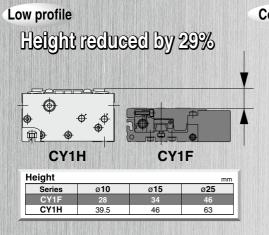
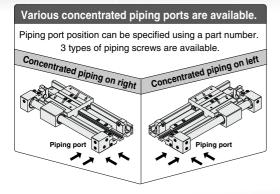
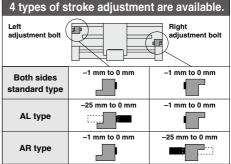
Low Profile Guide Type


CY1F Series ø10, ø15, ø25

1541


CY3B CY3R CY1S CY1L CY1L CY1H CY1F CYP

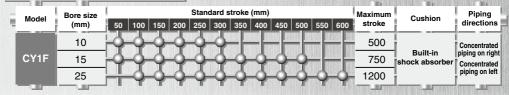

"Low profile", "Compact body" and "Lightweight"

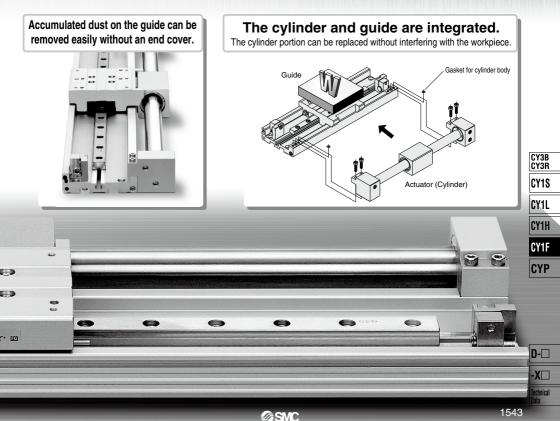
Compact body Overall length reduced by 31% CY1F MY2H 0,0 CY1H **Overall length** Series ø10 ø15 ø25 CY1E 240 19 CY1H 225 294 350 MY2H 260 310 For 100 mm stroke cylinder

Overall length reduced by 22% compared to the MY2H series

-25 mm to 0 mm

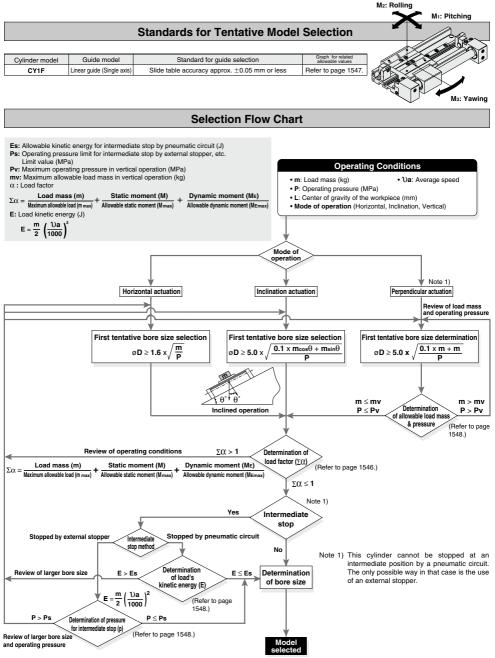
-25 mm to 0 mm



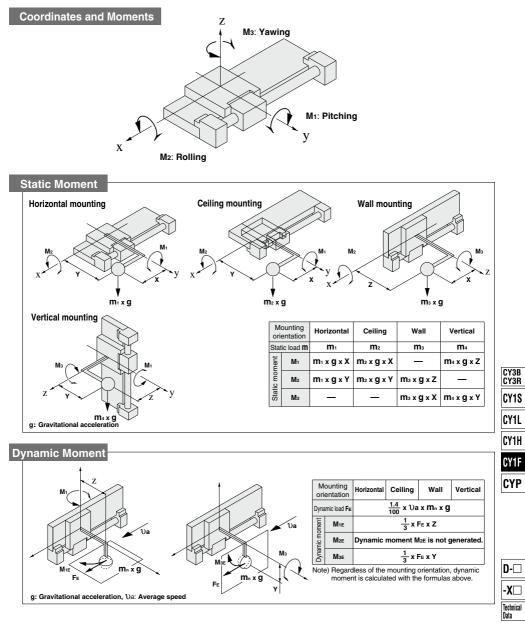

A type

Lightweight Weight reduced by 50%

Veight Series	ø 10	ø15	ø 25
CY1F	0.7	1.1	2.5
CY1H	1.0	2.2	4.6
MY2H	-	1.3	3.2


Available bore sizes ø10, 15, 25

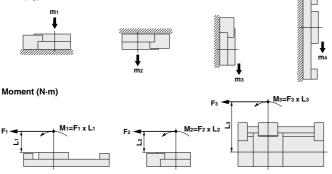
CY1F Series Model Selection


The following are the steps for selection of the CY1F series best suited to your application.

1544

Types of Moment Applied on Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation load and position of the center of gravity.


