSC GLASS TEMPERING APPLICATION**

A manufacturer of glass items needs to anneal *(temper)* their products to reduce the brittleness of the glass structure. The tempering process requires the glass to be heated and subsequently cooled at a controlled rate to change the structure of the glass. Different tempering profiles are required for different types of glass products.

A TSC is employed to control the temperature profile of the annealing oven. Four different temperature profiles are stored in the controller. The 4 to 20 mA analog output option is utilized to cool the annealing oven during the cool down ramp phases. An event output is used to quickly cool the oven at the end of the batch run (*alarm 1*). Alarm 2 is used to signal the operator whenever the temperature is outside the prescribed program profile.

Note: Units equipped with the RS485 option have different terminal designators. See "Output Variations with or without the RS485 Option".



## The programming for this profile is as follows:

| Parameter<br>"P1r1" | Value<br>5.0 | Description<br>Ramp from ambient temp. during heat phase at<br>5.0°/min.                               |
|---------------------|--------------|--------------------------------------------------------------------------------------------------------|
| "P1L1"              | 300          | Target setpoint level 300°                                                                             |
| "P1H1"              | 40.0         | Heat at 300° for 40.0 minutes                                                                          |
| "P1r2"              | 3.0          | Ramp down 3.0°/min. during cooling phase                                                               |
| "P1L2"              | 150          | Target Setpoint is 150°                                                                                |
| "P1H2"              | 0.0          | Do not hold at 150° (used as "phantom" hold time<br>for triggering event output for auxiliary cooling) |
| "P1r3"              | -0.1         | End Program                                                                                            |
| "P1 1"              | 1F2F         | Turn off output 1 (output 2 is alarm)                                                                  |
| "P1 2"              | 1F2F         | Keep off output 1                                                                                      |
| "P1 3"              | 1F2F         | Keep off output 1                                                                                      |
| "P1 4"              | 1N2F         | Turn on output 1 for Auxiliary Exhaust Fan                                                             |

## www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

616

## **ORDERING INFORMATION**

| MODEL NO    | DESCRIPTION                                                                                                                                          | Type 4X/IP65<br>BEZEL | 4 to 20 mA<br>ANALOG OUTPUT | 0 to 10 VDC<br>ANALOG OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|------------------------------|------------------|-------------------|-----------|-------------|
|             |                                                                                                                                                      | NO                    | YES                         | NO                           | 2                | NO                | NO        | TSC01001    |
|             |                                                                                                                                                      | YES                   | YES                         | NO                           | 2                | NO                | NO        | TSC11001    |
|             | Temperature                                                                                                                                          | YES                   | YES                         | NO                           | 1                | YES               | NO        | TSC11002    |
| TSC         | Setpoint                                                                                                                                             | YES                   | YES                         | NO                           | 2                | NO                | YES       | TSC11004    |
|             | Controller                                                                                                                                           | YES                   | YES                         | NO                           | 1                | YES               | YES       | TSC11005    |
|             |                                                                                                                                                      | YES                   | NO                          | YES                          | 2                | NO                | YES       | TSC12004    |
|             |                                                                                                                                                      | YES                   | NO                          | YES                          | 1                | YES               | YES       | TSC12005    |
|             | Relay Module                                                                                                                                         |                       |                             |                              |                  |                   |           | OMD00000    |
|             | Triac Module                                                                                                                                         |                       |                             |                              | OMD00001         |                   |           |             |
|             | Logic/SSR Drive                                                                                                                                      | Module                |                             |                              |                  |                   |           | OMD00003    |
| PMK5        | Panel Mount Ada                                                                                                                                      | pter Kit (1/4 DIN t   | o 1/8 DIN)                  |                              |                  |                   |           | PMK50000    |
|             | 45 A Single Phase Panel Mount SSR                                                                                                                    |                       |                             |                              |                  |                   |           | RLY50000    |
|             | 25 A Single Phase DIN Rail Mount SSR                                                                                                                 |                       |                             |                              |                  |                   |           |             |
| RLY         | 40 A Single Phase DIN Rail Mount SSR                                                                                                                 |                       |                             |                              |                  |                   |           | RLY6A000    |
|             | 25 A Three Phase DIN Rail Mount SSR                                                                                                                  |                       |                             |                              |                  |                   |           | RLY70000    |
| These model | These models have dual alarm outputs, or single alarm with secondary outputs, with shared common terminals (Form A Type). As a result, these outputs |                       |                             |                              |                  |                   |           |             |

should be fitted with the same type of output module. The main output (OP1) may be fitted with any type of output

Note: Output Modules are NOT supplied with the controller. When specifying the controller, be sure to purchase the appropriate output module for the Main Control Output and if necessary, the alarm output(s) and cooling output. The controller can be fitted with any combination of output modules that do not have the RS485 option.

The Logic/SSR Drive Module is a switched DC source, intended to drive the DC input of an SSR power unit. It should never be connected to a line voltage.

All modules are shipped separately and must be installed by the user.

617

## **MODEL P16 - 1/16 DIN PROCESS CONTROLLER**

This is a brief overview of the P16. For complete specifications and programming information, see the T16/P16 Temperature/Process Controller Bulletin starting on page 519.

CE





- ACCEPTS 0-10 V AND 0/4-20 mA SIGNALS
- ON DEMAND AUTO-TUNING OF PID SETTINGS
- DC ANALOG OUTPUT (OPTIONAL)
- USER PROGRAMMABLE FUNCTION BUTTON
- PC OR FRONT PANEL PROGRAMMING
- PC CONFIGURABLE WITH TP16KIT



**UL Recognized Component,** File #E156876

## **INPUT SPECIFICATIONS**

#### 1. SENSOR INPUT:

#### Sample Period: 100 msec (10 Hz rate)

Step Response Time: 300 msec typical, 400 msec max to within 99% of final value with step input.

#### Failed Sensor Response:

Main Control Output(s): Programmable preset output Display: "OPEN"

Alarms: Upscale drive

Analog Output: Upscale drive when assigned to retransmitted input. Normal Mode Rejection: >40 dB @ 50/60 Hz

Common Mode Rejection: >120 dB, DC to 60 Hz

Overvoltage Protection: 120 VAC @ 15 sec max

4. SIGNAL INPUT: (P16 only)

\* Accuracies are expressed as  $\pm$  percentages over 0 to 50 °C ambient range after 20 minute warm-up.

| INPUT<br>RANGE         | ACCURACY *                      | IMPEDANCE | MAX<br>CONTINUOUS<br>OVERLOAD | RESOLUTION |
|------------------------|---------------------------------|-----------|-------------------------------|------------|
| 10 VDC<br>(-1 to 11)   | 0.30 % of<br>reading<br>+0.03V  | 1 MΩ      | 50 V                          | 10 mV      |
| 20 mA DC<br>(-2 to 22) | 0.30 % of<br>reading<br>+0.04mA | 10 Ω      | 100 mA                        | 10 µA      |

618

## MODEL P48 - 1/16 DIN PROCESS CONTROLLER

- PID CONTROL WITH REDUCED OVERSHOOT
- ACCEPTS 0 to 10 VDC or 0/4 to 20 mA DC INPUTS
- OPTIONAL TWO LINEAR DC OUTPUTS (0 to 10 V, 0/4 to 20 mA)
- OPTIONAL DUAL ALARM OUTPUTS
- OPTIONAL REMOTE SETPOINT INPUT (0/4 to 20 mA)
- OPTIONAL RS485 SERIAL COMMUNICATIONS
- SECOND SETPOINT SETTING
- SETPOINT RAMPING FOR PROCESS STARTUP
- PROGRAMMABLE USER INPUT (Digital) FOR ADDED FLEXIBILITY
- PARAMETER SECURITY VIA PROGRAMMABLE LOCKOUTS
- MANUAL/AUTOMATIC CONTROL MODES
- ON DEMAND AUTO-TUNING OF PID CONTROL SETTINGS
- DUAL LED DISPLAYS FOR SIMULTANEOUS INDICATION OF PROCESS AND SETPOINT



- STATUS INDICATORS FOR OUTPUTS AND CONTROL MODES
- PC SOFTWARE AVAILABLE FOR CONTROLLER CONFIGURATION
- NEMA 4X/IP65 BEZEL



File # E156876

UL Recognized Component,

## DESCRIPTION

The P48 Controller accepts either a 0 to 10 VDC or a 0/4 to 20 mA DC signal, precisely displays the input process signal according to the programmable scaling points, and provides an accurate output control signal *(time proportional or linear DC)* to maintain the process at the desired control point. The controller's comprehensive yet simple programming allows it to meet a wide variety of application requirements.

In the PID control mode the controller operates with on-demand auto-tune, which will establish the tuning constants. The PID tuning constants may be fine-tuned by the operator at any time and then locked out from further modification. The controller employs a unique overshoot suppression feature, which allows the quickest response without excessive overshoot. The unit can be transferred to operate in the manual mode, providing the operator with direct control of the output. The controller may also operate in the ON/OFF control mode with adjustable hysteresis. a second setpoint is available to allow quick selection of a different setpoint setting.

Dual 4-digit displays allow viewing of the process and setpoint simultaneously. Front panel indicators inform the operator of the controller and output status. On some models, the main control output and the alarm outputs are field replaceable.

Optional alarm(s) can be configured to activate according to a variety of actions (Absolute HI or LO, Deviation HI or LO, and Band IN or OUT) with



adjustable hysteresis. A standby feature suppresses the alarm during power-up until the process stabilizes outside the alarm region. The second alarm can be configured as a secondary PID output (heat/cool applications).

Optional Main Linear DC output (10 V or 20 mÅ) can be used for control or process re-transmission purposes. Programmable output update time reduces valve or actuator activity. The output range can be scaled independent of the input range.

Optional Second Linear DC output (10 V or 20 mA) provides an independent process re-transmission, while the main Linear DC output is being used for control. The output range can be scaled independent of the input range.

Optional Remote Setpoint input (0/4 to 20 mA) allows for cascade control loops; and allows for remotely driven setpoint signal from computers or other similar equipment. Straightforward end point scaling with independent filtering and local/remote transfer option expand the controller's flexibility.

The optional RS485 serial communication interface provides two-way communication between a P48 and other compatible equipment such as a printer, PLC, HMI, or a host computer. In multipoint applications (up to thirty-two), the address number of each P48 on the line can be programmed separately from 0 to 99. Data from the P48 can be interrogated or changed, and alarm output(s) may be reset by sending the proper command code via serial communications. PC software, SFCRM, allows for easy configuration of controller parameters. These settings can be saved to disk for later use or used for multi-controller down loading. On-line help is provided within the software.

The unit is constructed of a lightweight, high impact plastic case with a tinted front panel. The front panel meets NEMA 4X/IP65 specifications when properly installed. Multiple units can be stacked horizontally or vertically. Modern surface-mount technology, extensive testing, plus high immunity to noise interference makes the controller extremely reliable in industrial environments.



## 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the P48 to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the controller. An independent and redundant process limit indicator with alarm outputs is strongly recommended.

## SPECIFICATIONS

#### 1. DISPLAY: Dual 4-digit

- Upper Process Display: 0.4" (10.2 mm) high red LED
- Lower Auxiliary Display: 0.3" (7.6 mm) high green LED

#### **Display Messages**

- 'ÔLỔL" Appears when measurement exceeds + input range.
- "ULUL" Appears when measurement exceeds - input range.
- Appears when measurement exceeds controller limits "SENS"
- Appears when display values exceed + display range. Appears when display values exceed - display range.
- **LED Status Annunciators:** 
  - Lower auxiliary display shows power output in (%). %P
    - Flashing: Controller is in manual mode. On: Local Setpoint (Remote Setpoint option) Off: Remote Setpoint
  - DV - Lower auxiliary display shows deviation (error) from setpoint.
  - 01 - Main control output is active.
  - Alarm #1 is active (for A1 option). A1
  - Alarm #2 is active OR A2
  - Secondary output (02) is active.

#### 2. POWER:

MN

- AC Versions: 85 VAC min. to 250 VAC max., 50 to 60 Hz, 8 VA max. DC Versions:
  - DC Power: 18 to 36 VDC; 7 W
  - AC Power: 24 VAC ±10%; 50 to 60 Hz, 9 VA
- 3. CONTROLS: Four front panel push buttons for modification and setup of controller functions and one external user input for parameter lockout or other functions.
- 4. **MEMORY:** Nonvolatile  $E^2$  PROM retains all programmable parameters and values.

#### 5. RANGE AND ACCURACY:

| INPUT<br>RANGE         | ACCURACY *<br>(18 to 28°C)      | ACCURACY *<br>(0 to 50°C)       | IMPEDANCE | MAX<br>CONTINUOUS<br>OVERLOAD | RESOLUTION |
|------------------------|---------------------------------|---------------------------------|-----------|-------------------------------|------------|
| 10 VDC<br>(-1 to 11)   | 0.10% of<br>reading<br>+0.02 V  | 0.30% of<br>reading<br>+0.03 V  | 1 M ohm   | 300 V                         | 10 mV      |
| 20 mA DC<br>(-2 to 22) | 0.10% of<br>reading<br>+0.03 mA | 0.30% of<br>reading<br>+0.04 mA | 10 ohm    | 100 mA                        | 10 µA      |

\* Accuracies are expressed as ± percentages after 20 minutes warm-up. The controller's accuracy is specified in two ways: accuracy over an 18 to 28°C range at 10 to 75% RH environment; and accuracy over a 0 to 50°C range at 0 to 85% RH (non-condensing) environment. Accuracy over the wide sensor range reflects the coefficient of the internal circuitry.

## 6. MAIN SIGNAL INPUT:

- Sample Period: 100 msec
- Response Time: Less than 300 msec typ., 400 msec max. (to within 99% of final value w/step input; typically, response is limited to response time of sensor)
- Normal Mode Rejection: 40 dB @ 50/60 Hz (improves with increased digital filtering.)
- Common Mode Rejection: Greater than 120 dB, DC to 60 Hz Protection: Input overload 120 VAC max. for 15 sec. max.
- 7. USER INPUT: Internally pulled up to +5 VDC (1 M $\Omega$ ).
- $V_{IN MAX} = 5.25 \text{ VDC}; V_{IL} = 0.85 \text{ V max.}; V_{IH} = 3.65 \text{ V min.};$  $I_{OFF} = 1 \mu A max.$
- Response Time: 120 msec max. Functions:
  - Program Lock Integral Action Lock Auto/Manual Mode Select Reset Alarms Local/Remote Setpoint Select
    - Setpoint Ramp Enable Setpoint 1/Setpoint 2 Select Serial block print

#### 8. CONTROL AND ALARM OUTPUTS: Relay outputs with Form A contacts:

Contact Rating: 3 A @ 250 VAC or 30 VDC (resistive load) 1/10 HP @ 120 VAC (inductive load)

- Life Expectancy: 100,000 cycles at max. load rating.
- (Decreasing load and/or increasing cycle time, increases life expectancy.)

9. MAIN CONTROL:

Mo

- Control: PID or ON/OFF
- Output: Time proportioning or Linear DC Cycle time: Programmable
- Auto-tune: When selected, sets proportional band, integral time, and derivative time values.
- 10. ALARMS: 1 or 2 alarms (optional)

| des: | Absolute high acting  | Absolute low acting  |
|------|-----------------------|----------------------|
|      | Deviation high acting | Deviation low acting |
|      | Inside band acting    | Outside band acting  |

Reset Action: Programmable; automatic or latched

Standby Mode: Programmable; enable or disable

Hysteresis: Programmable

Annunciator: LED backlight for "A1", "A2"

- 11. SECONDARY OUTPUT: Software selectable (overrides alarm 2) Control: PID or ON/OFF
- Output: Time Proportioning
- Cycle time: Programmable

Proportional Gain Adjust: Programmable

- Deadband /Overlap: Programmable
- 12. MAIN AND SECOND LINEAR DC OUTPUT: (optional)
- Main: Control or re-transmission, programmable update rate from 0.1 sec to 250 sec

Second: Re-transmission only, fixed update rate of 0.1 sec

| OUTPUT **<br>RANGE | ACCURACY *<br>(18 to 28°C) | ACCURACY *<br>(0 to 50°C) | COMPLIANCE   | RESOLUTION |
|--------------------|----------------------------|---------------------------|--------------|------------|
| 0 to 10 V          | 0.10% of FS<br>+ 1/2 LSD   | 0.30% of FS<br>+ 1/2 LSD  | 10k ohm min. | 1/3500     |
| 0 to 20 mA         | 0.10% of FS<br>+ 1/2 LSD   | 0.30% of FS<br>+ 1/2 LSD  | 500 ohm max. | 1/3500     |
| 4 to 20 mA         | 0.10% of FS<br>+ 1/2 LSD   | 0.30% of FS<br>+ 1/2 LSD  | 500 ohm max. | 1/2800     |

- \* Accuracies are expressed as ± percentages after 20 minutes warm-up. Output accuracy is specified in two ways: Accuracy over an 18 to 28°C range at 10 to 75% RH environment; and accuracy over a 0 to 50°C range at 0 to 85% RH (non-condensing) environment. Accuracy over the wide sensor range reflects the coeffecient of the internal circuitry.
- \*\* Outputs are independently jumper selectable for either 10 V or 20 mA. The output range may be field calibrated to yield approximately 10% overrange and a small underrange (negative) signal.
- 13. REMOTE SETPOINT INPUT: (optional)
  - Input type: 0/4 to 20 mA

Input Resistance: 10Ω

- Overrange: -5% to 105%
- Overload: 100 mA (continuous)
- Scale Range: -999 to 9999

Resolution: 1 part in 10,000.

- Accuracy
  - At 25° C:  $\pm (0.1 \% \text{ of full scale} + \frac{1}{2} \text{ LSD})$
  - Over 0 to 50°C range:  $\pm (0.2\% \text{ of full scale } +\frac{1}{2} \text{ LSD})$
- Reading Rate: 10/sec.
- Setpoint Filtering: Programmable Digital
- Setpoint Ramping: Programmable, 1 to 9999 units/minute.
- 14. SERIAL COMMUNICATIONS: (optional)
  - Type: RS485 multipoint, balanced interface
  - Baud Rate: 300 to 9600
  - Data Format: 701, 7E1, 7N2, 8N1
  - Node Address: 0 to 99, max of 32 units per line
  - Transmit Delay: 2 to 100 msec or 100 to 200 msec
  - Data Encoding: ASCII
  - Isolation w.r.t Main Input Common: 500 Vrms for 1 min. (50 V working) Not isolated w.r.t. Remote Setpoint or Analog Output common
- Note: RS485 and the Analog Output commons are not internally isolated within the controller. The terminating equipment of these outputs must not share the same common (ie. earth ground).
- 15. ENVIRONMENTAL CONDITIONS:
- Operating Range: 0 to 50°C
- Storage Range: -40 to 80°C
- **Operating and Storage Humidity:**
- 85% max. relative humidity (non-condensing) from 0°C to 50°C.
- Vibration According to IEC 68-2-6: Operational 5 to 150 Hz, in X, Y, Z direction for 1.5 hours, 2 g.
- Shock According to IEC 68-2-27: Operational 20 g (10 g relay), 11 msec in 3 directions
- Altitude: Up to 2000 meters

#### 16. ISOLATION BREAKDOWN RATINGS:

- **AC line with respect to all Inputs and outputs:** 250 V working (2300 V for 1 minute).
- Main input with respect to Analog Outputs and Remote Setpoint Input: 50 V working (2300 V for 1 minute).
- All other inputs and outputs with respect to relay contacts: 2000 VAC Not isolated between Analog Output and Remote Setpoint commons.