1545

Maximum Allowable Moment/Maximum Allowable Load

Model Bore size		Maximum a	allowable mo	moment (N·m) Maximum allowable load (k		(kg)		
woder	(mm)	M1	M2	Мз	m 1	m2	m3	m 4
	10	1	2	1	2	2	2	1.4
CY1F	15	1.5	3	1.5	5	5	5	2
	25	14	20	14	12	12	12	12

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Load (kg)

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

<Calculation guide load factor>

1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.

* To evaluate, use Ua (average speed) for (1) and (2), and U (impact speed U = 1.4Ua) for (3).

Calculate m max for (1) from the maximum allowable load graph (m1, m2, m3, m4) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Sum of guide $\Sigma \alpha =$	Load mass [m]	Static moment [M] Note 1)	Dynamic moment [ME] Note 2)
load factors 20, -	Maximum allowable load [m max]	Allowable static moment [Mmax]	Allowable dynamic moment [MEmax]

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors (Σα) is the total of all such moments.

2. Reference formulas [Dynamic moment at impact]

Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.

- m : Load mass (kg)
- F : Load (N)
- FE: Load equivalent to impact (at impact with stopper) (N)
- Ua: Average speed (mm/s)
- M : Static moment (N·m)

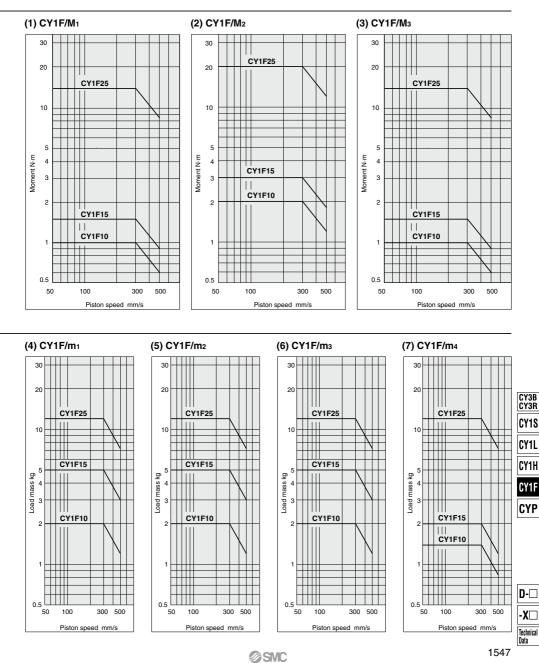
 $\begin{aligned} \mathcal{V} = 1.4 \ \text{Ua}(\mathsf{mm/s}) & \mathsf{Fe} = \frac{1.4}{100} \cdot \ \text{Ua} \cdot \mathsf{grm}^{\mathsf{Note}\,4)} \\ \therefore \mathsf{Me} = \frac{1}{3} \cdot \mathsf{Fe} \cdot \mathsf{L1} = 0.05 \ \mathsf{Ua} \cdot \mathsf{mL1} (\mathsf{N} \cdot \mathsf{m})^{\mathsf{Note}\,5)} \\ \mathsf{Note} \ 4) \ \frac{1.4}{100} \cdot \ \mathsf{Ua} \ is \ a \ dimensionless \ coefficient \ for \ calculating impact \ force. \end{aligned}$

This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

3. Refer to pages 1549 and 1550 for detailed selection procedures

Maximum Allowable Load

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.


SMC \$

U : Impact speed (mm/s)

ME: Dynamic moment (N·m)

L1 : Distance to the load's center of gravity (m)

g : Gravitational acceleration (9.8 m/s2)

Precautions at Vertical Operation and Intermediate Stop

Vertical Actuation

1. Vertical operation

In vertical operation, observe the maximum load mass and the maximum operating pressure shown in the table below to prevent a drop due to slipping off of magnet couplings.

A Caution

If the maximum load mass or maximum operating pressure is exceeded, it will cause the magnet coupling to slip off.

Bore size (mm)	Maximum load weight mv (kg)	Maximum operating pressure Pv (MPa)
10	1.4	0.55
15	2.0	0.65
25	12	0.65

When the cylinder is mounted vertically or sideling, a slider may move downwards due to the self-weight or workpiece mass. If an accurate stopping position is required at the stroke end or the middle of stroke, use an external stopper to secure the accurate positioning.

Intermediate Stop

1. Intermediate stop by external stopper or stroke adjustment with adjustment bolt.

Observe the maximum pressure limit in the table below in case of intermediate stop by an external stopper or stroke adjustment with the attached adjustment bolt.

A Caution

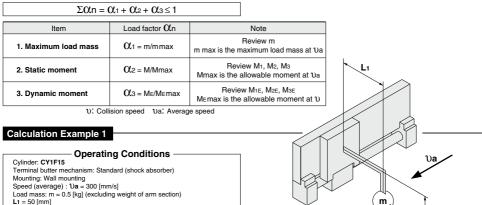
Be careful if the operating pressure limit is exceeded, it will cause the magnet coupling to slip off.