#### 17. CERTIFICATIONS AND COMPLIANCES:

#### SAFETY

- UL Recognized Component, File #E156876, UL873, CSA 22.2 No. 24 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
- Type 4X Enclosure rating (Face only), UL50
- IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1. IP65 Enclosure rating (Face only), IEC 529

ELECTROMAGNETIC COMPATIBILITY

#### Immunity to EN 50082-2

| Electrostatic discharge           | EN 61000-4-2 | Level 2: 4 Ky contact               |
|-----------------------------------|--------------|-------------------------------------|
|                                   |              | Level 3: 8 Ky air                   |
| Electromagnetic RF fields         | EN 61000-4-3 | Level 3; 10 V/m <sup>1</sup>        |
| -                                 |              | 80 MHz - 1 GHz                      |
| Fast transients (burst)           | EN 61000-4-4 | Level 4; 2 Kv I/O                   |
|                                   |              | Level 3; 2 Kv power                 |
| RF conducted interference         | EN 61000-4-6 | Level 3; 10 V/rms <sup>2</sup>      |
|                                   |              | 150 KHz - 80 MHz                    |
| Power frequency magnetic fields   | EN 61000-4-8 | Level 4; 30 A/m                     |
| Simulation of cordless telephones | ENV 50204    | Level 3; 10 V/m                     |
|                                   |              | $900 \text{ MHz} \pm 5 \text{ MHz}$ |
|                                   |              | 200 Hz, 50% duty cycle              |
| Emissions to EN 50081-2           |              |                                     |
| RF interference                   | EN 55011     | Enclosure class A                   |

| RF interference | EN 55011 | Enclosure class A   |
|-----------------|----------|---------------------|
|                 |          | Power mains class A |

Notes:

- 1. No loss of performance during EMI disturbance at 10 V/m.
- Unit is panel mounted in a metal enclosure (Buckeye SM7013-0 or equivalent) that provides at least 20 dB shielding effectiveness. Metal panel is connected to earth ground.
- Power Line and I/O cables routed in metal conduit connected to earth ground.
- 2. Self-recoverable loss of performance during EMI disturbance at 10 Vrms: Analog output may deviate during EMI disturbance.

For operation without loss of performance:

Install power line filter, RLC#LFIL0000 or equivalent.

OR

Install 2 ferrite cores, RLC#FCOR0000 or equivalent, to AC lines at unit for frequencies above 5 MHz.

I/O cables routed in metal conduit connected to earth ground.

Refer to the EMC Installation Guidelines section of the manual for additional information.

18. CONNECTION: Wire clamping screw terminals

19. CONSTRUCTION: Black plastic alloy case and collar style panel latch. Panel latch can be installed for vertical or horizontal instrument stacking. One piece tinted plastic bezel. Bezel assembly with circuit boards can be removed from the case to change the output board without removing the case from the panel or disconnecting wiring. Unit meets NEMA 4X/IP65 requirements for indoor use, when properly installed. Installation Category II, Pollution Degree 2.

20. WEIGHT: 0.38 lbs (0.17 kgs)

## **BASIC OPERATION**

The P48 controls a process by receiving a linear DC signal representing the process value, then calculating a control output power value by use of a modified PID control algorithm. The unit controls the system with the new output power value to keep the process at setpoint. The PID control algorithm incorporates features which provide for high control accuracy and low overshoot from process disturbances.

## FRONT PANEL FEATURES

In the normal operating mode, the unit displays the process value in the upper display. One of the following parameters can be viewed in the lower display:

- Setpoint
- % Power Output
- Process Deviation
- Blank Display

The user scrolls through these parameters by pressing the D button. If enabled, the control setpoint or power output (manual mode only) can be directly modified in this mode.

In the normal operating mode, parameters are selected by use of the P button and modified by use of the UP and DOWN buttons. Parameters are then entered by the P button, which advances the user to the next parameter. Pressing the D button immediately returns the controller to the normal operating mode without changing the currently selected parameter.

## HARDWARE FEATURES

A fast 100 msec input sampling rate provides quick controller response to a process disturbance, thus providing excellent process control. Measurement accuracy of 0.1% or better, provides close process control conforming to the desired control setpoint value.

Low-drift, highly stable circuitry ensures years of reliable and accurate process control. The recommended two year re-calibration interval is easily accomplished via the programming menu.

## **REMOTE SETPOINT INPUT**

The remote setpoint input facilitates the use of a remote signal to drive the controller's setpoint. The remote signal can be scaled independent to that of the controller's range. The controller's response to local/remote setpoint transfers can be programmed. Also, the remote signal is filtered by use of an adaptive filter. With this filter, relatively large filtering time constants can be used without suffering from long settling times. The time constant and filter disable band are programmable. Additionally, the remote signal can also be velocity limited (or ramped) to slow the controller's response to changes in setpoint. This results in a steady control response with no overshoot.

## LINEAR DC ANALOG OUTPUTS

The Main Linear DC output has independent scaling, programmable output update time and filter (damping) time. These parameters permit flexibility in process configuration. The output can be set for 0 to 10 V, 0 to 20 mA or 4 to 20 mA ranges and can be configured for control or for re-transmission of input or setpoint values.

A Second Linear DC output is dedicated for the re-transmission of the process input signal. The output can be scaled and converted independent of the input signal and Main Linear DC output. This output is isolated from the input.

## SETPOINT FEATURES

The controller setpoint can be protected from out of range values by programming the setpoint range limit values. Additionally, safeguards from inadvertent data entry can be programmed.

A second setpoint can be selected by the user input and/or through the front panel.

The setpoint ramp feature can be used to control the setpoint value at start-up or any time a setpoint change is made, at a user programmable rate. This feature reduces shock to the process and helps to minimize overshoot.

#### INPUT FEATURES

A programmable input filter can be used to stabilize readings from a process with varying or oscillating process characteristics, helping to provide better control.

The programmable user input can be used to control a variety of functions, such as auto/manual transfer of the controller, reset alarm output(*s*), etc.

#### **OUTPUT FEATURES**

Programmable output power limits provide protection for processes where excessive power can cause damage. Programmable output cycle time, output hysteresis, and dampening can reduce output activity without degrading control accuracy. The main outputs can operate in PID, ON/OFF, or manual control modes.

## **CONTROL AND ALARM OUTPUTS**

In addition to the Linear DC output, there are up to three relay outputs available. Relay outputs can switch user applied AC or DC voltages for control or alarm purposes.

## 1-717-767-6511

## AUTO-TUNE

The P48 has an auto-tune feature which, on demand, automatically determines the PID control parameters for a particular process. After completion of auto-tune, the PID parameters are automatically optimized for that process and loaded into non-volatile memory. The operator may view and modify the parameters as desired.

Auto-tune may be invoked either at start-up or at setpoint, depending on the process requirements. An auto-tune programmable dampening factor produces various levels of process control and response characteristics.

## **RS485 SERIAL COMMUNICATIONS**

The RS485 communications option allows the connection of up to 32 devices on a single pair of wires with a distance of up to 4,000 feet and a maximum baud rate of 9600. Since the same pair of wires are used for both transmit and receive, only one way communication is possible at any given time. The controller has a programmable response time to allow the host device adequate time to release the communication line for a transmission.

Selected parameters from the P48 can be interrogated or changed, and alarm output(s) may be reset by sending the proper command code via serial communications. It is also possible to invoke Auto-tune through the serial port. Serial communications used with SFCRM software allows for easy controller parameter configuration by computer.

## DUAL TIME PROPORTIONAL SYSTEMS

The P48 is available with dual time proportional outputs. The dual outputs can be used for level or heat/cool applications. The A2 output can be configured for Secondary (cool) control. This allows for dual PID control or ON/OFF control with unbalanced hysteresis.

## CONTROLLER PROGRAMMING

Front Panel Program Disable allows all of the controller's set-ups to be locked-out from further operator intervention after the initial set-up.

The following four programming modes allow the controller to adapt to any required user-interface level:

Unprotected Parameter Mode Protected Parameter Mode Hidden Function Mode Configuration Parameter Mode

#### **UNPROTECTED PARAMETER MODE \***

The Unprotected Parameter Mode is accessible from the Normal Display mode when program disable is inactive or when the proper access code number from the Protected Parameter Mode is entered. The Configuration Parameter Modes can be accessed only from this mode.

| "SP"   | - Enter setpoint                                      |
|--------|-------------------------------------------------------|
| "OP"   | <ul> <li>Enter output power</li> </ul>                |
| "ProP" | <ul> <li>Enter proportional band</li> </ul>           |
| "Intt" | <ul> <li>Enter integral time</li> </ul>               |
| "dErt" | <ul> <li>Enter derivative time</li> </ul>             |
| "AL-1" | <ul> <li>Enter value for alarm #1</li> </ul>          |
| "AL-2" | <ul> <li>Enter value for alarm #2</li> </ul>          |
| "CNFP" | <ul> <li>Select configuration access point</li> </ul> |
| "End"  | - Return to normal display mode                       |
|        |                                                       |

#### **PROTECTED PARAMETERS MODE \***

The Protected Parameters Mode is enabled when program disable is active. This mode prevents access to the configuration modes without the proper access code number. Only the parameters that are enabled in the Configuration 3 parameter (lock-out section) can be accessed.

| - Enter proportional band                                                                         |
|---------------------------------------------------------------------------------------------------|
| - Enter integral time                                                                             |
| - Enter derivative time                                                                           |
| <ul> <li>Enter value for alarm #1</li> </ul>                                                      |
| <ul> <li>Enter value for alarm #2</li> </ul>                                                      |
| <ul> <li>Enter value to access unprotected parameters and<br/>configuration parameters</li> </ul> |
|                                                                                                   |

#### **HIDDEN FUNCTION MODE \***

The Hidden Function Mode is accessible from the Normal Display Mode. The functions in this mode may be locked-out individually in Configuration 3 parameter (lock-out section).

| "SPSL" | - Select local (SP1 or SP2) or remote setpoint |
|--------|------------------------------------------------|
|--------|------------------------------------------------|

- "trnF - Transfer between automatic (PID) control and manual control
- "tUNE" - Invoke/cancel PID Auto-tune
- "ALrS' - Reset latched alarms

## **CONFIGURATION PARAMETER MODE**

The Configuration Parameter Mode allows the operator to set-up the basic requirements of the controller. It is divided into sections which group together related programming steps, such as inputs, outputs, alarms, etc. Upon completion of each section, the program returns to the Configuration Access Point allowing the user to return to the Normal Display Mode.

## Configuration 1, Inputs (1-IN)

| -      |   |             | •        |            |
|--------|---|-------------|----------|------------|
| "tYPE" | - | Select inpu | it signa | I type     |
| "dCPt" | - | Select scal | ed disr  | play decim |

- Select scaled display decimal point position
- Enter rounding increment and trailing zeros for scaled display "rnd" "FLtr" - Select level of input filtering
- "dSP1"
  - "InP1" Scale main input
  - "dSP2" "InP2"
- "SPLO" - Enter setpoint lower limit
- "SPHI" - Enter setpoint higher limit
- "SPrP Enter setpoint ramp rate
- "InPt" - Select user input function

## Configuration 2, Outputs (2-OP) \*

| "CYCt" | <ul> <li>Enter time proportioning cycle time</li> </ul> |
|--------|---------------------------------------------------------|
| "OPAC" | <ul> <li>Select output control action</li> </ul>        |
| "OPLO" | <ul> <li>Enter output power low limit</li> </ul>        |
| "OPHI" | <ul> <li>Enter output power high limit</li> </ul>       |
| "OPdP" | <ul> <li>Enter output control dampening</li> </ul>      |
| "CHYS" | <ul> <li>Enter ON/OFF control hysteresis</li> </ul>     |
| "tcOd" | <ul> <li>Select auto-tuning dampening</li> </ul>        |
| "ANtP" | <ul> <li>Main Linear DC analog output range</li> </ul>  |
| "ANAS" | <ul> <li>Main Linear DC analog output source</li> </ul> |
| "ANut" | - Main Linear DC analog output update time              |
| "ANLO" | - Main Linear DC analog output scaling low              |

- Main Linear DC analog output scaling low
- "ANHI" - Main Linear DC analog output scaling high

## Configuration 3, Parameter Lock-Outs (3-LC) \*

| -      |                                                       |
|--------|-------------------------------------------------------|
| "SP"   | <ul> <li>Select setpoint access level</li> </ul>      |
| "OP"   | <ul> <li>Select power access level</li> </ul>         |
| "dEv"  | <ul> <li>Enable deviation display</li> </ul>          |
| "bdSP" | - Enable blank display                                |
| "CodE" | <ul> <li>Enter parameter access code</li> </ul>       |
| "Pld"  | <ul> <li>Select PID access level</li> </ul>           |
| "AL"   | <ul> <li>Select alarm access level</li> </ul>         |
| "ALrS" | <ul> <li>Enable alarm reset access</li> </ul>         |
| "SPSL" | <ul> <li>Enable local/remote selection</li> </ul>     |
| "trnF" | <ul> <li>Enable auto/manual mode selection</li> </ul> |
| "tUNE" | <ul> <li>Enable auto-tune invocation</li> </ul>       |
|        |                                                       |

#### Configuration 4, Alarms (4-AL) \*

- Select operation mode of alarm #1, or select main output "ACt1"
- "rSt1 Select reset mode of alarm #1
- "Stb1" Enable activation delay of alarm #1
- "AL-1" Enter value for alarm #1 "ACt2
- Select operation mode of alarm #2, or select second output "rSt2"
- Select reset mode of alarm #2
- "Stb2" Enable activation delay of alarm #2 "AI -2"
- Enter value for alarm #2 "AHYS" - Enter hysteresis value for both alarms

#### Configuration 5, Second Output (5-O2) \*

- Enter time proportioning cycle time "CYC2"
- Enter relative gain "GAN2"
- "db-2" - Enter deadband or overlap

#### Configuration 6, Serial Communications (6-SC) \*

- "bAUd" Select baud rate
- "ConF Select character frame format
- "Addr" Enter address
- "Abrv" Select abbreviated or full transmission
- "PoPt" Select print options

#### Configuration 7, Remote Setpoint Input (7-N2) \* "dSP1"

- Enter remote setpoint display scaling value #1 "INP1"
- Enter remote setpoint process scaling value #1 "dSP2" Enter remote setpoint display scaling value #2
- "INP2" Enter remote setpoint process scaling value #2 -
- "FI tr" Enter remote setpoint filter time constant
- "bAnd" Enter remote setpoint filter disable band
- "trnF" - Select Local/Remote setpoint transfer response

## Configuration 8, Second Linear DC Analog Output (8-A2) \*

- Second linear DC analog range "A2tP"
- "A2LO" - Second linear DC analog scaling low "A2HI" - Second linear DC analog scaling high

## Configuration 9, Factory Service Operations (9-FS)

- "Code 48" - Calibrate Instrument
- "Code 66" - Reset parameters to factory setting
- These parameters may not appear due to option configuration or other programming.

## 622

## www.redlion.net

## **MULTIPLE UNIT STACKING**

The P48 is designed for close spacing of multiple units. Units can be stacked either horizontally or vertically. For vertical stacking, install the panel latch with the screws to the sides of the unit. For horizontal stacking, the panel latch screws should be at the top and bottom of the unit. The minimum spacing from center line to center line of units is 1.96" (49.8 mm). This spacing is the same for vertical or horizontal stacking.

Note: When stacking units, provide adequate panel ventilation to ensure that the maximum operating temperature range is not exceeded.



## APPLICATION WATER PROCESSING APPLICATION

A city water company needs to maintain a steady flow of water for their customer needs. They have an existing 0 to 10 VDC flow transmitter to measure the water flow. They need to control the water flow, have a high and low alarm, and keep a recorded chart of the flow for later reference. The Main Linear DC output of the P48 can be used to control the position of water output values per the desired flow setpoint value. The P48 relay outputs can be programmed to give a high flow alarm and a low flow alarm. With the Second Linear DC output model, the flow measurement to the P48 can be converted from 0-10 V to 4-20 mA and retransmitted to a 4-20 mA chart recorder.



## **ORDERING INFORMATION**

Options and Output Boards are factory configured per the part number specified. Part numbers without replacement output boards listed must be returned to the factory for output board replacement.

|           |              | DEDICATED            | A2 (ALARM 2) | REMOTE  | <b>D0</b> (05 0) | MAIN       | SECOND     | REPLACEMENT | PART NUMBERS     |               |
|-----------|--------------|----------------------|--------------|---------|------------------|------------|------------|-------------|------------------|---------------|
| 01 OUTPUT | A1(ALARM 1)* | ALARM 1<br>A1 OUTPUT | (SECONDARY)* | INPUT @ | K5485 @          | OUTPUT** @ | OUTPUT** @ | BOARD       | 18-36 VDC/24 VAC | 85 to 250 VAC |
|           |              |                      |              |         |                  | YES        |            | NA          | P4800011         | P4800001      |
| Relay     |              |                      |              |         |                  |            |            | RBD48100    | P4810010         | P4810000      |
|           | Relay        |                      | Relay        |         |                  | YES        |            | NA          | P4810111         | P4810101      |
|           | Relay        |                      | Relay        | YES     |                  | YES        |            | NA          | P4810115         | P4810105      |
|           | Relay        |                      | Relay        |         | YES              | YES        |            | NA          | P4810117         | P4810107      |
|           | Relay        |                      | Relay        |         |                  | YES        | YES        | NA          | P481011A         | P481010A      |
| Relay     |              | Relay                | Relay        |         |                  |            |            | RBD48111    | P4811110         | P4811100      |
| Relay     |              | Relay                | Relay        |         | YES              |            |            | RBD48111    | P4811112         | P4811102      |

\* This output is programmable as either Control (PID) or as an Alarm.

\*\* These part numbers are jumper and program selectable for either a current or a voltage Linear DC output.

@ These part numbers are equipped with a second setpoint.

Option Boards are installed at the factory for the appropriate models. These boards are only needed for field replacement.

#### ACCESSORIES

| MODEL NO. | DESCRIPTION                                                                             | PART NUMBERS |
|-----------|-----------------------------------------------------------------------------------------|--------------|
| SFCRM     | Crimson 2 PC Configuration Softwware for Windows 98, ME, 2000 and XP (for RS485 models) | SFCRM        |
| ICM4      | RS232/RS485 Serial Converter Module                                                     | ICM40030     |
| ICM5      | Three Way Isolated RS232/RS485 Serial Converter Module                                  | ICM50000     |

\*Crimson Software is available for download from http://www.redlion.net

F

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **MODEL PCU - PROCESS CONTROL UNIT**





- 100 MSEC SAMPLING PERIOD WITH 0.15% ACCURACY
- ON DEMAND AUTO-TUNING OF PID CONTROL SETTINGS
- DUAL LED DISPLAYS FOR SIMULTANEOUS INDICATION OF PROCESS VALUE AND SETPOINT OR SECOND ANALOG INPUT
- ACCEPTS EITHER 0 to 10 VDC OR 0 to 20 mA DC INPUTS

## ACCEPTS EITHE

## DESCRIPTION

The PCU Controller accepts either 0 to 10 VDC or a 0 to 20 mA DC input signal, precisely scales the process signal according to programmable scaling points, and provides an accurate output control signal *(time proportional, linear; or valve position)* to maintain a process at the desired control point. A comprehensive set of easy to use program instructions allows the controller to solve various applications.

The controller can operate in the PID control mode for both the main output and optional secondary output, with on-demand auto-tune, that establishes the tuning constants. The PID tuning constants may be fine-tuned by the operator at any time and then locked-out from further modification. The controller employs a unique overshoot suppression feature, which allows the quickest response without excessive overshoot. The unit can be transferred to operate in the manual mode, providing the operator with direct control of the output. The controller may also be programmed to operate in the ON/OFF control mode with adjustable hysteresis.

## **DIMENSIONS** In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 5.5" (140) H x 2.1" (53.4) W.



- SELF-DIAGNOSTICS
- FULL PID CONTROL WITH REDUCED OVERSHOOT
- OPTIONAL RS485 SERIAL COMMUNICATIONS INTERFACE
- OPTIONAL DUAL ALARM OUTPUTS (USES OUTPUT MODULES)
- OPTIONAL SECONDARY OUTPUT (USES OUTPUT MODULE)
- OPTIONAL LINEAR 4 to 20 mA OR 0 to 10 VDC OUTPUT FOR CONTROL OR PROCESS VALUE RE-TRANSMISSION
- OPTIONAL MOTORIZED VALVE POSITION CONTROL AND VALVE FAIL ALARM
- OPTIONAL SECOND ANALOG INPUT FOR REMOTE SETPOINT AND CASCADE CONTROL
- OPTIONAL TYPE 4X/IP65 SEALED FRONT BEZEL
- STATUS INDICATORS FOR OUTPUTS AND CONTROL MODES
- PROGRAMMABLE USER INPUT (DIGITAL) FOR ADDED FLEXIBILITY
- MANUAL/AUTOMATIC AND LOCAL/REMOTE SETPOINT CONTROL MODES
- SETPOINT RAMPING FOR PROCESS STARTUP
- PARAMETER SECURITY VIA PROGRAMMABLE LOCKOUTS
- FIELD REPLACEABLE AND INTERCHANGEABLE OUTPUT MODULES (Relay, Logic/SSR Drive and Triac)

Dual 4-digit displays allow viewing of the process value and setpoint simultaneously. Front panel indicators inform the operator of the controller and output status. Replaceable and interchangeable output modules (*Relay, Logic/SSR Drive, or Triac*) can be installed for the main control output, alarm output(s) and secondary output.

### www.redlion.net

## Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### **OPTIONS**

Optional dual alarms can be configured to activate according to a variety of actions (Absolute HI or LO, Deviation HI or LO, Band IN or OUT and Valve Fail Detect) with adjustable hysteresis. A standby feature suppresses the output during power-up until the process stabilizes outside the alarm region. An optional secondary output is available *(for processes that require cooling)* that provides increased control accuracy and response.

A linear 4 to 20 mA or 0 to 10 VDC output signal is available to interface with actuators, chart recorders, indicators, or other controllers. The output signal can be digitally scaled and selected to transmit one of the following: % output power, measurement value, process measurement value deviation or setpoint value. Valve Positioner and Second Analog Input Models have the adjustable output demand dampening, output deadband and output update time parameters to expand the versatility of the PCU to control devices.

The optional Motorized Valve Positioner directly controls the position of a valve by the use of twin outputs (open and close) to control the direction of motor rotation. The motor position defines the opening position of the valve. Two control modes are possible: position control, that makes use of the slidewire feedback signal supplied with the positioner and velocity control, in which no slidewire feedback signal is used. Parameters are provided to adjust the operation of the valve. These include:

- Valve activity hysteresis
- Valve update time
- Variable control dampening
- Slidewire signal fail action
- Adjustable valve position limits

The Valve Positioner PCU achieves tight process control, yet minimizes unnecessary valve activity. An alarm event output or display alarm can be programmed under loss of slidewire feedback or under valve fail detection.

The optional Second Analog Input (0 to 20 mA DC) can be configured as a remote setpoint signal or as a secondary process signal. Configuration of the second analog input as a remote setpoint signal allows ratio control, master setpoint/multiple slave operation, and the ability to cascade the PCU with another controller (external cascade). Configuration of the second input as a secondary process signal allows operation as a two-process cascade controller within a single unit (internal cascade). In either control mode, parameters are provided to scale, configure, communicate and monitor the activity of both analog inputs. A square law linearizer function can be used to linearize signals derived from flow transmitters.

The optional RS485 multidrop serial communication interface provides twoway communication between a PCU unit and other compatible equipment such as a printer, a programmable controller, or a host computer. In multipoint applications the address number of each unit on the line can be programmed from zero to ninety-nine. Up to thirty-two units can be installed on a single pair of wires. The Setpoint value, % Output Power, Setpoint Ramp Rate, etc. can be interrogated or changed by sending the proper command code via serial communications. Alarm output(s) may also be reset via the serial communications interface option.

An optional Type 4X/IP65 rated bezel is available for wash down and/or dirty environments, when properly installed. Modern surface-mount technology, extensive testing, plus high immunity to noise interference makes the controller extremely reliable in industrial environments.

## SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the PCU to directly command motors, valves, or other actuators not equipped with safeguards. To do so, can be potentially harmful to persons or equipment in the event of a fault to the unit. An independent and redundant limit indicator with alarm outputs is strongly recommended. The indicators should have input sensors and AC power feeds independent from other equipment.

## SPECIFICATIONS

- "ULUL" Appears when measurement exceeds -5% input range. "SENS" - Appears when measurement exceeds "OLOL" & "ULUL" range.
- ...." Appears when display values exceed + display range.

- ..." Appears when display values exceed display range.
- "SLid" Appears when loss of slidewire signal is detected.
- "VALV" Appears when valve actuator error is detected.
- POWER: Switch selectable 115/230 VAC (+10%, -15%) no observable line variation effect, 48 to 62 Hz, 10 VA.
- 3. ANNUNCIATORS:

#### LED Backlight Status Indicators (Model dependent):

- %PW Lower auxiliary display shows power output in (%). Lower auxiliary display shows deviation (error) DEV from process setpoint. OP1 Main control output is active. AL1 - Alarm #1 is active. Alarm #2 is active (for Dual Alarm Option). AI 2 OP2 Secondary output is active (for Secondary Output Option). OPN Valve positioner OPEN output is active (for Valve Positioner Option). CLS Valve positioner CLOSE output is active (for Valve Positioner Option).
- SEC Lower auxiliary display shows second analog input (for Second Analog Input Option).
- MAN Flashing: Controller is in Manual control mode. REM - ON: controller is in remote setpoint mode
  - (Second Analog Input Option).
  - OFF: controller is in local setpoint mode
  - (Second Analog Input Option).
  - Flashing: controller is in Manual control mode (Second Analog Input Optional).
- CONTROLS: Four front panel push buttons for modifying and setup of controller functions and one external input for parameter lockout or other functions.
- 5. SIGNAL INPUT:
  - Sample Period: 100 msec typ.

**Response Time**: 300 msec typ. (to within 99% of final value w/step input)

- Signal Overdrive Threshold:
  - 10 V Range: 13 V typ.
  - 20 mA Range: 26 mA typ.
- Signal Overdrive Response:

Main Control Output: Programmable preset output

- Display: "SENS"
- Alarms: Upscale drive
- DC Linear: Programmable preset output
- Normal Mode Rejection: 40 dB typ. @ 50/60 Hz (improves with increased digital filtering).
- Common Mode Rejection: 100 dB typ., DC to 60 Hz
- Protection: Input overload 120 VAC for 30 seconds.

Range And Accuracy:

| SIGNAL RANGE | ACCURACY (% OF<br>UNSCALED<br>READING) | MAXIMUM<br>INPUT | INPUT<br>IMPEDANCE | RESOLUTION |
|--------------|----------------------------------------|------------------|--------------------|------------|
| 0 to 10 VDC  | ±(0.15% + 3 mV)                        | 300 VDC          | 1M Ω               | 10 mV      |
| 0 to 20 mADC | ±(0.15% + 6 μA)                        | 200 mADC         | 10 Ω               | 10 µA      |

#### 6. OUTPUT MODULES [Optional] (For All Output Channels): Relay:

Type: Form-C (Form-A with some models. See Ordering Information.) Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120 VAC (inductive load) max.

Life Expectancy: 100,000 cycles at max. load rating. (Decreasing load and/or increasing cycle time, increases life expectancy).

Logic/SSR Drive: Can drive multiple SSR Power Units. Type: Non-isolated switched DC, 12 VDC typ.

Drive: 45 mA max. Triac:

Type: Isolated, Zero Crossing Detection Rating: Voltage: 120/240 VAC Max. Load Current: 1 Amp @ 35°C

0.75 Amp @ 50°C

Min. Load Current: 10 mA

Off State Leakage Current: 7 mA max. @ 60 Hz

Operating Frequency: 20 to 400 Hz

Protection: Internal Transient Snubber, Fused

7. MAIN CONTROL OUTPUT:

Control: PID or ON/OFF

- Output: Time proportioning or linear DC
- Hardware: Plug-in, replaceable output modules
- Cycle time: Programmable
- Auto-tune: When selected, sets proportional band, integral time, and derivative time values.

Signal Overdrive Action: Programmable

## SPECIFICATIONS (Cont'd)

8. SECONDARY OUTPUT (Optional): Control: PID or ON/OFF Output: Time proportioning or linear DC Hardware: Plug-in, replaceable output modules Cycle time: Programmable Proportional Gain Adjust: Programmable Deadband Overlap: Programmable 9. LINEAR DC OUTPUT (Optional): With digital scale and offset, programmable deadband and update time. 4 to 20 mA: Resolution: 1 part in 3500 typ Accuracy:  $\pm (0.1\% \text{ of reading} + 25 \,\mu A)$ Compliance:  $10 V (500 \Omega max. loop impedance)$ 0 to 10 VDC Resolution: 1 part in 3500 typ. Accuracy:  $\pm (0.1\% \text{ of reading} + 35 \text{ mV})$ Min. Load Resistance: 10 KΩ (1 mA max.) Source: % output power, setpoint, deviation, or process value (Available for OP1 or OP2, but not both.) 10. MOTORIZED VALVE POSITIONER (Optional): Two Outputs: Valve open and valve close or Linear DC (optional) Hardware: Plug-in, replaceable output modules Three Inputs: Slidewire feedback, signal fail detect (Isolated from main input) Slidewire Resistance:  $100 \Omega$  to  $100 K\Omega$ Slidewire Exciting Voltage: 0.9 VDC typ. Slidewire Fail Action: programmable Control Mode: Position mode (with slidewire) and velocity mode (w/o slidewire). Control Deadband: 1% to 25.0% (position mode) 0.1 to 25.0 seconds (velocity mode) Update Time: 1 to 250 seconds Motor Time (open, close): 1 to 9999 seconds Position Limits: Adjustable 0.0 to 100.0% of valve stroke Valve Fail Time: Off to 9999 seconds Alarm mode: Dual acting; loss of slidewire feedback signal and valve fail detection 11. SECOND ANALOG INPUT: Range: 0 to 20 mA (Isolated from main input) Overload: 100 mA <sub>MIN</sub> (steady state) Input Resistance: 10 Ω typ. Voltage Drop (@ 20 mA): 0.2 V typ. Accuracy: 0.15% of reading  $\pm 10 \ \mu A \pm 1 \ LSD$ Scale Range: -999 to 9999 12. SERIAL COMMUNICATION: Type: RS485 Multi-point, Balanced Interface **Communication Format:** Baud Rate: Programmable from 300 to 9600 Parity: Programmable for odd, even, or no parity Frame: 1 start bit, 7 data bits, 1 or no parity bit, 1 stop bit Unit Address: Programmable from 0 to 99, max. of 32 units per line Transmit Delay: 100 msec min., 200 msec max RS485 Common: Isolated from signal input common Auto Print Time: Off to 9999 seconds between print-outs 13. USER INPUT (Optional): Internally pulled up to +5 VDC.  $V_{IN} = 5.25 \text{ VDC} MAX$ ,  $V_{IL} = 0.85 V_{MAX}$ ;  $V_{IH} = 3.0 V_{MIN}$ , Available on all second input (MVP & ANA) models, and on models with RS485 Response Time: 100 msec max. Functions: Program Lock Integral Action Lock Auto/Manual Mode Select Setpoint Ramp Select Reset Alarms Print Request Local/Remote Setpoint Select 14. ALARMS (Optional): Hardware: Plug-in, replaceable output module Modes: Absolute high acting Absolute low acting Deviation high acting Deviation low acting Inside band acting Outside band acting Valve fail Second Analog Input monitoring Reset Action: Programmable; automatic or latched Standby Mode: Programmable; enable or disable

Hysteresis: Programmable

626

Signal Overdrive Action: Upscale Annunciator: LED backlight for "AL1", "AL2", (Alarm #2 not available with secondary output or motorized valve position option.) 15. ENVIRONMENTAL CONDITIONS: Operating Temperature Range: 0 to 50°C Storage Temperature Range: -40 to 80°C Vibration to IEC 68-2-6: Operational 5-150 Hz, 1 g Shock to IEC 68-2-27: Operational 5 g Span Drift (maximum): 100 ppm/°C, main input; 150 ppm/°C, second input Zero Drift (maximum): 4 to 20 mA DC Range: 0.5 µA/°C 0 to 10 VDC Range: 0.2 mV/°C Second Input: 2 µA/°C Relative Humidity: Less than 85% RH (non-condensing) Altitude: Up to 2000 meters 16. ISOLATION BREAKDOWN RATINGS: All inputs and outputs with respect to AC line:  $2300 V_{MIN}$ Analog Outputs, Second Analog Input or Slidewire Input with respect to main input: 500 V<sub>MIN</sub> 17. CERTIFICATIONS AND COMPLIANCES: **CE** Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A EN 61010-1 **RoHS** Compliant UL Recognized Component: File #E156876 UL Listed: File #E137808 Type 2 Enclosure rating (Face only) for PCU0 Type 4X/IP65 Enclosure rating (Face only) for PCU1 Refer to EMC Installation Guidelines section of the manual for additional information. 18. CONNECTION: Jaw-type terminal block Wire Range: 12-30 AWG copper wire Torque: 5-7 inch-lbs (56-79 N-cm) 19. CONSTRUCTION: Front Panel: Flame and scratch resistant tinted plastic Case: High impact black plastic. (Mounting collar included) Type 4X/IP65 model only: Sealed bezel utilizing two captive mounting screws (panel gasket included) This unit is rated for Type 4X/IP65 indoor use. Installation Category II, Pollution Degree 2

20. WEIGHT: 1.3 lbs (0.6 kgs)

## **BASIC OPERATION**

The PCU controls a process by measuring the input signal and then calculating a control output power value by use of a modified PID control algorithm. The unit controls the system with the new output power value to keep the process at setpoint. The PID control algorithm incorporates features that provide for high control accuracy and low overshoot from process disturbances.

## FRONT PANEL FEATURES

In the normal operating mode, the unit displays the scaled process value in the upper display. One of four other parameters can be viewed in the lower display:

- Setpoint
- % Power Output
- Deviation
- Second Input Process Value

The parameters can be scrolled through by pressing the DSP button. If enabled, the control setpoint or power output (manual mode only) can be directly modified in this mode.

In the normal operating mode, parameters are selected by use of the PAR button and modified by use of the UP and DOWN buttons. Parameters are then entered by the PAR button, which advances the user to the next parameter. Pressing the DSP button immediately returns the controller to the normal operating mode when making a parameter change. The controller's configuration and parameter settings are stored in an internal  $E^2$ PROM device.

#### www.redlion.net

## HARDWARE FEATURES

The fast 100 msec input sampling rate provides quick controller response to a process disturbance, thus providing excellent process control. Measurement accuracy of 0.15% or better, provides closer process control conforming to the desired control setpoint value. The unit accepts either a 0 to 10 VDC or a 0 to 20 mA DC input signal. The AC input power is switch selectable, allowing the unit to operate from either 115 VAC or 230 VAC. Since the controller is serviceable from the front of the panel, the output modules may be easily changed or replaced without disturbing the wiring behind the panel. No re-programming is required when changing or replacing modules.

The optional Type 4X/IP65 rated model utilizes two bezel securing screws and a neoprene gasket to guarantee a water tight seal, when properly installed. The standard model simply requires pressing a latch to remove the unit.

Low-drift, highly stable circuitry ensures years of reliable and accurate process control. The recommended two-year re-calibration interval is easily accomplished via the programming menu.

## SETPOINT FEATURES

The controller setpoint can be protected from out of range values by programming the setpoint range limit values. Additionally, safeguards from inadvertent data entry can be programmed.

The setpoint ramp feature ramps the setpoint value at start-up or any time a setpoint change is made, at a user programmable rate. This feature reduces shock to the process and helps to minimize overshoot. The setpoint may also be transmitted by the optional linear DC output for slave control loops.

The second analog input may be configured as a remote setpoint. As such, the controller is easily switched from local/remote setpoint operation via the front panel or user input. Ratio and bias parameters provide on-line scaling of the remote setpoint. Absolute limit values and maximum rate of change of the remote setpoint further enhance controller flexibility.

## **INPUT FEATURES**

A programmable input filter can be used to stabilize readings from a process with varying or oscillating characteristics, helping to provide better process control. Programmable scaling points allow the controller to display in any engineering unit; flow, level, pressure, etc. Scaling points are used in conjunction with the programmable rounding increment to stabilize a jittery or otherwise hard to read process signal for better indication.

The programmable User Input can be used to control a variety of functions, such as auto/manual transfer of the controller, reset alarm output(s), etc.

The second analog input has independent scaling parameters to match the units of other processes or transmitters, or to match the controller's range.

## **OUTPUT FEATURES**

Programmable output power limits provide protection for processes where excessive power can cause damage. Automatic signal overdrive detection, for fail-safe operation, causes the controller to default to a programmed output power (upscale or downscale burnout). With adjustable time proportioning cycle time, and programmable DC linear output, the controller can satisfy a wide variety of output requirements.

Programmable dampening output hysteresis and output update time parameters can dramatically reduce actuator activity without degrading control accuracy.

The RS485 Communication option allows the user to access various controller parameters such as the setpoint, % output power, % proportional band, etc. The controller may be set up to transmit various parameters at a programmable automatic print rate.

## AUTO-TUNE

The PCU has an auto-tune feature that, on demand, automatically determines the PID control parameters for a particular process. After completion of autotune, the PID parameters are automatically optimized for that process and loaded into nonvolatile memory. The operator may view and modify the parameters as desired.

Auto-tune may be invoked either at start-up or at setpoint, depending on the process requirements. An auto-tune programmable dampening factor produces various levels of process control and response characteristics.

## OPTIONS RATIO CONTROL



The PCU configured for ratio operation controls a process as a ratio of another process or to another variable. Ratio control is commonly used for flow applications, however, any two process variables can be controlled in a ratio mode.