Bore size (mm)	Holding force (N)	Operating pressure limit for intermediate stop Ps (MPa)
10	53.9	0.55
15	137	0.65
25	363	0.65

2. The load is stopped by pneumatic circuit.

Observe the maximum kinetic energy in the table below in case the load is stopped at an intermediate position by a pneumatic circuit. Note that intermediate stop by a pneumatic circuit is not available in vertical operation.

ACaution


If the allowable kinetic energy is exceeded, it will cause the magnet coupling to slip off.

Bore size (mm)	Allowable kinetic energy for intermediate stop Es (J)
10	0.03
15	0.13
25	0.45

L2

Selection Calculation

The selection calculation finds the load factors ($\Sigma \Omega n$) of the items below, where the total (Ωn) does not exceed 1.

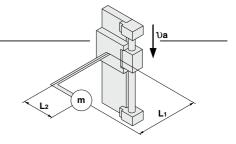
L1 = 50 [mm]L2 = 40 [mm]

Item	Load factor α n	Note
1. Load mass	α.1 = m/m max = 0.5/5 = 0.1	Investigate m . Find the value of m max at 300 mm/s in Graph (6) for m3 .
2. Static moment	$M2 = m \times g \times L_1$ = 0.5 × 9.8 × 0.05 = 0.245 [N·m] 02 = M2/M2 max = 0.245/3 = 0.082	Investigate M2. M1 and M3 are not required because they are not generated. Find the value of M2 max at 300 mm/s in Graph (2).
3. Dynamic moment	$ \begin{split} \textbf{M1E} &= 1/3 \times \textbf{Fe} \times \textbf{L1} \\ (\textbf{Fe} &= 1.4/100 \times 0a \times \textbf{g} \times \textbf{m}) \\ &= 0.05 \times 0a \times \textbf{m} \times \textbf{L1} \\ &= 0.05 \times 300 \times 0.5 \times 0.05 \\ &= 0.375 \ [N:m] \\ \textbf{C3A} &= \textbf{M1E}/\textbf{M1E} \ \textbf{max} \\ &= 0.375/1.07 \\ &= \textbf{0.350} \end{split} $	Investigate M1E. Find the collision speed U. $U=1.4 \times Ua$ $=1.4 \times 300$ =420 [mm/s] Find the value of ME1 max at 420 mm/s in Graph (1).
Mae D FE m x 9 L2	$\begin{aligned} \textbf{M3E} &= 1/3 \textbf{ x Fe x L2} \\ (\textbf{Fe} &= 1.4/100 \textbf{ x } 0\textbf{ x g x m}) \\ &= 0.05 \textbf{ x } 0\textbf{ a x m x L2} \\ &= 0.05 \textbf{ x } 300 \textbf{ x } 0.5 \textbf{ x } 0.04 \\ &= 0.3 [\textbf{N} \cdot \textbf{m}] \\ \textbf{O3B} &= \textbf{M3E}/\textbf{M3E max} \\ &= 0.3/1.07 \\ &= \textbf{0.28} \end{aligned}$	Investigate Mse. From above, find the value of Mse max at 420 mm/s in Graph (3).

 $\Sigma \Omega \mathbf{n} = \Omega \mathbf{1} + \Omega \mathbf{2} + \Omega \mathbf{3a} + \Omega \mathbf{3b} = 0.1 + 0.082 + 0.35 + 0.28 = 0.812$

From $\Sigma \Omega \boldsymbol{n} = 0.812 \leq 1,$ it is applicable.

D-

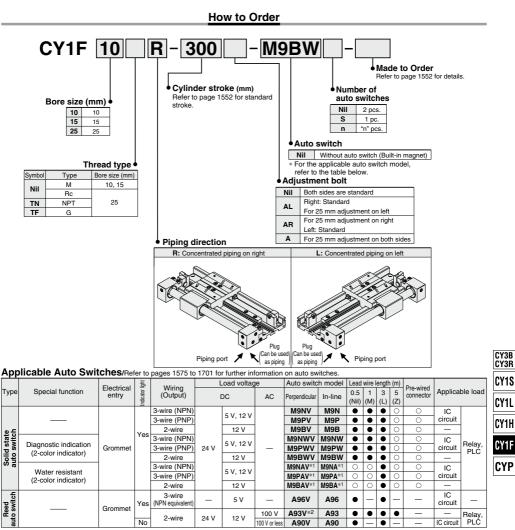

-X□

CY3B CY3R CY1S CY1L CY1L CY1H CY1F CYP

Calculation Example 2

Operating Conditions

Cylinder: CY1F25 Terminal butter mechanism: Standard (shock absorber) Mounting: Vertical mounting Speed (average) : Ua = 300 [mm/s]Load mass: m = 3 [kg] (excluding weight of arm section) L1 = 50 [mm] L2 = 40 [mm]