#### **Ratio Control Configuration Parameters**

| "ÕPEr"             | <ul> <li>Select ratio mode</li> </ul>                   |
|--------------------|---------------------------------------------------------|
| "root"             | - Select second input square root linearization         |
| "dPt2"             | <ul> <li>Select second input decimal point</li> </ul>   |
| "dSP1"             | <b>`</b>                                                |
| "INP1"             | - Enter scaling units of second input                   |
| "dSP2"             |                                                         |
| "INP2"             |                                                         |
| "SPtr"             | <ul> <li>Local/Remote Select options</li> </ul>         |
| "InPt"             | <ul> <li>Program User Input for Local/Remote</li> </ul> |
|                    | Setpoint selection                                      |
| <b>D</b> perationa | l Parameters                                            |
|                    |                                                         |

#### Ratio Control Operational Parame "rtio" - Remo "bIAS" - Remo

- Remote setpoint ratio

- Remote setpoint bias

#### MOTORIZED VALVE POSITIONER



The motorized valve positioner controls the position of a valve directly, by use of "*open*" and "*close*" control outputs. The slidewire feedback signals of the valve may optionally be connected to the controller. Alternatively, the controller may be configured for linear input valve control using the 4 to 20 mA DC output.

#### Motorized Valve Positioner Configuration Parameters

| Position mode: | "VPS1"<br>"VPS2"<br>"VUdt"           | Enter or measure valve closed position     Enter or measure valve open position     Enter Valve update time     Enter valve apdate time                                |
|----------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | "VPdb"<br>"VFAL"<br>"Act1"           | <ul> <li>Enter valve control deadband</li> <li>Enter valve fail detect time</li> <li>Program alarm as valve fail output</li> </ul>                                     |
| Velocity mode: | "VUdt"<br>"VOPt"<br>"VCLt"<br>"VOnt" | <ul> <li>Enter Valve update time</li> <li>Enter valve open time</li> <li>Enter valve close time</li> <li>Enter valve control deadband<br/>(minimum on time)</li> </ul> |

#### **INTERNAL CASCADE**



Cascade control allows the process to be divided into two control loops: the primary control loop and the secondary control loop. The secondary loop receives its setpoint from the primary loop to control an intermediate variable (steam pressure). The control level of the intermediate variable is the input to the primary process. The primary loop (main input) controller maintains loop regulation by manipulating the setpoint of the secondary controller. The secondary loop can react faster to disturbances of the intermediate variable. The secondary loop can react faster to the primary control loop. Control loops cascaded in such a manner provide greater control quality than would be possible with single loop control. A single PCU can accomplish two-process cascade control.

#### Internal Cascade Configuration Parameters

| Conngu | ration rarameters                                                 |
|--------|-------------------------------------------------------------------|
| "OPEr" | <ul> <li>Select cascade mode</li> </ul>                           |
| "root" | <ul> <li>Select second input square root linearization</li> </ul> |
| "dPt2" | <ul> <li>Select second input decimal point</li> </ul>             |
| "dSP1" | <b>\</b>                                                          |
| "INP1" | Enter cooling units of second input                               |
| "dSP2" |                                                                   |
| "INP2" |                                                                   |
| "OPd2" | <ul> <li>Output dampening of secondary</li> </ul>                 |

#### **Internal Cascade Operational Parameters**

| "ŜP-2" | <ul> <li>View secondary setpoint value</li> </ul>   |
|--------|-----------------------------------------------------|
| "Pb-2" | - Enter secondary proportional band                 |
| "It-2" | <ul> <li>Enter secondary integral time</li> </ul>   |
| "dt-2" | <ul> <li>Enter secondary derivative time</li> </ul> |

#### **EXTERNAL CASCADE**



Similar to internal cascade control, external cascade control differs by the employment of two controllers, one of which is equipped with a second analog input configured as a remote setpoint. A PCU controls the secondary loop, while a TCU controls the primary loop.

#### **External Cascade Configuration Parameters**

| "OPEr"                     | <ul> <li>Select ratio mode</li> </ul>                 |
|----------------------------|-------------------------------------------------------|
| "root"                     | - Select second input square root linearization       |
| "dPt2"                     | <ul> <li>Select second input decimal point</li> </ul> |
| "dSP1" 入                   |                                                       |
| "INP1"                     | Enter expline units of eccond input                   |
| "dSP2"                     |                                                       |
| "INP2" 🖌                   |                                                       |
| "SPtr"                     | <ul> <li>Local/Remote select options</li> </ul>       |
| External Cascade Operation | al Parameters                                         |
| "rtio"                     | Bomoto actaciat ratio                                 |

#### "rtio" - Remote setpoint ratio

```
"bIAS" - Remote setpoint bias
```



628

F

### www.redlion.net

#### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

#### CONTROLLER PROGRAMMING **Configuration 3, Parameter lock-outs** "SP Select degree of setpoint access The PCU has been designed to reduce the operator interaction with the "OP" Select degree of power access controller while still maintaining a high degree of control accuracy and user "dEv" Enable deviation display \* flexibility. Front Panel Program Disable allows all of the controller's set-ups to be "IN-2" Enable second input display \* locked-out from further operator intervention after the initial parameter set-up. "bdSP Enable blank display The programming of the controller is divided into four sections: "CodE" Enter parameter access code "Pld" Select degree of PID access Unprotected Parameter Mode "Pld2" Select degree of secondary PID access \* Configuration Parameter Mode "rtbS" Select degree of ratio/bias access \* Protected Parameter Mode "AL" Select degree of alarm access \* "ALrS' Enable alarm reset access \* Hidden Function Mode "SPSL Enable local/remote setpoint selection \* These four programming modes allow the controller to adapt to any required Enable auto/manual mode selection "trnF' user-interface level. "tUNE" Enable auto-tune invocation Configuration 4, Alarms \* **UNPROTECTED PARAMETER MODE \*** Select operation mode of alarm #1 "Act1' The unprotected parameter mode is accessible when program disable is "rSt1" Select reset mode of alarm #1 inactive or when the proper access code number from the protected mode is "Stb1" Enable activation delay of alarm #1 entered. The configuration parameter modes can be accessed only from this mode. "AL-1" Enter value for alarm #1 "Act2' Select operation mode of alarm #2 'SF Enter Setpoint "OP" "rSt2" Select reset mode of alarm #2 Enter output power "Prop" Enter proportional band "Stb2 Enable activation delay of alarm #2 "Intt" Enter integral time "AL-2" Enter value for alarm #2 "AHYS' Enter hysteresis value for both alarms "dErt" Enter derivative time "rtio" Enter Remote Setpoint ratio value Configuration 5, Secondary Output \* "bIAS" Enter Remote Setpoint bias value Enter time proportioning cycle time CYC2 "SP-2 View internal cascade secondary setpoint "GAN2' Enter relative gain demand "db-2" - Enter deadband or overlap - Enter internal cascade, secondary "Pb-2" proportional band Configuration 6, Serial Communications \* "It-2" - Enter internal cascade, secondary integral "bAUd" Select baud rate time "PArb" Select parity bit "dt-2" Enter internal cascade, secondary derivative "Addr" Enter unit address number time Select abbreviated or full mnemonic "Abrv "AI -1" Enter value for alarm #1 transmissions "AL-2" Enter value for alarm #2 "PrAt" Enter automatic print rate "CNFP" Select basic configuration mode "PoPt" - Select parameters to be included in print-out "Fnd" Return to normal display mode Configuration 7, Second Input \* **CONFIGURATION PARAMETER MODE** "OPEr' Select remote setpoint or internal cascade mode The configuration parameter mode allows the operator to set up the basic "root" Select second input square root linearization requirements of the controller. It is divided into sections which group together "dPt2 Select second input decimal point related programming steps, such as inputs, outputs, alarms, etc. Upon completion "dSP1" of each section, the program returns to the configuration selection stage "INP1" Entering scaling parameters of second input "dSP2' allowing the user to return to the normal display mode. "INP2 "SPtr" - Enter local/remote select options "OPd2" Enter Secondary output control dampening **Configuration 1, Inputs** "tYPE Select input signal type Configuration 8, Motorized Valve Positioner \* Select square root linearization of main "root" Position mode: "VPS1" Enter or measure valve closed position input \* "VPS2" Enter or measure valve open position "dCPt" Select scaled display decimal point position "VUdt" Enter valve update time Enter rounding increment and trailing zeroes "rnd" "VPdb' Enter valve control deadband for scaled display "VFAL" - Enter valve fail detect time "FLtr" Select level of input filtering Velocity mode: "VUdt" Enter valve update time "dSP1"

"INP1"

"dSP2"

"INP2"

"SPLO

"SPHI"

"SPrP

"InPt"

CYCt"

"OPAC

"OPLO

"OPHI"

"OPFL"

"OPdP"

"CHYS"

"ANAS"

"ANLO"

"ANHI"

"ANdb"

"ANUt"

"tcod"

**Configuration 2, Outputs** 

- Scale main input

Enter setpoint lower limit

Enter setpoint higher limit

Enter setpoint ramp rate

Select control action

Select user input function \*

Enter output power low limit

Enter output power high limit

Enter time proportioning cycle time

Enter signal overdrive power preset

Select linear DC output assignment \*

Enter linear DC output update time

Enter linear DC output low scaling value \*

Enter linear DC output high scaling value \*

Enter linear DC output control deadband \*

Enter output control dampening

Enter ON/OFF control hysteresis

Select auto-tuning dampening

#### **HIDDEN FUNCTION MODE \***

"VOPt'

"VCI t"

"VOnt"

The hidden function mode is accessible from the normal operating mode. The four functions in this mode may be locked-out individually in configuration 3 parameter lock-out section.

| "SPSL" | <ul> <li>Select Local/Remote Setpoint</li> </ul> |
|--------|--------------------------------------------------|
| "trnF" | - Transfer between automatic (PID) control       |
|        | and manual control                               |
| "tUNE" | <ul> <li>Invoke/cancel PID Auto-tune</li> </ul>  |
| "ALrS" | <ul> <li>Reset latched alarms</li> </ul>         |

Enter valve open time

Enter valve close time

(minimum on time)

Enter valve control deadband

\* These parameters may not appear due to option configuration or other programming.

#### **PROTECTED PARAMETERS MODE \***

The protected parameters mode is enabled when program disable is active. This mode prevents access to the configuration modes without the proper access code number. Only the parameters that are selected in the configuration 3 parameter lock-out section can be accessed

| ouron oun | ce accessea.                                                                |
|-----------|-----------------------------------------------------------------------------|
| "ProP"    | <ul> <li>Enter Proportional band</li> </ul>                                 |
| "Intt"    | <ul> <li>Enter integral time</li> </ul>                                     |
| "dErt"    | <ul> <li>Enter derivative time</li> </ul>                                   |
| "rtio"    | <ul> <li>Enter remote setpoint ratio value</li> </ul>                       |
| "bIAS"    | <ul> <li>Enter remote setpoint bias value</li> </ul>                        |
| "SP-2"    | - Enter internal cascade, secondary setpoint                                |
| "Pb-2"    | <ul> <li>Enter internal cascade, secondary<br/>proportional band</li> </ul> |
| "lt-2"    | <ul> <li>Enter internal cascade, secondary integral<br/>time</li> </ul>     |
| "dt-2"    | <ul> <li>Enter internal cascade, secondary derivative<br/>time</li> </ul>   |

"AL-1" - Enter value for alarm #1 "AL-2"

'CodE'

- Enter value for alarm #2
- Enter access value to unprotected
- parameters & configuration parameters
- \* These parameters may not appear due to option configuration or other programming.

120VAC

В

с С

0

RELAY OR

TRIAC

DEVICE

LOAD

POWER

## **OUTPUT MODULES**



#### Relay:

Type: Form-C (Form-A with some models. See ordering information.) Rating: 5 amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120 VAC (inductive) maximum.

Life Expectancy: 100,000 cycles at maximum load rating.

(Decreasing load and/or increasing cycle time, increases life expectancy).



Logic/SSR Drive: Can drive multiple SSR Power Units. Type: Non-isolated switched DC, 12 VDC typical Drive: 45 mA maximum.



## APPLICATION

A chemical company would like to maintain the level of an acid solution tank to insure constant availability for their process. They have chosen a PCU controller which has a continuous level probe with a 4 to 20 mA output proportional to tank level, connected to the input terminals. The tank is filled by controlling the position of a proportional control valve. The control valve is controlled by a 3 to 15 PSI air signal.

The PCU uses the level control input as its feedback. The 4 to 20 mA input signal is scaled so that 4 mA equals 0% and 20 mA equals 100%

The 4 to 20 mA output of the PCU is taken to an I/P converter to convert the 4 to 20 mA output to a 3 to 15 PSI signal for the control valve. The relay outputs of the PCU are used for high and low level alarms.

#### Max. Load Current: 1 ampere @ 35°C 0.75 ampere @ 50°C Min. Load Current: 10 mA Off State Leakage Current: 7 mA max. @ 60 Hz

Type: Isolated, Zero Crossing Detection

Voltage: 120/240 VAC

TRIAC MODULE

ISOLATED

1 AMP

AT

120/240VAC

Rating:

Triac

DO NOT CONNECT

Operating Frequency: 20 to 400 Hz Protection: Internal Transient Snubber, Fused

## www.redlion.net

## **ORDERING INFORMATION**

## MODELS WITHOUT SECOND INPUT OPTIONS

| Type 4X/IP65<br>BEZEL | 4 to 20 mA<br>ANALOG OUTPUT | 0 to 10 VDC<br>ANALOG OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER |
|-----------------------|-----------------------------|------------------------------|------------------|-------------------|-----------|-------------|
| NO                    | YES                         | NO                           | NO               | NO                | NO        | PCU01000    |
| NO                    | YES                         | NO                           | 2                | NO                | NO        | PCU01001    |
| YES                   | NO                          | NO                           | NO               | NO                | NO        | PCU10000    |
| YES                   | NO                          | NO                           | 2                | NO                | NO        | PCU10001    |
| YES                   | NO                          | NO                           | 1                | YES               | NO        | PCU10002    |
| YES                   | YES                         | NO                           | NO               | NO                | NO        | PCU11000    |
| YES                   | YES                         | NO                           | 2                | NO                | NO        | PCU11001    |
| YES                   | YES                         | NO                           | 1                | YES               | NO        | PCU11002    |
| YES                   | YES                         | NO                           | 2                | NO                | YES       | PCU11004    |
| YES                   | YES                         | NO                           | 1                | YES               | YES       | PCU11005    |
| YES                   | NO                          | YES                          | 2                | NO                | NO        | PCU12001    |
| YES                   | NO                          | YES                          | 2                | NO                | YES       | PCU12004    |
| YES                   | NO                          | YES                          | 1                | YES               | YES       | PCU12005    |

These models have dual alarm outputs, or single alarm with secondary outputs, with shared common terminals (Form A Type). As a result, these outputs should be fitted with the same type of output module. The main output (OP1) may be fitted with any type of output module.

#### SECOND ANALOG INPUT MODELS (RSP)

| Type 4X/IP65<br>BEZEL                                                                                                                                                                                                                                                          | 4 to 20 mA<br>ANALOG<br>OUTPUT | 0 to 10 VDC<br>ANALOG<br>OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------------------|-------------------|-----------|-------------|--|
| YES                                                                                                                                                                                                                                                                            | NO                             | NO                              | 2                | NO                | YES       | PCU10104    |  |
| YES                                                                                                                                                                                                                                                                            | YES                            | NO                              | 2                | NO                | NO        | PCU11108    |  |
| YES                                                                                                                                                                                                                                                                            | NO                             | YES                             | 2                | NO                | NO        | PCU12108    |  |
| These models have dual alarm outputs, or single alarm with secondary outputs, with shared common terminals (Form A Type). As a result, these outputs should be fitted with the same type of output module. The main output (OP1) may be fitted with any type of output module. |                                |                                 |                  |                   |           |             |  |

## MOTORIZED VALVE POSITIONER MODELS (MVP)

| Type 4X/IP65<br>BEZEL | 4 to 20 mA<br>ANALOG<br>OUTPUT | 0 to 10 VDC<br>ANALOG<br>OUTPUT | ALARM<br>OUTPUTS | COOLING<br>OUTPUT | RS485 COM | PART NUMBER |
|-----------------------|--------------------------------|---------------------------------|------------------|-------------------|-----------|-------------|
| YES                   | NO                             | NO                              | 1                | NO                | YES       | PCU10307    |
| YES                   | YES                            | NO                              | 1                | NO                | NO        | PCU11306    |
| YES                   | NO                             | YES                             | 1                | NO                | NO        | PCU12306    |

#### ACCESSORIES

| DESCRIPTION                          | PART NUMBER |
|--------------------------------------|-------------|
| Relay Module                         | OMD00000    |
| Triac Module                         | OMD00001    |
| Logic/SSR Drive Module               | OMD00003    |
| 45 A Single Phase Panel Mount SSR    | RLY50000    |
| 25 A Single Phase DIN Rail Mount SSR | RLY60000    |
| 40 A Single Phase DIN Rail Mount SSR | RLY6A000    |
| 25 A Three Phase DIN Rail Mount SSR  | RLY70000    |

*Note:* Output Modules are NOT supplied with the controller. When specifying the controller, be sure to purchase the appropriate output module for the Main Control Output and if necessary, the alarm output(s), the secondary output, and valve positioner outputs.

The Logic/SSR Drive Module is a switched DC source, intended to drive the DC input of an SSR power unit. It should never be connected to line voltage.

All modules are packaged separately and must be installed by the user.

## **MODEL PSC - PROCESS SETPOINT CONTROLLER**





- SETPOINT PROGRAM CONTROLLER FOR TIME VS. PROCESS (RAMP/SOAK) AND SPECIAL BATCH/RECIPE APPLICATIONS
- ADVANCED PROGRAM PROFILING IN A 1/8 DIN PACKAGE
- ON-LINE MONITORING AND CONTROL OF PROGRAM STATUS, TIME, AND SETPOINT VALUE (Profile Run, Pause, Stop, Advance, Modify Time, & Setpoint Value)

- AUTOMATIC PROGRAM DELAY FOR PROFILE CONFORMITY, PLUS PROGRAM LINKING, REPEATING AND AUTO POWER-ON FUNCTIONS FOR ENHANCED CAPABILITY
- DUAL EVENT OUTPUTS FOR TIMED ACTIVATION OF PROCESS EQUIPMENT SUCH AS STIRRERS, FANS, HEATERS, ETC. (Uses Alarm Output Channels)
- FOUR SETPOINT & PID PARAMETER SETS FOR QUICK RECALL OF SETPOINTS AND/OR GAIN VALUES DURING BATCH OR PROCESS CHANGEOVER
- PROGRAMMABLE USER INPUT FOR CONTROLLER AND SETPOINT PROGRAM CONTROL
- 100 MSEC SAMPLING PERIOD WITH 0.15% ACCURACY
- ON DEMAND AUTO-TUNING OF PID CONTROL SETTINGS
- DUAL LED DISPLAYS FOR SIMULTANEOUS INDICATION OF
   PROCESS AND SETPOINT OR PROCESS AND PROFILE STATUS
- ACCEPTS EITHER 0 to 10 VDC OR 4 to 20 mA DC INPUT SIGNAL
- FIELD REPLACEABLE AND INTERCHANGEABLE OUTPUT MODULES (Relay, Logic/SSR drive, and Triac)
- OPTIONAL DUAL ALARM OUTPUTS (Uses Output Modules)
- OPTIONAL SECONDARY OUTPUT (Uses Output Module)
- OPTIONAL LINEAR 4 to 20 mA OR 0 to 10 VDC OUTPUT FOR CONTROL OR PROCESS RE-TRANSMISSION
- OPTIONAL RS485 SERIAL COMMUNICATIONS INTERFACE
- OPTIONAL TYPE 4X/IP65 SEALED FRONT BEZEL

## DESCRIPTION

The PSC is a setpoint controller suitable for time vs. process control applications. The PSC Controller accepts either a 0 to 10 VDC or a 4 to 20 mA DC input signal, precisely scales the process signal, according to programmable scaling points, and provides an accurate output control signal (time proportional or linear) to maintain a process at the desired control point. A comprehensive set of easy to use steps allows the controller to satisfy various applications. The user input can be programmed to perform a variety of controller functions.

Dual 4-digit displays allow viewing of the measured process value and setpoint or the process and profile status simultaneously. Front panel indicators inform the operator of controller status and output states. Replaceable output modules (Relay, logic/SSR drive or Triac) can be fitted to the main control output, alarm output(s) or timed event output(s), and secondary output.

The PSC has been designed to simplify the set-up and operation of a controlled setpoint profile program. The setpoint program is easily entered and controlled through the front panel. Full display capabilities keep the operator informed of the process value, profile status, output states, and setpoint value.

The controller can operate in the standard PID control mode for both Output 1 and Output 2 with on-demand auto-tune which establishes the PID gain set. The PID gain set can be fine tuned by the operator at any time or may be locked from further modification. The unit can be transferred to the manual control mode providing the operator with direct control of the output.

The PSC features four programs or profile recipes, each with up to eight ramp/soak segments, which can be easily stored and executed at any time. Longer profiles can be achieved by linking one or more profiles together, creating a single profile of up to 32 ramp/soak segments. Process profile conformity is assured during either soak (hold) phases or both ramp and hold phases by an adjustable error band parameter. The program repeat function cycles the profile either continuously or a set number of times. Power-on options automatically re-start, stop, or resume a running profile. The profile can be controlled via the front panel buttons, the user input, or the optional serial communications port.



#### www.redlion.net

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **DESCRIPTION** (Cont'd)

Four control points, each having a setpoint and PID parameter set, are available for instant front panel implementation during batch changeover, or other process conditions. A control point may have its PID gain set values disabled when implementing the control point.

The optional RS485 multidrop serial communications interface provides the capability of two-way communication between a PSC unit and other compatible equipment such as a printer, a programmable controller, or a host computer. In multipoint applications the address number of each unit on the line can be programmed from 0 to 99. Up to thirty-two units can be installed on a single pair of wires. The Setpoint value, % Output Power, Setpoint Ramp Rate, etc. can be interrogated or changed by sending the proper command code via serial communications. Alarm output(s) may also be reset via the serial communications interface option.

Optional alarm output(s) may be configured to operate as a timed event output or as a standard alarm output. As an alarm output it may be configured to activate according to a variety of actions (Absolute HI or LO, Deviation HI or LO, or Band IN or OUT) with adjustable hysteresis. Also, a standby feature suppresses the output(s) on power-up until the process stabilizes outside the alarm region. Timed event output(s) allow the controller to activate other equipment while a programmed profile is running. Each profile can define up to 16 event states (phases), for each output(s).

An optional secondary output is available for processes that require cooling which provides increased control accuracy and response.

The optional linear 4 to 20 mA or 0 to 10 VDC output signal is available to interface with final actuators, chart recorders, indicators, or other controllers. The output signal can be digitally scaled and selected to transmit one of the following:

% Output Power Measurement Value Measurement Value Deviation Setpoint Value

An optional Type 4X/IP65 rated bezel is available for washdown and/or dirty environments, when properly installed. Modern surface-mount technology, extensive testing, plus high immunity to noise interference, makes the controller extremely reliable in industrial environments.

## SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the PSC to directly command motors, valves, or other actuators not equipped with safeguards. To do so, can be potentially harmful to persons or equipment in the event of a fault to the unit. An independent and redundant process limit indicator with alarm outputs is strongly recommended. The indicators should have input sensors and AC power feeds independent from other equipment.

## SPECIFICATIONS

1. DISPLAY: Dual 4-digit

Upper Process Display: 0.4" (10.2 mm) Red LED Lower Auxiliary Display: 0.3" (7.6 mm) Green LED

**Display Messages:** 

- "OLOL" "ULUL" Appears when measurement exceeds +105% of input range.
  - Appears when measurement exceeds -5% of input range. Appears when measurement exceeds "OLOL" & "ULUL"
- "SENS" range
  - Appears when display value exceeds + display range.
  - Appears when display value exceeds display range.

2. POWER: Switch selectable 115/230 VAC (+10%, -15%) no observable line variation effect, 48 to 62 Hz, 10 VA.

## 3. ANNUNCIATORS:

## **6 LED Backlight Status Indicators:**

- %PW Lower auxiliary display shows power output in (%).
- PGM Lower auxiliary display shows profile status or profile time
- remaining. MAN
- Controller is in manual mode. OP1 -Main control output is active.
- AL1 Alarm #1 is active.
- AL2 Alarm #2 is active (for Dual Alarm Option).
- OP2 Secondary output is active (for Secondary Option).
- 4. CONTROLS: Four front panel push buttons for modifying and setup of controller functions and one external input.
- 5. SETPOINT PROFILE:

Profiles: 4

Segments Per Profile: 8 ramp/hold segments (linkable to 32 segments). Ramp Rate: 0.1 to 999.9 units/minute or no ramp.

Hold Time: Off or from 0.1 to 999.9 minutes, can be extended to 500 hours by linking.

Error Band Conformity: Off or from 1 to 9999 units deviation, + value for

hold phases, - value for both ramp and hold phases. Power-On Modes: Stop, auto-start, or profile resume. Start Mode: Ramps from process value. Program Auto Cycle: 1 to 249, or continuous. Event Outputs: 2, time activated with profile [uses Alarm output(s)]. Control: Front panel buttons, user input, or RS485 communications. 6. CONTROL POINTS: Setpoints: 4 PID gain sets: 4

Control: Front panel buttons or user input.

- 7. SIGNAL INPUT:
- Sample Period: 100 msec

Response Time: 300 msec (to within 99% of final value w/step input).

- Signal Overdrive Threshold:
- 10 V Range: 13 V
- 20 mA Range: 26 mA
- Signal Overdrive Response:
  - Main Control Output: Programmable preset output.
  - **Display:** "SENS"
  - DC Linear: Programmable preset output.
- Normal Mode Rejection: 40 db @ 50/60 Hz (improves with increased digital filtering).
- Common Mode Rejection: 100 db, DC to 50/60 Hz.

#### 8. RANGE AND ACCURACY:

| Signal Range | Accuracy (% of<br>Unscaled Reading) | Max. Input | Input<br>Impedance | Resolution |
|--------------|-------------------------------------|------------|--------------------|------------|
| 0 to 10 VDC  | ±(0.15% + 3 mV)                     | 300 VDC    | 1M Ω               | 10 mV      |
| 0 to 20 mADC | ±(0.15% + 6 µA)                     | 200 mADC   | 10 Ω               | 10 µA      |

#### 9. OUTPUT MODULES (For All Output Channels):

(Optional - Must be ordered separately)

- **Relay:** 
  - Type: Form-C (Form-A with RS485 option) Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @
  - 120 VAC (inductive load).
- Life Expectancy: 100,000 cycles at max. rating. (Decreasing load and/or increasing cycle time, increases life expectancy).
- Logic/SSR Drive: Can drive multiple SSR Power Units. Type: Non-isolated switched DC, 12 VDC typical Drive: 45 mA max.

## Triac:

- Type: Isolated, Zero Crossing Detection.
- Ratings: Voltage: 120/240 VAC
  - Max Load Current: 1 AMP @ 35°C
    - 0.75 AMP @ 50°C
- Min Load Current: 10 mA Off State Leakage Current: 7 mA max. @ 60 Hz
- Operating Frequency: 20 to 500 Hz
- Protection: Internal Transient Snubber, Fused.
- 10. MAIN CONTROL OUTPUT:

Control: PID or ON/OFF.

- Output: Time proportioning or linear DC.
- Hardware: Plug-in, replaceable output modules.
- Cycle time: Programmable.
- Auto-tune: When performed, sets proportional band, integral time, and derivative time values.
- Probe Break Action: Programmable.
- 11. SECONDARY OUTPUT (Optional):
  - Control: PID or ON/OFF.
  - Output: Time proportioning or linear DC
  - Hardware: Plug-in, replaceable output modules.
  - Cycle time: Programmable.
  - Proportional Gain Adjust: Programmable.
  - DeadBand Overlap: Programmable.
- 12. LINEAR DC DRIVE (Optional): With digital scale and offset, programmable deadband and update time.
  - 4 to 20 mA:
  - Resolution: 1 part in 3500 typ.
  - Accuracy:  $\pm (0.1\% \text{ of reading} + 25 \ \mu A)$ .
  - **Compliance:** 10 V (500  $\Omega$  max. loop impedance).
  - 0 to 10 VDC:
    - Resolution: 1 part in 3500 typ.
    - Accuracy:  $\pm (0.1\% \text{ of reading} + 35 \text{ mV}).$
- Min. Load Resistance: 10 K Ω (1 mA max.) Source: % output power, setpoint, deviation, or process value. (Available for OP1 or OP2, but not both.)

1-717-767-6511

## SPECIFICATIONS (Cont'd)

13. ALARMS (Optional): Hardware: Plug-in, replaceable output module Modes: Absolute high acting Absolute low acting Deviation high acting Deviation low acting Inside band acting Outside band acting Timed event output(s) Reset Action: Programmable; automatic or latched. Delay: Programmable; enable or disable. Hysteresis: Programmable. Annunciator: LED backlight for "AL1", "AL2", (Alarm #2 not available with secondary output). 14. SERIAL COMMUNICATIONS (Optional): Type: RS485 Multi-point, Balanced Interface. **Communication Format:** Baud Rate: Programmable from 300 to 9600. Parity: Programmable for odd, even, or no parity. Frame: 1 start bit, 7 data bits, 1 or no parity bit, 1 stop bit. Unit Address: Programmable from 0-99, max. of 32 units per line. Transmit Delay: 100 msec min., 200 msec max RS485 Common: Isolated from signal input common. Auto Print Time: Off to 9999 seconds between print-outs. 15. USER INPUT:  $V_{IN MAX} = 5.25 \text{ VDC}$ ,  $V_{IL} = 0.85 \text{ V}_{MAX}$ ;  $V_{IH} = 2.0 \text{ V}_{MIN}$ Response time: 100 msec max. Functions: Program Lock Print Request Integral Action Lock Load Control Point Auto/Manual Transfer Run/Hold Profile 1 Setpoint Ramp Select Run/Stop Profile 1 Reset Alarms 16. ENVIRONMENTAL CONDITIONS: **Operating Temperature Range:** 0° to 50°C Storage Temperature Range: -40° to 80°C Vibration to IEC 68-2-6: Operational 5-150 Hz, 1 g Shock to IEC 68-2-27: Operational 5 g Span Drift: 90 ppm/°C Zero Drift: 0 to 10 VDC Range - 0.2 mV/°C 4 to 20 mA DC Range - 0.5 µA/°C Relative Humidity: Less than 85% RH (non-condensing) Altitude: Up to 2000 meters 17. CERTIFICATIONS AND COMPLIANCES: **CE** Approved EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A EN 61010-1 **RoHS** Compliant UL Recognized Component: File #E156876 UL Listed: File #E137808 Type 2 Enclosure rating (Face only) for PSC0 Type 4X/IP65 Enclosure rating (Face only) for PSC1 Refer to EMC Installation Guidelines section of the manual for additional information. 18. CONNECTION: Jaw-type terminal block. 19. CONSTRUCTION: Front Panel: Flame and scratch resistant tinted plastic. Case: High impact black plastic. (Mounting collar included). Type 4X/IP65 model only: Sealed bezel utilizing 2 captive mounting screws (panel gasket included). This unit is rated for Type 4X/IP65 indoor use.

Installation Category II, Pollution Degree 2.

20. WEIGHT: 1.3 lbs. (0.6 kgs)

## **BASIC OPERATION**

The PSC controls the process profile of a system by measuring the input signal, comparing it to the setpoint value of the profile in progress, and calculates the new output power value by use of a modified PID control algorithm. The unit controls the system with the new output power value so the process value conforms to the profile. The PID control algorithm incorporates features which provide high control accuracy and low disturbance overshoot.

## FRONT PANEL FEATURES

In the normal display mode, the unit will display the scaled process value in the upper display. One of five other parameters may be selected for viewing in the lower display:

Target setpoint % Output Power Profile Status Profile phase time remaining Blank the lower display.

The profile status display indicates the active program number with the current ramp or hold phase of the program. The profile can be started, stopped, advanced, etc., from the front panel when the profile status display is viewed, if not locked from access.

The phase time remaining display, shows the time remaining in a ramp or hold phase and, if not locked from access, may be changed on-line to effect temporary changes to the profile. Additionally, the target setpoint and % output power (manual mode only) may also be changed on-line or locked from operator access.

From the normal operating mode, parameters are selected by use of the PAR button and modified by use of the UP and DOWN buttons. Parameters are then entered by the PAR button, which advances the user to the next parameter. Pressing the DSP button immediately returns the controller to the normal operating mode from any parameter module. The controller configuration and parameter settings are stored in an internal E<sup>2</sup>PROM device.

## HARDWARE FEATURES

The fast 100 msec input sampling rate provides quick controller response to a process disturbance for excellent process control. Measurement accuracy of 0.15% provides closer process control conforming to the desired control setpoint value.

The unit will accept either a 0 to 10 VDC or a 4 to 20 mADC input signal. The A.C. input power is switch selectable, allowing the unit to operate from either 115 VAC or 230 VAC. Since the controller is serviceable from the front of the panel, the output modules may be easily changed or replaced without disturbing the wiring behind the panel and NO re-programming is required. The standard model simply requires pressing a latch to remove the unit. The Type 4X/IP65 rated model utilizes two panel securing screws and a neoprene gasket to guarantee a water tight seal, when properly installed.

Low-drift, highly stable circuit design ensures years of reliable and accurate process control. The recommended two year re-calibration interval is easily accomplished via the programming menu.

#### Type 4X/IP65 BEZEL



## CONFIGURATION MODE

The configuration modules serve to provide the basic set-ups required by the controller. It is divided into sections which group together related programming steps, such as inputs, outputs, alarms, etc. Upon completion of each section, the program returns to the configuration selection stage, which allows the user to return to the normal display mode, or advance to a later configuration stage.

## Configuration 1 Inputs

| Connyurat  |                                                                                        |
|------------|----------------------------------------------------------------------------------------|
| "tYPE"     | <ul> <li>Select current or voltage</li> </ul>                                          |
| "dCPt"     | <ul> <li>Select scaled display decimal point position</li> </ul>                       |
| "rnd"      | <ul> <li>Enter rounding increment and trailing zeros for scaled<br/>display</li> </ul> |
| "FLtr"     | <ul> <li>Select degree of input filtering</li> </ul>                                   |
| "dSP1"     | <ul> <li>Enter display reading for scaling point #1</li> </ul>                         |
| "INP1"     | <ul> <li>Key-in or apply signal level for scaling point #1</li> </ul>                  |
| "dSP2"     | <ul> <li>Enter display reading for scaling point #2</li> </ul>                         |
| "INP2"     | <ul> <li>Key-in or apply signal level for scaling point #2</li> </ul>                  |
| "SPLO"     | <ul> <li>Enter setpoint lower limit</li> </ul>                                         |
| "SPHI"     | <ul> <li>Enter setpoint higher limit</li> </ul>                                        |
| "SPrP"     | <ul> <li>Enter setpoint ramp rate</li> </ul>                                           |
| "InPt"     | <ul> <li>Select user input function</li> </ul>                                         |
| Configurat | ion 2, Outputs                                                                         |
| "CYCt"     | Enter time proportioning cycle time                                                    |
| "OPAC"     | Select control action                                                                  |
| "OPLO"     | Enter output power low limit                                                           |
| "OPHI"     | Enter output power high limit                                                          |
| "OPFL"     | Enter signal overdrive power preset                                                    |
| "CHYS"     | Enter ON/OFF control hysteresis                                                        |
| "tcod"     | Select auto-tuning damping                                                             |
| ANAS       | Select linear DC output assignment *                                                   |
| "ANLO"     | Enter linear DC low scaling value *                                                    |
|            | Enter linear DC high scaling value *                                                   |
| Configurat | ion 3, Parameter lock-outs                                                             |
| "SP"       | <ul> <li>Select degree of setpoint access</li> </ul>                                   |
| "OP"       | <ul> <li>Select degree of power access</li> </ul>                                      |
| "P-CS"     | <ul> <li>Select degree of profile status access</li> </ul>                             |
| "P-tr"     | <ul> <li>Select degree of phase time remaining access</li> </ul>                       |
| "bdSP"     | - Enable blank display                                                                 |
| "CodE"     | - Enter parameter access code                                                          |
| "PId"      | - Select degree of PID access                                                          |
| "AL"       | <ul> <li>Select degree of alarm access *</li> </ul>                                    |
| "ALrS"     | <ul> <li>Enable manual reset of alarms *</li> </ul>                                    |
| "CPAC"     | - Enable control point access                                                          |
| "PrAC"     | <ul> <li>Enable ramp/hold program access</li> </ul>                                    |
| "trnF"     | <ul> <li>Enable automatic/manual transfer</li> </ul>                                   |

"tUNE"

- Enable auto-tune invocation

\* These parameters may not appear due to option configuration or other programming.

## SETPOINT FEATURES

The controller's setpoint can be protected from out of range values, by programming the setpoint range limit values. Additionally, safeguards from inadvertent data entry can also be programmed.

The setpoint ramp feature ramps the setpoint value at start-up or any time a setpoint change is made, at a user programmable rate, independent of a programmed profile. This feature reduces shock to the process and also helps to minimize overshoot.

The active setpoint, which can be a running profile, may also be transmitted by the linear DC output for slave control loops.

Four control points are available which can be implemented at any time. Each control point is programmed independently, with each having a setpoint and a PID gain set value. With gain value changes, the output power control signal will not "bump" resulting in a smooth control transition.

## INPUT FEATURES

A programmable input filter can be used to stabilize readings from a process with varying or oscillating characteristics, helping to provide better process control.

Scaling points allow the controller to display in any engineering unit; flow, level, pressure temperature, etc. Scaling points are used in conjunction with the programmable rounding increment to stabilize a jittery or otherwise hard to read process signal for better indication.

A programmable User Input is available to control a variety of controller functions, such as profile control, auto/manual transfer, serial communication print requests, etc.