Item	Load factor Oln	Note
1. Load mass	α.1 = m/m max = 3/12 = 0.25	Investigate m . Find the value of m max at 300 mm/s in Graph (7) for m 4.
2. Static moment	M1 = m x g x L1 = 3 x 9.8 x 0.05 = 1.47 [N·m] 0/2a = M1/M1 max = 1.47/14 = 0.105	Investigate M 1. Find the value of M1 max at 300 mm/s in Graph (1).
Ma La m x g	$M_3 = m x g x L_2$ = 3 x 9.8 x 0.04 = 1.176 [N·m] $O(2b = M_3/M_3 max$ = 1.176/14 = 0.084	Investigate M 3. Find the value of M 3 max at 300 mm/s in Graph (3).
3. Dynamic moment	$M1E = 1/3 \times Fe \times L1$ $(Fe = 1.4/100 \times Uax g \times m)$ $= 0.05 \times Uax m \times L1$ $= 0.05 \times 300 \times 3 \times 0.05$ $= 2.25 [N-m]$ $(X_{3A} = M1e/M1e max$ $= 2.25/10$ $= 0.225$	Investigate M1E. Find the collision speed \mathcal{V} . $\mathcal{V} = 1.4 \times \mathcal{V}a$ $= 1.4 \times 300$ = 420 [mm/s] Find the value of M1E max at 420 mm/s in Graph (1).
Ma Ua Mas Fe m x g	$\begin{aligned} \text{Mae} &= 0.05 \times \text{Vax} \text{ m} \times \text{L2} \\ (\text{Fe} &= 1.4/100 \times \text{Vax} \text{ g} \times \text{m}) \\ &= 0.05 \times 300 \times 3 \times 0.04 \\ &= 1.8 \ [\text{N-m}] \end{aligned}$ $\begin{aligned} &\qquad \qquad \qquad$	Investigate Mse. From above, find the value of Mse max at 420 mm/s in Graph (3).

From above,

$$\begin{split} \Sigma \Omega n = & (\lambda 1 + \Omega 2a + \Omega 2b + \Omega 3A + \Omega 3B = 0.25 + 0.105 + 0.084 + 0.225 + 0.18 = 0.844 \\ From \ \Sigma \Omega n = 0.844 \leq 1, \ it \ is \ applicable. \end{split}$$

1550

Magnetically Coupled Rodless Cylinder: Low Profile Guide Type **CY1F Series**

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance

ø10, ø15, ø25

Consult with SMC regarding water resistant types with the above model numbers. *2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

- 1 m M (Example) M9NWM
- 3 m L (Example) M9NWL
- 5 m Z (Example) M9NWZ
- * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.

* Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1593 for details.

* The auto switch is shipped together, but not assembled.

D-

-X□

Technical

Data

1551

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

* Solid state auto switches marked with a "O" symbol are produced upon receipt of order.

Specifications

Bore size (mm)	10	15	25
Fluid	Air		
Lubrication	Non-lube		
Action		Double acting	
Maximum operating pressure (MPa)		0.7	
Min. operating pressure (MPa)	0.2		
Proof pressure (MPa)	1.05		
Ambient and fluid temperature (°C)	-10 to 60 (No freezing)		
Piston speed (mm/s)	50 to 500		
Cushion	В	uilt-in shock absorbe	er
Stroke length tolerance (mm)	0 to 250st: +1.0 251 to 1000st: +1.4 1001st to: +1.8		1001st to: +1.8 0
Stroke adjustment movable range (mm) Note 1)) -1.2 to 0.8 -1.4 to 0.6		
Piping type	Centralized piping		
Port size Note 2)	M5 :	< 0.8	Rc 1/8

Note1) The stroke adjustment movable range in the above table is that for the standard adjustment bolt. For more information, please refer to page 1559.

Note 2) W	lith ø25, piping screws	can be selected by the customer	. (Refer to "How to Order".)
-----------	-------------------------	---------------------------------	------------------------------

Shock	Absorber	Specifications

Applicable bore	size (mm)	10, 15	25
Shock absorber model		RB0805-X552	RB1006-X552
Max. energy absorption (J) 0.98 3.92		3.92	
Stroke absorpti	on (mm)	5 6	
Max. impact sp	eed (m/s) Note 1)	¹⁾ 0.05 to 5	
Max. operating freq	requency (cycle/min) 80 70		70
	When extended	1.96	4.22
Spring force (N) When retoacted		3.83	6.18
Weight (g)		15	25

Note 1) Represents the maximum absorption energy per cycle. Thus, the operation frequency can be increased with the absorption energy.

Note 2) The shock absorber service life is different from that of the CY1F cylinder depending on operating conditions. Refer to the Specific Product Precautions for the replacement period.

Standard Stroke

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)
10	50, 100, 150, 200, 250, 300	500
15	15 50, 100, 150, 200, 250, 300, 350, 400, 450, 500	
25	100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600	1200

The stroke is available in 1 mm increments with the maximum stroke as the upper limit. For a stroke in the standard stroke range, suffix the part number with -XB10. If the stroke does not fall within the standard stroke range, suffix the part no. with -XB11. Refer to the Made to Order Specifications on pages 1733 and 1739.

Magnetic Holding Force

			Unit: N
Bore size (mm)	10	15	25
Magnetic holding force	53.9	137	363

Order	ľ	Made to Order Specifications	
_	•	Click here for details	

Symbol	Specifications	
-XB10 Intermediate stroke (Using exclusive body)		
-XB11 Long stroke		

Magnetically Coupled Rodless Cylinder Low Profile Guide Type CY1F Series

Theoretical Output

								Unit: N	
ſ	Bore size	re size Piston Operating pres				essure [l	ssure [MPa]		
		(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	
	10	78	15	23	31	39	46	54	
	15	176	35	52	70	88	105	123	
ſ	25	490	98	147	196	245	294	343	

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Option

Adjustment Bolt

Bore size (mm)	Standard adjustment bolt	25 mm adjustment bolt
10, 15	CYF-S10	CYF-L10
25	CYF-S25	CYF-L25

Weight

U					
Model	Basic weight	Additional weight per each 50 mm of stroke		Weight of adjustment bolt for 25 mm adjustment	
CY1F10	0.520	0.095	0.004	0.012	
CY1F15	0.815	0.133	0.004	0.012	
CY1F25	1.970	0.262	0.007	0.021	

Calculation method

Example: CY1F15-150AL

 Basic weight
 0.815 kg

 Additional weight
 0.133 kg/50 st

 Standard adjustment bolt weight
 0.004 kg

 Weight of adjustment bolt for 25 mm adjustment -0.012 kg
 0.815 + 0.133 x 150 + 50 + 0.004 + 0.012 = 1.23 (kg)

 Oylinder stroke
 25 mm adjustment bolt
 For 25 mm adjustment bolt

 Right
 Standard adjustment bolt
 Standard adjustment bolt

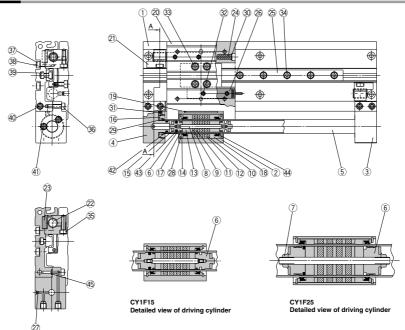
Replacement Parts

Part No. of Replacement Shock Absorber

Bore size (mm)	Shock absorber model no.
10, 15	RB0805-X552
25	RB1006-X552

Note) Order 2 units for each unit of cylinder.

Replacement Actuator (Cylinder)

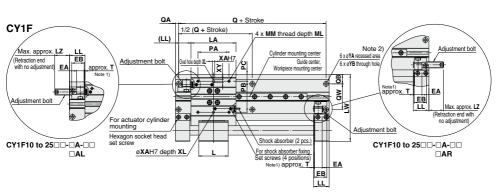

CY1F B 10			Note) "-> nc of int	KB10° or "-XB11" is the required at the end the part number for ermediate or long okes.
		R L		d piping on right d piping on left
Bore size (mm) ●	Thr	ead	type	
15 15	Symbol	Th	read type	Bore size (mm)
25 25	Nil		M	10, 15
			Rc	
	TN		NPT	25
	TF		G	

CY1S	
CY1L	
CY1H	
CY1F	
CYP	

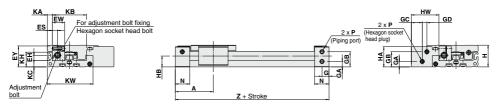
CY3B CY3R

Construction

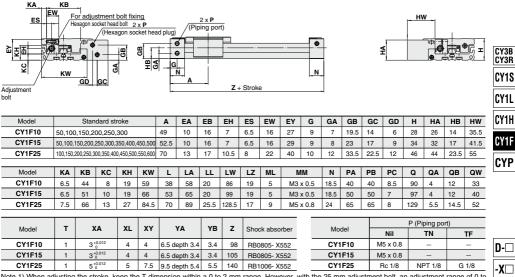
Section A-A


Component Parts

No.	Description	Material	Note
1	Body (rodless cylinder)	Aluminum alloy	Anodized
2	Body	Aluminum alloy	Hard anodized
3	End cover A	Aluminum alloy	Hard anodized
4	End cover B	Aluminum alloy	Hard anodized
5	Cylinder tube	Stainless steel	
6	Piston	Aluminum alloy	Chromate
7	Piston nut	Carbon steel	(Only for ø25)
8	Shaft	Stainless steel	
9	Piston side yoke	Rolled steel plate	Zinc chromated
10	External slider side yoke	Rolled steel plate	Zinc chromated
11	Magnet A	-	
12	Magnet B		
13	Piston spacer	Aluminum alloy	Chromate
14	Spacer	Rolled steel plate	Nickel plated
15	Bumper	Urethane rubber	
16	Attachment ring	Aluminum alloy	Hard anodized
17	Wear ring A	Special resin	
18	Wear ring B	Special resin	
19	Wear ring C	Special resin	
20	Slide table	Aluminum alloy	Hard anodized
21	Adjuster holder	Carbon steel	Electroless nickel plated
22	Adjustment bolt	Chrome molybdenum steel	Nickel plated
23	Adjuster holder positioning key	Carbon steel	Zinc chromated
24	Magnet	_	