#### Configuration 4, Alarms \*

- Select operation mode of alarm #1 "Act 1"
- "rSt1" Select reset mode of alarm #1
- "Stb1" Enable activation delay of alarm #1
- "AL-1" - Enter value for alarm #1
- "Act2" Select operation mode of alarm #2
- "rSt2" Select reset mode of alarm #2
- "Stb2" Enable activation delay of alarm #2
- "AI -2' - Enter value for alarm #2
- "AHYS" - Enter hysteresis value for both alarms

## Configuration 5, Secondary Output \*

- Enter time proportioning cycle time "CYC2" "GAN2"
- Enter relative gain "db-2" - Enter deadband or overlap

#### Configuration 6, Serial Communications \*

- "bAUd" Select baud rate
- "PArb" Select parity bit
- Enter unit address number "Addr'
- "Ahrv" Select abbreviated or full mnemonic transmissions
- "PrAt" - Enter automatic print rate
- "PoPt" - Select parameters to be included in print-out

## **Configuration 7, Control Points**

- "CSEt" Select control point number for set-up 1, 2, 3, & 4 "SP-x" Enter setpoint value for selected control point
- "PID" Select if PID gain set to be loaded with setpoint
- "PB-x" Enter proportional band for selected control point \*
- "It-x" - Enter integral time for selected control point \*
- "dt-x" Enter derivative time for selected control point \*

#### **Configuration 8, Profiles**

| "PSEt" | <ul> <li>Select profile or event output for set-up 1, 2, 3, or 4</li> </ul> |
|--------|-----------------------------------------------------------------------------|
| "PnCC" | - Enter program-repeat cycle count for selected profile                     |
| "PnLN" | <ul> <li>Select link option for selected profile</li> </ul>                 |
| "PnSt" | - Enter power-down resume status for selected profile                       |
| "PnEb" | - Enter error band for process conformity for selected profile              |
| "Pnr1" | <ul> <li>Enter ramp rate 1 for selected profile *</li> </ul>                |
| "PnL1" | <ul> <li>Enter setpoint level 1 for selected profile *</li> </ul>           |
| "PnH1" | <ul> <li>Enter hold time 1 for selected profile *</li> </ul>                |
|        | -                                                                           |
|        | -                                                                           |
| "Pnr8" | <ul> <li>Enter ramp rate 8 for selected profile *</li> </ul>                |
| "PnL8" | <ul> <li>Enter setpoint level 8 for selected profile *</li> </ul>           |
| "PnH8" | <ul> <li>Enter hold time 8 for selected profile *</li> </ul>                |
| "Pn 1" | <ul> <li>Select event outputs at phase 1 for selected profile *</li> </ul>  |
|        | -                                                                           |
|        | -                                                                           |
| "Pn16" | <ul> <li>Select event outputs at phase 16 for selected profile *</li> </ul> |

#### **Configuration 9, Factory Service Operations**

(Detailed in the operator's manual)

## OUTPUT FEATURES

Programmable output power limits provide protection for processes where too much power can cause damage. Automatic signal overdrive detection can be used to define the state of the output channels, when this situation occurs. With adjustable time proportioning-cycle time and programmable D.C. Linear output, the controller can satisfy a wide variety of output requirements.

During execution of a profile, two independent timed event outputs are available to control or signal other equipment. The event outputs use the alarm channels.

The RS485 Communication option allows the user to access various controller parameters such as the setpoint, % output power, % proportional band, etc. The controller may be setup to transmit various parameters at a programmable automatic print rate.

## AUTO-TUNE

The model PSC has an auto-tune feature which, on demand, automatically determines the PID control parameters for a particular process. After completion of auto-tune, the PID parameters are automatically optimized for that process and loaded into nonvolatile memory. The operator may view and modify the parameters as desired.

Auto-tune may be invoked at start-up, while ramping, or at setpoint, depending on the process requirements. A programmable auto-tune damping factor produces various levels of process control and response characteristics.

## PROFILE PROGRAMMING

Profiles are programmed independently of each other and are separate from the configuration of other controller parameters. Each profile has parameters for error band (profile conformity), linking, auto-start and program repeat cycles. Profiles may be altered during execution, so changes take effect as the profile advances.

1-717-767-6511

## **CONTROLLER PROGRAMMING**

The model PSC has been designed to reduce the operator interaction with the controller while still maintaining a high degree of control accuracy and user flexibility. Front panel program disable allows all of the controller's set-ups to be locked-out from further operator intervention after the initial parameter set-up.

The programming of the controller is divided into four sections:

Hidden Mode Protected Mode Unprotected Mode Configuration Mode

These four programming modes allow the controller to adapt to any required user-interface level.

## UNPROTECTED PARAMETER MODE

The unprotected mode is accessible when program disable is inactive or when the proper access code number from the protected mode is entered. Only from this mode can the configuration modes be accessed.

- "SP" Enter setpoint \*
- "OPOF" Enter %output power offset \* "OP" - Enter output power \*
- "OP" Enter output power \* "ProP" - Enter proportional band
- "Intt" Enter integral time \*
- "dErt" Enter derivative time \*
- "AL-1" Enter value for alarm #1 \*
- "AL-2" Enter value for alarm #2 \*
- "CNFP" Select basic configuration module
- "End" Return to normal display mode

## **PROTECTED PARAMETER MODE \***

The protected mode is accessible when program disable is active, also this mode prevents access to the configuration modes without the proper access code number. Only the parameters that are selected in the configuration 3 parameter lock-outs section can be accessed.

- "ProP" Enter proportional band
- "Intt" Enter integral time
- "dErt" Enter derivative time
- "AL-1" Enter value for alarm #1
- "AL-2" Enter value for alarm #2
- "CodE" Enter access value to unprotected mode
- These parameters may not appear due to option configuration or other programming.

## **HIDDEN FUNCTIONS MODE \***

The hidden mode is accessible from the normal operating mode by holding the PAR button for 3 seconds. The five functions in this mode may be locked-out individually in configuration 3 parameter lock-outs section.

- " CP" Invoke control point x
- "Prun" Control ramp/hold profile state
- "trnF" Transfer between automatic (PID) control and Manual control
- "tUNE" Invoke/Cancel PID auto-tune
- "ALrS" Reset latched alarms
- \* These parameters may not appear due to option configuration or other programming.

## **OUTPUT VARIATIONS WITHOUT RS485 OPTION**

The Dual Alarm or the Secondary with Alarm output, without the RS485 option, has independent outputs. Therefore, the secondary output and/or alarm output(*s*) can be installed with any combination of output modules.



## **OUTPUT VARIATIONS WITH RS485 OPTION**

The Dual Alarm or the Secondary with Alarm output, with RS485 option, does not have independent outputs. In this case, the secondary output and/or alarm output(*s*) must have the same type of output modules installed since they share the common terminal.



## **OUTPUT MODULES**

Units equipped with RS485 option must have the Dual Alarm or Secondary w/alarm options fitted with the same type of output modules. The controller's main output (OP1) can be fitted with any output module. Output modules are shipped separately and must be installed by the user.



#### **Relay:**

- Type: Form -C (Form-A with RS485 option only)
- Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120 VAC (inductive).
- Life Expectancy: 100,000 cycles at maximum load rating.
- (Decreasing load and/or increasing cycle time, increases life expectancy). LOGIC/SSR DRIVE



#### Logic/SSR Drive: can drive multiple SSR Power Units. Type: Non-isolated switched DC, 12 VDC typical. Drive: 45 mA max.



Triac:

Type: Isolated, Zero Crossing Detection. Rating: Voltage: 120/240 VAC. Max. Load Current: 1 Amp @ 35°C

0.75 Amp @ 50°C Min. Load Current: 10 mA

iff State Leakage Current: 7 m A ma

Off State Leakage Current: 7 mA max @ 60 Hz. Operating Frequency: 20 to 500 Hz.

Protection: Internal Transient Snubber, Fused

## **APPLICATION**

at staged levels over specific time periods during start-up. The PSC unit is installed to meet this requirement.

start the process. Alarm output 2 signals the operator if the PH level deviates outside the running profile. The error band (profile conformance) is programmed to the desired value to prevent the PH level from deviating from the programmed setpoint profile. Timed event output 1 signals that the profile process is complete.



P1 4

P1 3

I

P1 1

Т

EVENT

OUTPUT 1

1

P1 2

T

P1 7

ON

P1 5

Т

## **ORDERING INFORMATION**

| MODEL NO                                                                                                                                                                                                                                                               | DESCRIPTION                                    | Type 4X/IP65<br>BEZEL | 4 to 20 mA<br>ANALOG<br>OUTPUT | 0 to 10 VDC<br>ANALOG<br>OUTPUT | ALARM<br>OUTPUTS | SECONDARY<br>OUTPUT | RS485 COM | PART<br>NUMBER |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------------------------------|---------------------------------|------------------|---------------------|-----------|----------------|
|                                                                                                                                                                                                                                                                        | Drooppo                                        | YES                   | YES                            | NO                              | 2                | NO                  | NO        | PSC11001       |
|                                                                                                                                                                                                                                                                        |                                                | YES                   | YES                            | NO                              | 2                | NO                  | YES       | PSC11004       |
| PSC                                                                                                                                                                                                                                                                    | Setpoint                                       | YES                   | YES                            | NO                              | 1                | YES                 | YES       | PSC11005       |
|                                                                                                                                                                                                                                                                        | Controller                                     | YES                   | NO                             | YES                             | 2                | NO                  | YES       | PSC12004       |
|                                                                                                                                                                                                                                                                        |                                                | YES                   | NO                             | YES                             | 1                | YES                 | YES       | PSC12005       |
|                                                                                                                                                                                                                                                                        | Relay Module                                   |                       |                                |                                 |                  |                     |           | OMD00000       |
|                                                                                                                                                                                                                                                                        | Triac Module                                   |                       |                                |                                 |                  |                     | OMD00001  |                |
|                                                                                                                                                                                                                                                                        | Logic/SSR Drive Module                         |                       |                                |                                 |                  |                     | OMD00003  |                |
| PMK5                                                                                                                                                                                                                                                                   | 5 Panel Mount Adapter Kit (1/4 DIN to 1/8 DIN) |                       |                                |                                 |                  |                     | PMK50000  |                |
|                                                                                                                                                                                                                                                                        | 45 A Single Phase Panel Mount SSR              |                       |                                |                                 |                  |                     |           | RLY50000       |
| 511                                                                                                                                                                                                                                                                    | 25 A Single Phase DIN Rail Mount SSR           |                       |                                |                                 |                  |                     |           | RLY60000       |
| RLY                                                                                                                                                                                                                                                                    | 40 A Single Phase DIN Rail Mount SSR           |                       |                                |                                 |                  |                     |           |                |
|                                                                                                                                                                                                                                                                        | 25 A Three Phase DIN Rail Mount SSR            |                       |                                |                                 |                  |                     |           | RLY70000       |
| These models have dual alarm outputs, or single alarm with secondary outputs, with shared common terminals (Form A Type). As a result, these outputs should be fitted with the same type of output module. The main output (OP1) may be fitted with any type of output |                                                |                       |                                |                                 |                  |                     |           |                |

Note: Output Modules are NOT supplied with the controller. When specifying the controller, be sure to purchase the appropriate output module for the Main Control Output and if necessary, the alarm output(s) and secondary output. The controller can be fitted with any combination of output modules that do not have the RS485 option.

The Logic/SSR Drive Module is a switched DC source, intended to drive the DC input of an SSR power unit. It should never be connected to a line voltage.

All modules are shipped separately and must be installed by the user.

## MODEL TLA - TEMPERATURE LIMIT ALARM



## **GENERAL DESCRIPTION**

The TLA is a Factory Mutual approved temperature limit alarm, intended to provide an independent shutdown for thermal processes. The TLA accepts signals from a variety of temperature sensors (thermocouple or RTD elements), and its comprehensive programming allows it to meet a wide variety of application requirements.

Dual 4-digit displays allow viewing of the process temperature and limit setpoint simultaneously. Front panel indicators inform the operator of the process and output status. The main limit output and alarm outputs are field replaceable.

The limit output is selectable for high or low trip activation. If the process temperature goes above the limit setpoint for a high trip, or below the limit setpoint for a low trip, the limit relay will de-energize to initiate a process shutdown. The limit output cannot be reset until the process temperature returns to the proper operating range; manual reset is required (local or remote). Sensor failure will initiate a process shutdown.

Relay alarm(s) can be configured to activate according to a variety of actions (Absolute HI or LO, Deviation HI or LO, and Band IN or OUT) with adjustable hysteresis. A standby feature suppresses the alarm during power-up until the process stabilizes outside the alarm region.

The unit is constructed of a lightweight, high impact plastic case with a tinted front panel. The front panel meets NEMA 4X/IP65 specifications when properly installed. Multiple units can be stacked horizontally or vertically. Modern surface-mount technology, extensive testing, plus high immunity to noise interference makes the TLA extremely reliable in industrial environments.

## SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the TLA to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.





## **DIMENSIONS** In inches (mm)



## 1-717-767-6511

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## **GENERAL SPECIFICATIONS**

1. DISPLAY: 2 line by 4-digit LED

- Upper (Main) Display: 0.4" (10.2 mm) high red LED
- Lower (Secondary) Display: 0.3" (7.6 mm) high green LED **Display Messages:**

- "OLOL" Appears when measurement exceeds + sensor range. "ULUL" - Appears when measurement exceeds - sensor range.
- "OPEN" Appears when open sensor is detected.
- "SHrt" Appears when shorted sensor is detected (RTD only)
- "..." Appears when display values exceed + display range.
- "-.." Appears when display values exceed display range.

#### LED Status Annunciators:

- EX Temperature exceeds limit setpoint
- OUT Limit output is de-energized
- A1 Alarm #1 is active
- A2 Alarm #2 is active
- 2. POWER:
  - Line Voltage Models: 85 to 250 VAC, 50/60 Hz, 8 VA.
  - Low Voltage Models:
    - DC Power: 18 to 36 VDC, 7 W.
  - AC Power: 24 VAC +/-10%, 50/60 Hz, 9 VA
- 3. CONTROLS: Four rubber push buttons: R, P, Up, Down
- 4. MEMORY: Nonvolatile E<sup>2</sup>PROM retains all programmable parameters and values.
- 5. ENVIRONMENTAL CONDITIONS:
  - Operating Range: FM rated @ 0 to 65°C, UL rated @ 0 to 55°C Storage Range: -40 to 80°C
- Operating and Storage Humidity: 85% max. relative humidity (noncondensing) from 0°C to 65°C.
- Vibration to IEC 68-2-6: Operational 5 to 150 Hz, 2 g.

Shock to IEC 68-2-27: Operational 20 g (10 g relay).

Altitude: Up to 2000 meters

## 6. ISOLATION BREAKDOWN RATINGS:

- AC line with respect to all inputs and outputs: 2300 V for 1 minute (250 V working)
- Relay contacts to all other inputs and outputs: 2300 VAC
- DC Power with respect to sensor input: 50 V working (500 V for 1 minute) 7. CERTIFICATIONS AND COMPLIANCES:
- **CE Approved**
- EN 61326-1 Immunity to Industrial Locations Emission CISPR 11 Class A IEC/EN 61010-1 **RoHS** Compliant Factory Mutual (FM) Listed: File #3014646 UL Recognized Component: File #E156876 Type 4X Enclosure rating (Face only) IP65 Enclosure rating (Face only) IP20 Enclosure rating (Rear of unit) Refer to EMC Installation Guidelines section of the bulletin for additional
- information. 8. CONNECTION: Wire clamping screw terminals
  - Wire Gage Capacity: Two 14 AWG (2.55 mm), four 18 AWG (1.02 mm), or four 20 AWG (0.61 mm).

Terminal Torque: 1.0Nm (8.9 in-lbs.).

1.4Nm (12.4 in-lbs.) max.

- 9. CONSTRUCTION: Black plastic alloy case and collar style panel latch. Panel latch can be installed for vertical or horizontal instrument stacking. One piece tinted plastic bezel. Bezel assembly with circuit boards can be removed from the case to change the output board without removing the case from the panel or disconnecting wiring. Unit meets NEMA 4X/IP65 requirements for indoor use, when properly installed. Flame resistant. Installation Category II, Pollution Degree 2.
- 10. WEIGHT: 0.38 lbs (0.17 kgs)

## INPUT SPECIFICATIONS

- 1 SENSOR INPUT-
- Sample Period: 100 msec
- Step Response Time: Less than 300 msec typ., 400 msec max. (to within 99% of final value)
- Normal Mode Rejection: Greater than 40 dB @ 50/60 Hz
- Common Mode Rejection: Greater than 120 dB, DC to 60 Hz
- Overvoltage Protection: Input overload 120 VAC for 15 seconds max. 2. Failed Sensor Response:
- Main Output: Sensor failure will initiate a process shutdown Display: "OPEN"

Alarms: Upscale

- 3. INDICATION ACCURACY: ±(0.3% of Span +1°C) at 23°C ambient after 20 minute warm-up. (Includes NIST conformity, cold junction effect, A/D conversion errors and linearization conformity.
- Span Drift (maximum): 130 PPM/°C 4. **RTD INPUT:** 2 or 3 wire, 100  $\Omega$  platinum, alpha = 0.00385 (DIN 43760), alpha = 0.0039162

Excitation: 150 µA typical

## Resolution: 1 or 0.1 degree

Lead Resistance: 15  $\Omega$  max. per input lead

| RTD TYPE | RANGE                             |
|----------|-----------------------------------|
| 385      | -200 to +600°C<br>-328 to +1100°F |
| 392      | -200 to +600°C<br>-328 to +1100°F |
| OHMS     | 2.0 to 320.0                      |

#### 5. THERMOCOUPLE INPUT:

Types: T, E, J, K, R, S, B, N, Linear mV, software selectable Input Impedance: 20 MQ all types

Lead resistance effect:  $0.25 \ \mu V/\Omega$ 

Cold junction compensation: Less than  $\pm 1^{\circ}$ C typ., ( $\pm 1.5^{\circ}$ C max), error over 0 to 65°C max. ambient temperature range. Defeated for Linear mV indication mode.

Resolution: 1° for all types, or 0.1° for T, E, J, K, and N onlY.

|        | PANCE           | WIRE COLOR  |             |  |
|--------|-----------------|-------------|-------------|--|
| ICTIFE | KANGE           | ANSI        | BS 1843     |  |
| т      | -200 to +400°C  | blue (+)    | white (+)   |  |
|        | -328 to +752°F  | red (-)     | blue (-)    |  |
| F      | -200 to +750°C  | violet (+)  | brown (+)   |  |
| L      | -328 to +1382°F | red (-)     | blue (-)    |  |
|        | -200 to +760°C  | white (+)   | yellow (+)  |  |
| 5      | -328 to 1400°F  | red (-)     | blue (-)    |  |
| ĸ      | -200 to +1250°C | yellow (+)  | brown (+)   |  |
| L L    | -328 to +2282°F | red (-)     | blue (-)    |  |
| Б      | 0 to 1768°C     | black (+)   | white (+)   |  |
|        | +32 to +3214°F  | red (-)     | blue (-)    |  |
|        | 0 to 1768°C     | black (+)   | white (+)   |  |
| 3      | +32 to 3214°F   | red (-)     | blue (-)    |  |
| р      | +149 to +1820°C | grey (+)    | no standard |  |
| В      | +300 to +3308°F | red (-)     | no stanuaru |  |
| N      | -200 to +1300°C | orange (+)  | orange (+)  |  |
| IN     | -328 to +2372°F | red (-)     | blue (-)    |  |
| mV     | -5.00 to +56.00 | no standard | no standard |  |

6. **REMOTE RESET INPUT:** Internally pulled up to +5 VDC (1M $\Omega$ ). V<sub>IL</sub>: 0.85 V max., V<sub>IH</sub>: 3.65 V min., V<sub>IN</sub> MAX: 5.25 VDC, I<sub>OFF</sub>: 1µA max.