No.	Description	Material	Note
25	Guide	_	
26	Shock absorber	—	
27	Steel ball	Bearing steel	
28	Type C retaining ring for hole	Carbon tool steel	Phosphate coated
29	Type C retaining	Hard steel wire	(ø15)
29	ring for axis	Stainless steel	(ø10, ø25)
30	Retaining ring	Stainless steel	
31	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
32	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
33	Hexagon socket head bolt	Chrome molybdenum steel	Nickel plated
34	Hexagon socket head bolt	Chrome molybdenum steel	Nickel plated
35	Hexagon socket head bolt	Chrome molybdenum steel	Nickel plated
36	Hexagon socket head bolt	Chrome molybdenum steel	Nickel plated
37	Hexagon socket head bolt	Chrome molybdenum steel	Nickel plated
38	Flat washer	Rolled steel	Nickel plated
39	Square nut	Carbon steel	Nickel plated
40	Hexagon socket head plug	Chrome molybdenum steel	Nickel plated
41	Hexagon socket head plug	Chromo molubdonum stool	Nickel plated
41	nexayon socket nead plug	Chironne morybuenum steer	(Hexagon socket head taper plug for ø25)
42	Cylinder tube gasket	NBR	
43	Piston seal	NBR	
44	Scraper	NBR	
45	Body (rodless cylinder) gasket	NBR	

Magnetically Coupled Rodless Cylinder Low Profile Guide Type CY1F Series


Dimensions

Concentrated piping on right (CY1F10 to 25 R-D-D)

Concentrated piping on left (CY1F10 to 25□L-□□-□□)

Note 1) When adjusting the stroke, keep the T dimension within a 0 to 2 mm range. However, with the 25 mm adjustment bolt, an adjustment range of 0 to 26 mm is available.

Note 2) There are four øYA and øYB dimensions with a 50 mm stroke.

1555

Technical

Data

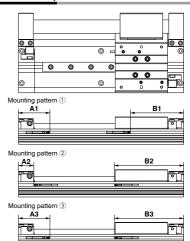
CY1F Series **Auto Switch Mounting**

(mm)

(mm)

Proper Auto Switch Mounting Position (Detection at stroke end)

D-A9 . D-A9 V


Bore size Mounting pattern Mounting pattern Mounting p							()	
Bore size	Mounting	pattern(1)	Mounting	pattern(2)	Mounting pattern3		Note 2)	
(mm)	A1	B1	A2	B2	A3	B3	range	
10	38	60	18	80	38	80	9	
15	39	66	19	86	39	86	10	
25	44.5	95.5	24.5	115.5	44.5	115.5	11	

D-M9, D-M9V, D-M9W, D-M9WV D-M9 A. D-M9 AV

- ,	-						()
Bore size	Mounting pattern(1)		Mounting pattern ²		Mounting pattern3		Note 2) Operating
(mm)	A1	B1	A2	B2	A3	B3	range
10	34	64	22	76	34	76	5.5
15	35	70	23	82	35	82	5
25	40.5	99.5	28.5	111.5	40.5	111.5	5

Note 1) Adjust the auto switch after confirming the operating conditions in the actual setting.

Note 2) Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately ±30% dispersion). It may vary substantially depending on an ambient environment.

∧ Caution

(1)When adjusting the stroke, confirm the minimum stroke for auto switch mounting.

See the table below for the minimum stroke for auto switch mounting.

Minimum Stroke for Auto Switch Mounting (1 pc)

mounting (1	Mounting (1 pc.)		
Bore size (mm)	D-A9□ D-A9□V D-M9□ D-M9□V	D-M9□W D-M9□WV D-M9□A D-M9□AV	
10			
15	5	10	
25			

num Ctualca fax Auto Cuvitab Maunting (2 nac.)

Minimum Stroke for Auto Switch Mounting (2 pcs.)			(mm)		
Bore size (mm)	D-A90 D-A96	D-A93	D-A90V D-A96V D-A93V	D-M9□ D-M9□W	D-M9 V D-M9 WV D-M9 A D-M9 A
Mounting pattern (1), (2)	32	35	22	32	20
Mounting pattern ③		20		1	2

Mounting of Auto Switch

As shown below, there are 3 ways to mount the auto switch according to 3 types of electrical entries. Insert the auto switch into the auto switch groove. Then use a flat head watchmaker's screwdriver to tighten the included Note) When tightening the mounting screw (included with the auto switch), use a watchmaker's screwdriver with a handle 5 to 6mm in diameter.

Tightening Torgue of Auto Switch Mounting Screws (N·m) Auto switch model Tightening torque auto switch mounting screws. D-A9[(V) 0.10 to 0.20 D-M9 (V) D-M9 W(V) 0.05 to 0.15 D-M9 A(V Mounting pattern (1 Mounting pattern Mounting pattern Auto switch Watchmaker's screwdriver Auto switch mounting screw (included with the auto switch) 1556 **SMC**

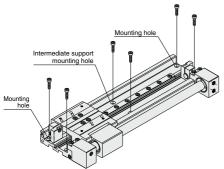
Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

A Caution

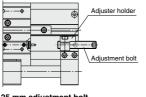
1. Do not apply a large impact or excessive moment to the slide table (slider).

Because the slide table (slider) is supported by a precision bearing, do not apply a large impact or excessive moment when mounting a workpiece.


2. Align carefully when connecting to a load with an external guide mechanism.

Altough a magnetic rodless cylinder (CY1F series) can directly receive a load within the allowable range of the guide, it is necessary to align sufficiently when connecting to a load with an external guide mechanism.

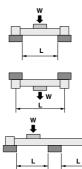
The longer the stroke is, the greater the displacement of the shaft center becomes. Therefore, adopt a connection method (floating mechanism) that can ensure absorption of the displacement.


3. Be sure to use the 4 mounting holes on both ends of the guide body when mounting the product on equipment.

The mounting hole at the center of the guide body is used to mount an intermediate support. Be sure to use the 4 mounting holes at both ends to secure the product.

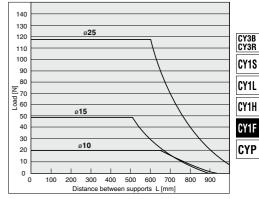
4. When a 25 mm adjustment bolt is selected, the mounting holes will be hidden behind it. Adjust the adjustment bolt after the cylinder is installed.

According to "2. Adjusting bolt adjustment" on page 1559, move the adjustment bolt to a position where it does not interfere with any of the mounting holes and secure the cylinder with mounting screws. After securing the cylinder, readjust the stroke with the adjustment bolt.


25 mm adjustment bolt

▲ Caution

 Long stroke operation causes deflection of the path table or cylinder tube. In such a case, provide an intermediate support.


Provide an intermediate support with the mounting holes on the center of the path table so that the distance between supports given as L in the figure will not exceed the value shown in the graph.

- If the counter surface lacks precision, malfunction may result so adjust the level at the same time.
- In an environment where vibration or impact occurs, provide an intermediate support even if the distance is within the allowable range in the graph.

In case the product is installed on the ceiling, regard the mounting bolt pitch as L.

Distance between Load and Supports

There are limitations on the load mass and operating pressure in case the product is used in the vertical direction.

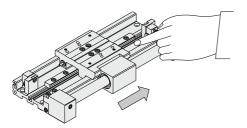
When using the product in the vertical direction, confirm the allowable values in "Vertical Operation" in Model Selection (1) on page 1548. If the allowable value is exceeded, the magnet coupling may slip off, causing the workpiece to drop down.

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Handling

ACaution

1. Do not inadvertently move the guide adjusting unit.


The guide is installed at the proper tightening torque. Do not loosen the mounting bolts of the guide.

2. Do not operate the magnetic rodless cylinder if the magnet couplings on the actuator are displaced.

If the magnet couplings are displaced by an external force beyond the holding force, supply an air pressure of 0.7 MPa to the cylinder port to return the external slider to the right position of the stroke end.

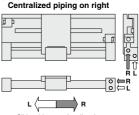
3. Take precautions to avoid getting your hands caught in the unit.

Be careful not to let your hand caught between the slide table and adjuster holder at the stroke end. Install a protective cover or take some other measures to keep any part of the human body from directly touching the place.

4. Never disassemble the magnetic component parts (external slider, internal slider) of the actuator (cylinder).

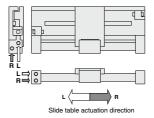
If will cause decline of the holding force, etc.

5. Do not use the cylinder in an environment where the cylinder is expose to moisture, adhesive foreign matter, dust or liquid such as water or cutting fluid.


If the cylinder is used in an environment where the lubrication of the cylinders sliding parts is compromised, please consult SMC.

Piping

▲ Caution


1. Be careful about the direction of the piping port and that of the slide table movement.

The direction of the piping port and that of the slide table movement differ between the right side centralized piping and left side centralized piping.

Slide table actuation direction

Centralized piping on left

2. The plug position of the piping port can be changed to suit the operating conditions.

When screwing in the plug for the second time, wrap a sealant tape around the plug to prevent leakage.

(1) M5

First tighten lightly until the rotation stops. Then tighten an additional 1/6 to 1/4 turn. (2) Rc 1/8

Tighten with a 7 to 9 N·m torgue using tightening tools.

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Adjustment

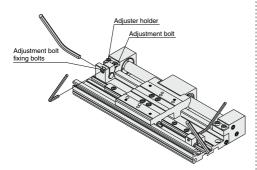
ACaution

1. Stroke adjustable range

The stroke of CY1F series can be controlled by adjusting the attached adjustment bolt.