## **OUTPUT SPECIFICATIONS**

#### 1. LIMIT AND ALARM OUTPUT RELAYS:

Contact Rating: 5 A @ 250 VAC or 30 VDC (resistive load).

Life Expectancy: 100,000 cycles at max. load rating. (Decreasing load increases life expectancy.)

2. LIMIT OUTPUT: TLA21000: Form-C relay; TLA11100: Form-A relay. Selectable for high or low trip activation. If the process temperature goes above the limit setpoint for a high trip, or below the limit setpoint for a low trip, the limit relay will de-energize to initiate a process shutdown. The limit output cannot be reset until the process temperature returns to the proper operating range; manual reset is required (local or remote).

#### Annunciators:

"EX" - Lit when the process temperature exceeds the limit setpoint. "OUT" - Lit when the limit output is de-energized.

#### 3. ALARM OUTPUTS (Optional): One or two Form-A relays.

| - N/I | odos |  |
|-------|------|--|
|       |      |  |

 Modes:
 Absolute High Acting
 Absolute Low Acting

 Deviation High Acting
 Deviation Low Acting

 Inside Band Acting
 Outside Band Acting

 Reset Action:
 Programmable; automatic or latched. Latched alarms can be reset regardless of limit exceed condition.

 Standby Mode:
 Programmable; enable or disable.

Hysteresis: Programmable.

Annunciator: "A1" and "A2" programmable for normal or reverse acting.

## ORDERING INFORMATION

85 to 250 VAC

| LIMIT OUTPUT | ALARM 1 OUTPUT | ALARM 2 OUTPUT | REPLACEMENT<br>OUTPUT BOARD | PART NUMBERS |
|--------------|----------------|----------------|-----------------------------|--------------|
| Form-C Relay | Form-A Relay   |                | RBDLA210                    | TLA21000     |
| Form-A Relay | Form-A Relay   | Form-A Relay   | RBD48111                    | TLA11100     |

#### 18 to 36 VDC / 24 VAC

| LIMIT OUTPUT | ALARM 1 OUTPUT | ALARM 2 OUTPUT | REPLACEMENT<br>OUTPUT BOARD | PART NUMBERS |
|--------------|----------------|----------------|-----------------------------|--------------|
| Form-C Relay | Form-A Relay   |                | RBDLA210                    | TLA21010     |
| Form-A Relay | Form-A Relay   | Form-A Relay   | RBD48111                    | TLA11110     |

# **EMC INSTALLATION GUIDELINES**

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

- 1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
- 2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
  - a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
  - b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
- 3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
- 4. Long cable runs are more susceptible to EMI pickup than short cable runs.
- 5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are

recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000) Line Filters for input power cables:

Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)

- 6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
  - a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
  - b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used. RLC part numbers: Snubber: SNUB0000

#### Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.

VisitRLC's website at http://www.redlion.net/Support/InstallationConsiderations. html for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

# **1.0 INSTALLING THE TLA**

The TLA meets NEMA 4X/IP65 requirements for indoor use to provide a watertight seal in steel panels with a minimum thickness of 0.09 inch, or aluminum panels with a minimum thickness of 0.12 inch. The units are intended to be mounted into an enclosed panel. It is designed so that the units can be stacked horizontally or vertically. The bezel assembly **MUST** be in place during installation of the unit.

#### Instructions:

- 1. Prepare the panel cutout to the dimensions.
- 2. Remove the panel latch from the unit. Discard the cardboard sleeve.
- 3. Carefully remove the center section of the panel gasket and discard. Slide the panel gasket over the unit from the rear, seating it against the lip at the front of the case.
- 4. Insert the unit into the panel cutout. While holding the unit in place, push the panel latch over the rear of the unit, engaging the tabs of the panel latch in the farthest forward slot possible.
- 5. To achieve a proper seal, tighten the panel latch screws evenly until the unit is snug in the panel, torquing the screws to approximately 7 in-lbs (79 N-cm). Over tightening can result in distortion of the panel, and reduce the effectiveness of the seal.
- Note: The installation location of the TLA is important. Be sure to keep it away from heat sources (ovens, furnaces, etc.), and away from direct contact with caustic vapors, oils, steam, or any other process byproducts in which exposure may affect proper operation.





PANEL LATCH INSTALLED FOR VERTICAL UNIT STACKING



PANEL LATCH INSTALLED FOR HORIZONTAL UNIT STACKING



## **Multiple Unit Stacking**

The TLA is designed for close spacing of multiple units. Units can be stacked either horizontally or vertically. For vertical stacking, install the panel latch with the screws to the sides of the unit. For horizontal stacking, the panel latch screws should be at the top and bottom of the unit. The minimum spacing from center line to center line of units is 1.96" (49.8 mm). This spacing is the same for vertical or horizontal stacking.



Note: When stacking units, provide adequate panel ventilation to ensure that the maximum operating temperature range is not exceeded.



F

Caution: Disconnect power to the unit and to the output control circuits to eliminate the potential shock hazard when removing the bezel assembly.

## **Unit Removal Procedure**

To remove a unit from the panel, first loosen the panel latch screws. Insert flat blade screwdrivers between the latch and the case on either side of the unit, so that the latches disengage from the grooves in the case. Push the unit through the panel from the rear.

## **Removing Bezel Assembly**

The bezel assembly must be removed from the case to replace the output board. To remove the bezel assembly, insert a flat blade screwdriver into the pry



slot on either side of the unit. Twist the screwdriver handle until the unit is ejected enough to allow removal.

Caution: The bezel assembly contains electronic circuits that can be damaged by static electricity. Before removing the assembly, discharge static charge on your body by touching an earth ground point. It is also important that the bezel assembly be handled only by the bezel itself. Additionally, if it is necessary to handle a circuit board, be certain that hands are free from dirt, oil, etc., to avoid circuit contamination that may lead to malfunction. If it becomes necessary to ship the unit for repairs, place the unit in its case before shipping.

## Installing Bezel Assembly

To install the bezel assembly, insert the assembly into the case until the bezel is fully seated against the lip of the case. Properly installing the bezel assembly is necessary for watertight sealing.

## 642

## www.redlion.net Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com
# 2.0 WIRING THE TLA

After the unit has been mechanically mounted, it is ready to be wired. All wiring connections are made to the rear screw terminals. When wiring the unit, use the numbers on the label and those embossed on the back of the case, to identify the position number with the proper function.

All conductors should meet voltage and current ratings for each terminal. Also cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the unit (AC or DC) be protected by a fuse or circuit breaker. Strip the wire, leaving approximately 1/4" (6 mm) bare wire exposed (stranded wires should be tinned with solder). Insert the wire under the clamping washer and tighten the screw until the wire is clamped tightly.

Caution: Unused terminals are NOT to be used as tie points. Damage to the TLA may result if these terminals are used.

### **POWER WIRING**

#### **AC Power**

Primary AC power is connected to terminals #11 and #12, labeled AC. To reduce the chance of noise spikes entering the AC line and affecting the TLA, an AC feed separate from that of the load should be used to power the TLA. Be certain that the AC power to the TLA is relatively "clean" and within the variation limit. Connecting power from heavily loaded circuits or circuits that also power loads that cycle on and off (contacts, relays, motors, etc.), should be avoided.

#### **DC Power**

DC Power (18 to 36 VDC) is connected to terminals #11 and #12 labeled DC+ and DC- respectively.



CAUTION: Observe proper polarity when connecting DC voltages. Damage to the unit may occur if polarity is reversed.

### SIGNAL WIRING

#### Thermocouple

When connecting the thermocouple, be certain that the connections are clean and tight. If the thermocouple probe cannot be connected directly to the TLA, thermocouple wire or thermocouple extension-grade wire must be used to extend the connection points (copper wire does not work). Always refer to the thermocouple manufacturer's recommendations for mounting, temperature range, shielding, etc. For multi-probe temperature averaging applications, two or more thermocouple probes may be connected to the TLA (always use the same type). Paralleling a single thermocouple to more than one TLA is not recommended. Generally, the red wire from the thermocouple is negative and connected to the TLA's common.



Thermocouple Connection

#### RTD

When connecting the RTD, be certain that the connections are clean and tight. RTD sensors have a higher degree of accuracy and stability than thermocouple sensors. Most RTD sensors available are the three wire type. The third wire is a sense lead for canceling the effects of lead resistance of the probe. Four wire RTD elements may be used by leaving one of the sense leads disconnected. Two wire RTD sensors may be used in either of two ways:

- A) Attach the RTD to terminals #8 and #10. Install a copper sense wire of the same wire gauge as the RTD leads. Attach one end of the wire at the probe and the other end to terminal #9. Complete lead wire compensation is obtained. This is the preferred method.
- B) Attach the RTD to terminals #8 and #10. Install a shorting wire between terminals #9 and #10. A temperature offset error of 2.5°C/ohm of lead resistance exists. The error may be compensated by programming a temperature offset.
- Note: With extended cable runs, be sure the lead resistance is less than 15 ohms/ lead.



#### RELAY CONNECTIONS

To prolong contact life and suppress electrical noise interference due to the switching of inductive loads, it is good installation practice to install a snubber across the contactor. Follow the manufacturer's instructions for installation.



- Note: Snubber leakage current can cause some electromechanical devices to be held ON.
- \*Terminal numbers are model dependent. See Terminal Configurations for description.

#### **REMOTE RESET WIRING**

The use of shielded cable is recommended. Follow the EMC installation guidelines for shield connection.

Terminal #6 is the Remote Reset. Any form of mechanical switch may be connected to terminal #6 (REMOTE RESET) and terminal #8 (COMM.). Sinking open collector logic with less than 0.7 V saturation and off-state leakage current of less than 1  $\mu$ A may also be used.

F

# **3.0 FRONT PANEL DESCRIPTION**



The front panel bezel material is flame and scratch resistant, tinted plastic that meets NEMA 4X/IP65 requirements, when properly installed. Continuous exposure to direct sunlight may accelerate the aging process of the bezel. The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. There are two 4-digit LED displays, a red upper Main Display and a lower green Secondary Display.

There are up to four panel annunciators, with red backlighting, that illuminate to inform the operator of the TLA and output status. See the front panel diagram for a description of the annunciators. Four front panel buttons are used to access different modes and parameters. The following is a description of each button.

Do NOT use tools of any kind (screwdrivers, pens, pencils, etc) to operate the keypad of this unit.

#### **Button Functions**

- R The Reset (R) button is used to reset the limit and alarm relays. The limit output cannot be reset until the process temperature returns to the proper operating range. Latched alarms can be reset regardless of limit exceed condition.
- P The Parameter (P) button is used to access programming, enter the change, and scroll through the available parameters in any mode.
- UP, DN The Up/Down buttons are used to modify parameters.

### **TLA POWER-UP**

Upon applying power, the TLA delays input indication and control action for five seconds to perform several self-diagnostic tests and to display basic TLA information. Initially, the TLA illuminates both displays and all annunciators to verify that all display elements are functioning. The TLA then displays the programmed input sensor type in the main (top) display and the revision number of the TLA's operating system in the secondary (bottom) display. The TLA checks for correct internal operation and displays an error message (E-xx) if an internal fault is detected. (See the Troubleshooting section for further information.)

Upon completion of this sequence, the TLA begins displaying the input value and setpoint, and updates the outputs based upon this condition.

#### **TLA CONFIGURATION OVERVIEW**

The TLA is programmed with certain parameter settings from the factory. Factory settings are listed in parentheses in the various Configuration of Parameters tables. In many cases, these settings must be changed to the particulars of the application before proper operation can be started.

The TLA is typically in the Normal Display Mode. In this mode, the process temperature is displayed in the main (top) display, and the limit setpoint is displayed in the secondary (bottom) display. When changes to the parameter configurations are needed, the P button is pressed, and the TLA will enter into the Parameter Mode.

### PARAMETER CONFIGURATION BASIC STARTUP

For basic start-up, it is important to verify or change Input Parameter Module (1-IN) parameters tYPE and SCAL, and Output Parameter Module (2-OP) parameter LiAC (Limit Trip Action). For alarm set-up, it is important to verify or change Alarms Parameter Module (4-AL) parameters ACt1, AL-1, ACt2, and AL-2.

If the above Input parameters or the input wiring connections are not correct, then the main (top) display may display an error message or incorrect value. Verify the input programming and wiring. (If incorrect display continues, refer to the Troubleshooting section.) All other parameter configurations are important but will not prevent the TLA from showing a correct display.

### **4.0 PARAMETER MODE**

The Parameter Mode is accessed by pressing the P Button from the Normal Display Mode. While in the Parameter Mode, the temperature is displayed in the main (top) display, and the parameter is displayed in the secondary (bottom) display. The correct password must be entered before any parameters can be accessed. To modify values, use the UP or DOWN button while the parameter is displayed. Use the P button to accept the new value, and to scroll through the parameters. The TLA will automatically return to the normal display mode if no action is taken. The TLA responds to the new values

immediately, but the change is not committed to non-volatile memory until the TLA is returned to the Normal Display Mode. If power loss occurs before returning to the normal display mode, the new values must be re-entered.

To gain access to the Configuration Parameter Modules continue to CNFP and press the UP button. These modules allow access to the fundamental set-up parameters of the TLA. If the setpoint or alarm values are modified, the CNFP step will be skipped.

#### Parameter Mode Reference Table

| Display    | Parameter                       | Range                                     | Description                                                                                                                                                                                                                                       |
|------------|---------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRSS       | Password to access parameters   | 0 to 250                                  | If an incorrect value is entered, the TLA will display "End"<br>momentarily, and then return to the normal display mode. The<br>default password is 10. The wildcard password is 222 (in case the<br>password is forgotten).                      |
| 5 <i>P</i> | Limit setpoint                  | -999 to 9999                              | Range limited by SPLO & SPHI.                                                                                                                                                                                                                     |
| RL - 1 *   | Alarm #1                        | -999 to 9999                              | The Alarm parameters can be independently locked out from                                                                                                                                                                                         |
| RL-2 *     | Alarm #2                        | -999 to 9999                              | appearing. See Configuration Module 3, Parameter Lock-outs.                                                                                                                                                                                       |
| בחדף       | Configuration parameter modules | "Up" button: enter configuration modules. | These modules allow access to the fundamental set-up parameters<br>of the TLA. The modules are grouped into related<br>programming steps, such as inputs, outputs, alarms, etc. Upon<br>completion of each module, the program returns to "CNFP". |
| End        | End of Parameter Mode           |                                           | When the parameter list has been scrolled through, the TLA will display "End" momentarily, and then return to the normal display mode.                                                                                                            |

\* Model Number Dependent.

### www.redlion.net

### Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

### **CONFIGURATION PARAMETER MODULES**

The Configuration Parameter modules are accessed by pressing the UP button from CNFP in the Parameter Mode. The UP or DOWN buttons can be pressed to move to the desired Parameter Module. The P button is then pressed to enter into that module. The main (top) display will be the parameter, and the secondary (bottom) display will be the parameter value. The UP or DOWN buttons are used to modify the desired parameter value, and the P button enters the new value, and moves to the next parameter. The TLA responds to the new values after the P button is pressed, however, the change is not committed to permanent memory until the TLA is returned to the Normal Display Mode. If power loss occurs before returning to the Normal Display Mode, the new values must be entered again. At the end of each module, the TLA will go back to CNFP. Other Parameter Modules can be accessed by pressing the UP or DOWN buttons, or pressing P will return to the Normal Display Mode.

Parameters that are model number, or program dependent will only be displayed when the appropriate options are installed or programmed.

# CONFIGURE MODULE 1 - INPUT PARAMETERS (1-IN)

| Display | Parameter                                     | Range<br>(Factory Setting)                                                                                                                                                                                                                                                                          | Description/ Comments                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ŁУРЕ    | Input Type                                    | kc-k - Type T TC         kc-k - Type T TC         kc-k - Type J TC         kc-r - Type K TC         kc-r - Type K TC         kc-b - Type B TC         kc-fi - Type N TC         kc-fi - Type N TC         kfi - Linear mV         r 392 - 392 curve RTD         r l fi - Linear ohms         (tc-J) | Select from the list of various thermocouple and RTD sensors.                                                                                                                                                                                                                                                                                                                                                                                         |
| SERL    | Temperature Scale                             | °F or °C<br>(°F)                                                                                                                                                                                                                                                                                    | Select either degrees Fahrenheit (F) or degrees Celsius (C). If changed, be sure to check all parameters.                                                                                                                                                                                                                                                                                                                                             |
| d[PE    | Temperature Resolution                        | 0 or 0.0<br>(0)                                                                                                                                                                                                                                                                                     | Select either 1 or 0.1 degree resolution. If changed, be sure to check all parameters.                                                                                                                                                                                                                                                                                                                                                                |
| FLEr    | Digital Input Filtering and<br>Display Update | 0 to 4<br>0 - least input filtering<br>3 - most input filtering<br>4 - most input filtering and slower 500<br>msec display update rate (outputs still<br>update at 100 msec rate)<br>(1)                                                                                                            | Select the relative degree of input signal filtering and display update<br>rate. The filter is an adaptive digital filter that discriminates between<br>measurement noise and actual process changes. Therefore, the<br>influence on step response time is minimal. If the signal is varying<br>too greatly due to measurement noise, increase the filter value.<br>Conversely, if the fastest TLA response is desired, decrease the<br>filter value. |
| SHFE    | Input Signal Shift<br>(correction offset)     | -999 to 9999<br>1 or 0.1 degree<br>(0)                                                                                                                                                                                                                                                              | If the TLA temperature disagrees with a reference temperature<br>instrument or if the temperature sensor has a known calibration, the<br>TLA temperature can be compensated by a correction offset. The<br>following equation expresses the relationship: Desired Display<br>Temp = (TLA Temp) + SHFt. Normally set to 0.                                                                                                                             |
| SPLO    | Limit Setpoint Lower Limit                    | -999 to 9999<br>1 or 0.1 degree<br>(0)                                                                                                                                                                                                                                                              | The TLA has programmable high and low setpoint limit values to restrict the setting range of the limit setpoint. Set the limit values so                                                                                                                                                                                                                                                                                                              |
| 5PX (   | Limit Setpoint Upper Limit                    | -999 to 9999<br>1 or 0.1 degree<br>(9999)                                                                                                                                                                                                                                                           | that the temperature setpoint value cannot be set outside the safe<br>operating area of the process. SPHI must be above SPLO.                                                                                                                                                                                                                                                                                                                         |

## CONFIGURE MODULE 2 - OUTPUT PARAMETERS (2-OP)

| Display | Parameter                | Range<br>(Factory Setting)                  | Description/ Comments                                                                                                                                                                                                                                                                                   |
|---------|--------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L ,Rc   | Limit Output Trip Action | LO - Low Acting<br>HI - High Acting<br>(HI) | The limit output is selectable for high or low trip activation. If the process temperature goes above the limit setpoint for a high trip, or below the limit setpoint for a low trip, the limit relay will de-energize to initiate a process shutdown. See the Limit Output Action section for details. |

F

# CONFIGURE MODULE 3 - LOCKOUT PARAMETERS (3-LC)

| Display | Parameter                        | Range<br>(Factory Setting)                                                                                                                                                       | Description/ Comments                                                                                                                                                                          |
|---------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PR55    | Password                         | 0 to 250<br>(10)                                                                                                                                                                 | The password is required to access all parameters. The password can be set to any value between 0 and 250. A wildcard password, 222, can be used as an alternative to the programmed password. |
| RL +    | Alarms #1 and #2 access<br>level | LOC - lockout, prevents the alarms from<br>appearing<br>rEd - read only, alarms appear, but<br>cannot be modified<br>Ent - enter, alarms appear, and can be<br>modified<br>(Ent) | The alarm(s) parameter in the Parameter Mode can be configured to be completely locked out, read only, or fully accessible.                                                                    |
| FPrS    | Front panel reset                | NO - disabled<br>YES - active<br>(YES)                                                                                                                                           | The front panel R button can be enabled or disabled. The Remote Reset input is not affected by this setting.                                                                                   |

\* Model Number Dependent.