For stroke adjustment amount, please refer to the table below.

		(mm)
Bore size (mm)	Standard adjustment bolt	25 mm adjustment bolt
10 15	-1.2 to 0.8	-25.2 to 0.8
25	-1.4 to 0.6	-25.4 to 0.6


The adjustment values above are those for one side.

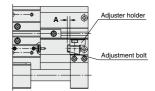
2. Adjusting bolt adjustment

1) Loose the adjustment bolt fixing bolts.

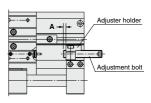
- Insert a hexagon wrench into a hexagon hole at the end of the adjustment bolt to adjust the adjustment bolt.
- 3) After adjustment, tighten the adjustment bolt fixing bolts.

Bore size (mm)	Adjustment bolt fixing bolts	Tightening torque	Adjustment width across flats
10	М3	1.0 to 1.3 N·m	4
15		1.0 10 1.3 10/11	4
25	M5	4.6 to 6.2 N·m	5

▲Caution


1. When adjusting the stroke, be careful about the operating pressure limits.

When making the stroke smaller than the reference stroke with the adjustment bolt, operate at a pressure below the operating pressure limit in (1) "Intermediate stop by external stopper or stroke adjustment with adjustment bolt" on page 1548. If the operating pressure limit is exceeded, the magnet coupling on the actuator (cylinder) will sip off.


2. When adjusting the stroke, use the distance from the end of the adjustment bolt to the end of the adjuster holder as a guideline.

If dimension A is made smaller than 0, the slide table and adjuster holder will collide, resulting in damage to the slide table such as scratches or gouges.

				(mm)
Bore size (mm)	At the minimum stroke of standard adjustment bolt	At the minimum stroke of 25 mm adjustment bolt	Basic stroke	At maximum stroke adjustment
10	A < 2	A < 26	A = 0.8	
15		71 4 20	71 - 0.0	$A \ge 0$
25	A < 2	A < 26	A = 0.6	

Standard adjustment bolt

25 mm adjustment bolt

CY3B CY3R
CY1S
CY1L
CY1H
CY1F
CYP

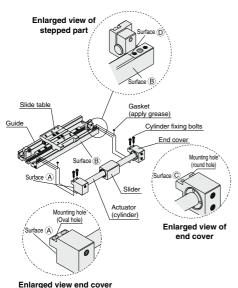
D--X□ Technical Data

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Maintenance and Replacement

▲ Caution


Replacement of Actuator

1. The actuator (cylinder) of the CY1F series can be replaced.

Refer to "Replacement Actuator (Cylinder)" on page 1553 about how to order .

- Replacement of actuator (cylinder) of the CY1F series.
 - 1) Remove the 4 cylinder fixing bolts and pull out the actuator from the guide.
 - Apply grease to the gaskets attached to the replacement actuator (cylinder) and replace the installed gaskets with the new ones.
 - 3) Fit the slider of the replacement actuator into the recessed part of the slide table. Align the surface C (on the side with round mounting holes) of the end cover of the replacement actuator and surface D of the stepped part on the guide.
 - 4) In the condition described in (3), put surface A and surface B in close contact with each other. Tighten the 4 cylinder fixing bolts evenly.

Bore size (mm)	Cylinder fixing bolt	Tightening torque	
10	M3	0.55 to 0.72 N·m	
15	Wio	0.35 10 0.72 1011	
25	M5	2.6 to 3.5 N·m	

.

3. Be sure to fasten the cylinder fixing bolts. Fasten the cylinder fixing bolts firmly. If they become loose, damage or malfunction may result. After replacing the actuator, be sure to conduct a test run before actually using the product.

1560

ACaution

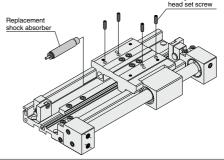
Replacement of Shock Absorber

1. The shock absorber of the CY1F series can be replaced.

The shock absorber should be replaced as a spare part if a deline in the energy absorption capacity is observed.

Refer to the table below about how to order a replacement shock absorber.

Bore size (mm)	No.	
10	BB0805-X552	
15	HB0803-A332	
25	RB1006-X552	


2. Replacement of shock absorber

- Follow the steps below to replace the shock absorber.
- 1) Remove the workpiece from the slide table.
- 2) Loosen the 4 hexagon socket head screws on the top of the slide table and pull out the shock absorber.
- Insert the replacement shock absorber into the slide table until it reaches the rear end and tighten 4 hexagon socket head screws.

Bore size (mm)	Hexagon socket head set screw	Tightening torque	
10	M3	0.37 to 0.45 N·m	
15	INI3	0.37 10 0.43 10.11	
25	M5	0.54 to 0.64 N·m	

3.Be careful about the tightening torque of the hexagon socket head screws.

Be careful excessive tightening may cause damage or malfunction of the shock absorber. Hexagon socket

Service Life and Replacement Period of Shock Absorber

▲ Caution

1. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08

2 million times RB10 ____ to RB2725

Note 1) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.