# CONFIGURE MODULE 4 - ALARMS PARAMETERS (4-AL)

| Display | Parameter                           | Range<br>(Factory Setting)                                                                                                                          | Description/ Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rct (   | Alarm 1 action mode                 | A-HI - absolute high<br>A-LO - absolute low<br>d-HI - deviation high<br>d-LO - deviation low<br>b-IN - band inside<br>b-Ot - band outside<br>(A-HI) | When deviation low-acting with positive alarm value (d-LO), deviation high-acting with negative value (d-HI), or band inside-acting (b-IN) is selected for the alarm action, the indicator is OFF when the alarm output is ON. See the Alarms section for complete details of each action. <b>If changed, check alarm values.</b>                                                                                                                                                                                                       |
| r 5£ 1  | Alarm 1 reset mode                  | Auto - automatic<br>LATC - manual reset<br>(Auto)                                                                                                   | Automatic reset alarms are reset by the TLA when the alarm condition clears.<br>Latched alarms require operator action to reset the alarm condition. The front panel<br>R button, if enabled, can be used to reset a latched alarm (see FPrS in Configure<br>Module 3). A latched alarm condition may also be reset via the Remote Reset input.<br>See the Reset Action diagram in the Alarms section.                                                                                                                                  |
| 5EB (   | Alarm 1 standby function<br>(delay) | NO or YES<br>(NO)                                                                                                                                   | The alarm(s) may be independently configured to exhibit a power-on, standby delay which suppresses the alarm output from turning ON until the temperature first stabilizes outside the alarm region. After this condition is satisfied, the alarm standby delay is canceled and the alarm triggers normally, until the next TLA power-on. This feature also works for deviation and band alarms when the setpoint is changed via keypad. This action suppresses "nuisance" alarms. See the Alarm Standby diagram in the Alarms section. |
| RL - 1  | Alarm 1 value                       | -999 to 9999<br>(0)                                                                                                                                 | The alarm values are either absolute values, or relative to the limit setpoint value (deviation and band alarms). An absolute alarm value is the value that is entered for the alarm. A relative alarm value is the mathematical sum of the temperature limit setpoint value and the alarm value (positive or negative), thus a relative alarm tracks the limit setpoint value as it is changed. If the alarm action is set as a Band Alarm, then only a positive alarm value can be entered.                                           |
| Rct2.   | Alarm 2 action mode                 | A-HI - absolute high<br>A-LO - absolute low<br>d-HI - deviation high<br>d-LO - deviation low<br>b-IN - band inside<br>b-Ot - band outside<br>(A-HI) | The Alarm 2 parameters are programmed independently of alarm 1. See the corresponding Alarm 1 parameter for description.                                                                                                                                                                                                                                                                                                                                                                                                                |
| r522×   | Alarm 2 reset mode                  | Auto - automatic<br>LATC - manual reset<br>(Auto)                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5262+   | Alarm 2 standby function (delay)    | NO or YES<br>(NO)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RL-2 ·  | Alarm 2 value                       | -999 to 9999<br>(0)                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8xys    | Alarm hysteresis value              | 1 to 250<br>(1)                                                                                                                                     | The alarm value(s) have a programmable hysteresis band to prevent alarm output chatter near the alarm trigger point. The hysteresis value should be set to eliminate this effect. A value of 2 to 5 is usually sufficient for most applications. A single alarm hysteresis value applies to both alarms. See the Alarm Action Figures, in the Alarms section, for the effect of hysteresis on the various alarm types.                                                                                                                  |

\* Model Number Dependent.

# CONFIGURE MODULE 9 - FACTORY SERVICE OPERATIONS (9-FS)

| Display | Parameter                     | Range                                                                    | Description/ Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EodE    | Factory service function code | 48 - Calibrate instrument                                                | TLA calibration. Refer to the Calibration section for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                               | 66 - Reset parameters to factory settings                                | Entering code 66 restores all parameters to factory settings. The unit indicates the operation after the P button is pressed, by displaying "rSEt" in the lower display momentarily.                                                                                                                                                                                                                                                                                                                                                    |
|         |                               | 77 (twice in succession) -<br>Reset TLA calibration to nominal<br>values | Caution: this operation erases the TLA calibration values and defaults the values to nominal settings. Reading errors of $\pm 10\%$ may result. Do not perform this operation unless the TLA has lost calibration. Loss of calibration is signaled by an "E-CL" error flag at power-up. To clear this flag, perform calibration procedure as noted in the Calibration section. Alternatively, "stepping" through one of the calibration procedures clears the error flag, but does NOT validate the calibration accuracy in any manner. |

647

### LIMIT OUTPUT ACTION

The limit output is selectable for high or low trip activation. If the process temperature goes above the limit setpoint for a high trip, or below the limit setpoint for a low trip, the limit relay will de-energize to initiate a process shutdown. The limit output cannot be reset until the process temperature returns to the proper operating range; manual reset is required. The following action figures describe the status of the limit output and the front panel indicators for various over/under setpoint, and reset conditions. Reset is either by the front panel R button, if enabled, or by the Remote Reset input, terminal #6. Refer to Configure Module 2 - Output Parameters for details of configuring the limit output. Refer to Configure Module 3 - Lockout Parameters for details of configuring the front panel Reset button.

### **High Trip Action**



### Low Trip Action



## 5.0 ALARMS (OPTIONAL)

The alarm action figures describe the status of the alarm output and the front panel indicator for various over/under temperature conditions. The alarm output wave form is shown with the output in the automatic reset mode. Select the alarm action with care -- in some configurations, the front panel indicator (LED) might be OFF while the output is ON. Refer to Configure Module 4 - Alarm Parameters for details of configuring the alarms.







### Alarm Reset Sequence



### **CALIBRATION CHECKS**

The instrument has been fully calibrated at the factory for all input types. If the unit appears to be indicating or controlling incorrectly, see the Troubleshooting section before attempting this procedure.

If the TLA is suspected of reading incorrectly, the instrument may be checked for indication accuracy without disturbing the factory calibration. The following procedures may be used for this purpose.

Note: Allow 1/2 hour warm-up before checking these parameters.

### mV Reading Check

- 1. Connect a DC mV source with an accuracy of 0.03% or better to terminal #8 (-) & #9 (+).
- 2. Configure Input Parameters Module 1 for linear mV (Lin) input, under tYPE.
- 3. Compare the TLA read-out to the standard at various points over the range
- (-5.00 mV to 56.00 mV). The tolerance is  $\pm$ (0.15% of reading + 1 LSD).
- 4. Calibrate the TLA if the readings are out of tolerance.

### Thermocouple Cold Junction Temperature Check

- 1. Connect a thermocouple probe of known accuracy (Types T, E, J, K, N only) to TLA. Select the probe used in Configure Module 1.
- Connect a reference temperature probe to measuring end of thermocouple to monitor temperature. Allow sufficient time for temperatures to equalize.
- Compare TLA display with reference temperature probe. The TLA display should equal the calibrated probe temperature. (Tolerance is ±1°C.)
- 4. Calibrate the cold junction temperature if out of tolerance.





### Alarm Standby Delay Sequence



### **RTD Ohms Reading Check**

- 1. Connect RTD simulator (with an accuracy of 0.1 ohm or better) capable of operating with less than 150 μA to terminals #8, #9, & #10.
- 2. Configure Input Parameters Module 1 for linear ohms (rLin) input, under tYPE.
- 3. Compare the TLA read-out with the RTD simulator at various points over the
- range 2.0 to 300.0 ohms. The tolerance is  $\pm (0.3\% \text{ of span} + 1 \text{ LSD})$ .
- 4. Calibrate the TLA RTD ohms if out of tolerance.

### Error Flag E-CL

If error flag "E-CL" appears at power-up, a loss of calibration parameters due to noise spikes has occurred. Entering code 77 twice in Factory Service Operations Module (9-FS) erases the TLA calibration values and defaults the values to nominal settings. Reading errors of  $\pm 10\%$  may result. It is recommended that the TLA be fully recalibrated. If using thermocouple only, the RTD calibration need not be performed.

Note: the "E-CL" flag may be cleared by "stepping" through cold junction calibration procedure without the need to change any calibration values. A  $\pm 10\%$  reading error will still exist.

### 1-717-767-6511

F

### **6.0** CALIBRATION

When re-calibration is required (generally every two years), this procedure should be performed by qualified technicians using appropriate equipment. Equipment source accuracy of 0.03% or better is required.

The procedure consists of: applying accurate mV signals, setting the thermocouple cold junction temperature, and applying precision resistance, among others. Allow a 30 minute warm-up period before starting this procedure. Do not use thermocouple wire for the millivolt or RTD ohms calibration.

This procedure may be aborted by disconnecting power to the TLA before exiting the configuration mode. The existing calibration settings remain in affect.

- Note: After completing any of the calibration sequences, the TLA defaults the input sensor type to thermocouple type "J" (tc-J). Be sure to set input sensor for proper type.
- Note: The TLA must be restored to normal display mode before any data is stored.

### Factory Service Operations - Calibration (9-FS)

| Display | Parameter                                          | Range  | Description/ CoMMENTS                                                                                                                                                |
|---------|----------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EodE    | Enter function code                                | 48     | Calibrate instrument.                                                                                                                                                |
| EAL     | Millivolt calibration                              | yes/no | Calibration required for both RTD and TC input. If this procedure is performed, the cold junction temp or RTD ohms calibration procedures in turn must be completed. |
| ביוב    | Thermocouple cold junction temperature calibration | yes/no | Not required if only using RTD input. This procedure can only be performed AFTER an accurate mV calibration.                                                         |
| rtd     | RTD resistance calibration                         | yes/no | Not required if only using TC input. This procedure can only be performed AFTER an accurate mV calibration.                                                          |

### Millivolt Calibration (CAL)

Connect precision millivolt source with an accuracy of 0.03% to terminals #8 (-) & #9 (+). Cold Junction or RTD ohms calibration MUST be performed after millivolt calibration.

| Display action     |               | Description/ CoMMENTS     |
|--------------------|---------------|---------------------------|
| 5EP : Apply 0.0 mV |               | Wait 10 seconds, press P. |
| SEP2               | Apply 14.0 mV | Wait 10 seconds, press P. |
| SEP3               | Apply 28.0 mV | Wait 10 seconds, press P. |
| SEPY               | Apply 42.0 mV | Wait 10 seconds, press P. |
| SEPS               | Apply 56.0 mV | Wait 10 seconds, press P. |

### Thermocouple Cold Junction Calibration (CJC)

This procedure must be performed AFTER an accurate mV calibration.

- 1. Exit Factory Service Operations (continually press P until "End"), and return to Normal Display Mode.
- 2. Connect a thermocouple probe of known accuracy to the TLA (Types T, E, J, K, and N only). Select the probe type used in Configure Module 1.
- 3. Connect a reference temperature probe to the measuring end of the TLA thermocouple probe. The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (As an alternative, the TLA thermocouple probe may be placed in a calibration bath of known temperature.)
- 4. Compare TLA display with reference temperature probe (or calibration bath). If the displayed TLA temperature does not equal the reference probe temperature, calculate the CJ error as follows:
- CJ Error = reference probe temperature displayed TLA temperature 5. Enter Factory Service Operations Module (9-FS).

| Display | Parameter                    | Description/ CoMMENTS                                                                                                                                                              |
|---------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| זני     | Cold Junction<br>Temperature | Observe the indicated cold junction<br>temperature. Add the calculated CJ Error to<br>the displayed value. Enter the sum as the new<br>value for CJC. Exit 9-FS and repeat step 4. |
|         |                              | Note: If the initial value for CJC is not within<br>the range of 15°C to 40°C, enter 25.0° for<br>CJC and repeat the Cold Junction Calibration<br>procedure.                       |

### **RTD Ohms Calibration (RTD)**

This procedure must be performed AFTER an accurate mV calibration. Connect one leg of precision resistance (accuracy of 0.1 ohm) to terminals #9 and #10 together, and the other leg to #8.

| Display | action                           | Description/ CoMMENTS     |
|---------|----------------------------------|---------------------------|
| rEdi    | Connect 0.0 ohm<br>(jumper wire) | Wait 10 seconds, press P. |
| rtd2    | Connect 277.0 ohm                | Wait 10 seconds, press P. |

# 7.0 TROUBLESHOOTING

The majority of problems can be traced to improper connections or incorrect set-up parameters. Be sure all connections are clean and tight, that the correct output board is fitted, and that the set-up parameters are correct. For further technical assistance, contact technical support at the appropriate company numbers listed.

| Problems                                                                                                                                                                                                                                                                 | Possible Cause                                                                                                                                                                                                                           | Remedies                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO DISPLAY                                                                                                                                                                                                                                                               | <ol> <li>Power off.</li> <li>Brown-out condition.</li> <li>Loose connection or improperly wired.</li> <li>Bezel assembly not fully seated into rear of TLA.</li> </ol>                                                                   | <ol> <li>Check power.</li> <li>Verify power reading.</li> <li>Check connections.</li> <li>Check installation.</li> </ol>                                                                                                                   |
| TLA NOT WORKING                                                                                                                                                                                                                                                          | 1. Incorrect parameter set-up.                                                                                                                                                                                                           | 1. Check set-up parameters.                                                                                                                                                                                                                |
| "E-FP" IN DISPLAY                                                                                                                                                                                                                                                        | 1. Defective front panel button.                                                                                                                                                                                                         | <ol> <li>Press R to escape, then check all buttons for proper operation.</li> <li>Replace unit.</li> </ol>                                                                                                                                 |
| "E-UP" IN DISPLAY                                                                                                                                                                                                                                                        | 1. Internal problem with TLA.                                                                                                                                                                                                            | 1. Replace unit.                                                                                                                                                                                                                           |
| "E-E2" IN DISPLAY                                                                                                                                                                                                                                                        | <ol> <li>Loss of setup parameters due to noise spike or<br/>other EMI event.</li> </ol>                                                                                                                                                  | <ol> <li>Press R to escape, then check all set-up parameters.</li> <li>a. Check sensor input and AC line for excessive noise.</li> <li>b. If fault persists, replace TLA.</li> </ol>                                                       |
| "E-CL" IN DISPLAY                                                                                                                                                                                                                                                        | <ol> <li>Loss of calibration parameters due to noise<br/>spike or other EMI event.</li> </ol>                                                                                                                                            | <ol> <li>Press R to escape, then check TLA accuracy.</li> <li>a. Recalibrate TLA. (See Factory Service Module code 77.)</li> <li>b. Reset parameters to factory default settings.</li> </ol>                                               |
| "" or "" IN DISPLAY                                                                                                                                                                                                                                                      | <ol> <li>Display value exceeds display range.</li> <li>Defective or mis-calibrated cold junction circuit.</li> <li>Loss of set-up parameters.</li> <li>Internal malfunction.</li> </ol>                                                  | <ol> <li>Change resolution to display whole number and verify reading.</li> <li>Perform cold junction calibration.</li> <li>Check set-up parameters.</li> <li>Perform Input calibration.</li> </ol>                                        |
| "OPEN" IN DISPLAY                                                                                                                                                                                                                                                        | <ol> <li>Probe disconnected.</li> <li>Broken or burned-out probe.</li> <li>Corroded or broken terminations.</li> <li>Excessive process temperature.</li> </ol>                                                                           | <ol> <li>Connect probe.</li> <li>Replace probe.</li> <li>Check connections.</li> <li>Check process parameters.</li> </ol>                                                                                                                  |
| <ul> <li>"OLOL" IN UPPER DISPLAY</li> <li>1. Check input parameters.</li> <li>2. Change to input sensor with a higher<br/>temperature range.</li> <li>3. Replace transmitter or probe.</li> <li>4. Reduce temperature.</li> <li>5. Perform input calibration.</li> </ul> |                                                                                                                                                                                                                                          | <ol> <li>Input exceeds range of TLA.</li> <li>Temperature exceeds range of input probe.</li> <li>Defective or incorrect transmitter or probe.</li> <li>Excessive high temperature for probe.</li> <li>Loss of setup parameters.</li> </ol> |
| "ULUL" IN UPPER DISPLAY                                                                                                                                                                                                                                                  | <ol> <li>Input is below range of TLA.</li> <li>Temperature below range of input probe.</li> <li>Defective or incorrect transmitter or probe.</li> <li>Excessive low temperature for probe.</li> <li>Loss of setup parameters.</li> </ol> | <ol> <li>Check input parameters.</li> <li>Change to input sensor with a lower temperature range.</li> <li>Replace transmitter or probe.</li> <li>Raise temperature.</li> <li>Perform input calibration.</li> </ol>                         |
| "OLOL" OR "ULUL" IN LOWER<br>DISPLAY                                                                                                                                                                                                                                     | 1. Signal input exceeds allowable range by 5%.                                                                                                                                                                                           | 1. Check remote signal source.                                                                                                                                                                                                             |

1-717-767-6511

# 8.0 INSTALLING AN OUTPUT BOARD

The TLA is supplied with an output board installed.

### **Replacing Output Board**

1. Remove the bezel assembly.

DISPLAY BOARD CONNECTOR

R. C.

- Lift up on the top bezel board latch while gently pulling out on the bezel/ display board assembly. Do NOT remove the display board from the bezel.
- 3. Remove the output board by pulling it away from the other boards. Replace the output board by aligning the board to board connector. Be certain the connector is fully mated.
- 4. Connect the bezel/ display board assembly by guiding the board ends into the bezel latches. Slide the assembly on evenly until the display board connector is completely engaged and bezel latches are fully seated onto the boards.





# **9.0 TERMINAL CONFIGURATIONS**

### **AC Models**

### Form-A Limit Relay with 2 Alarms



### Form-C Limit Relay with 1 Alarm



### **DC Models**

### Form-A Limit Relay with 2 Alarms



### Form-C Limit Relay with 1 Alarm



www.redlion.net