
Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve

VXZ Series

VX2 VXK VXD

VXZ

VXS

VXB VXE

VXP

VXR

VXH

VXF

VX3

VXA

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve VXZ Series

Flame resistance **UL94V-0** conformed Flame resistant mold coil material

Piping variations Thread piping, One-touch fitting

we reduced the collision sound of the core when ON (when the valve is open). Because of the clearance, when using highly viscous fluids such as oil, the armature does not get stuck and the responsiveness when OFF (when the valve is closed) is improved.

Improved armature durability

Low-noise construction

Metal noise reduced by the rubber bumper

Body material

Aluminum, Resin Air (VXZ2A)

C37, Stainless steel

Water/ Oil/Air/ leated water/

Built-in full-wave rectifier type (AC specification)

- Improved durability Service life is extended by the special construction. (compared with current AC specification)
- Reduced buzz noise Rectified to DC by the full-wave rectifier, resulting in a buzz noise reduction.
- Improved OFF response Specially constructed to improve the OFF response when operated with a higher viscosity fluid such as oil.
- Low-noise construction Specially constructed to reduce the metal noise during operation.

Variations

-Eluids

Madel	Applicable fluid*				
Model	Air	Water	Oil	Heated water	(Fightenperature)
For Air VXZ2 0 P.176	•				
For Water VXZ2 2 P.179	•	•			
For Oil VXZ2 3 P.182	•	•			
For Heated water VXZ2 5 P.185	•	•		•	
For High temperature oil VXZ2 6 P.188	•	•			•

<body s<="" th=""><th colspan="5"><body size=""></body></th></body>	<body size=""></body>				
Model	Body size	Orifice diameter mmø	Port size	Body material	Fluid
			1/4, 3/8	Aluminum	
VV703		40	ø10, ø12, ø3/8"	Resin	Air
VXZ2 ³	10A	10	4/4 0/0	C37	
			1/4, 3/8	Stainless steel	
VV704	454	45	1/0	C37	Air Water
VXZ2 ⁴ _B	15A	15	1/2	Stainless steel	
VV705			0/4	C37	Oil Heated water
VXZ2 ⁵	20A	20	3/4	Stainless steel	
VV706		0.5	_	C37	High temperature oil
VXZ2 _D	25A	25	1	Stainless steel	Linder annie na

^{*} For details, refer to pages 209 and 210.

INDEX

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve

VXZ Series

VX2 VXK VXD VXZ VXS VXB VXE VXP VXR VXH VXF VX3 VXA

Commo	n Specifications P. 174			
Selectio	n Steps P. 175			
F	or Air			
	w Rate Characteristics, Fluid and Ambient Temperature, Valve Leakage… P. 176, 177			
H	ow to OrderP. 178			
F	or Water			
Flo	w Rate Characteristics, Fluid and Ambient Temperature, Valve Leakage ··· P. 179, 180			
H	ow to OrderP. 181			
F	or Oil			
Flo	w Rate Characteristics, Fluid and Ambient Temperature, Valve Leakage ··· P. 182, 183			
H	ow to OrderP. 184			
F	or Heated Water			
Flo	w Rate Characteristics, Fluid and Ambient Temperature, Valve Leakage ···· P. 185, 186			
H	ow to OrderP. 187			
F F	or High Temperature Oil			
Flo	w Rate Characteristics, Fluid and Ambient Temperature, Valve Leakage ···· P. 188, 189			
H	ow to OrderP. 190			
	pecial Options P. 192			
Constru	ctionP. 194			
Dimensi	ons			
For Ai	ir, Water, Oil			
Boo	ly material: ResinP. 196			
Boo	dy material: Aluminum, C37, Stainless steel P. 198			
For H	eated Water, High Temperature Oil			
Boo	dy material: C37, Stainless steelP. 200			
Replacement PartsP. 201				
Glossary of Terms P. 202				
Solenoid Valve Flow Rate CharacteristicsP. 203				
Flow Rate Characteristics P. 208				
Specific Product Precautions P. 209				
Эрссии	F. 209			

VXZ Series **Common Specifications**

Standard Specifications

Valve	Valve construction		Zero differential pressure type pilot operated 2 port diaphragm type	
	Withstand pres	sure	2.0 MPa (Resin body type 1.5 MPa)	
	Body material		Aluminum, Resin, C37 (Brass), Stainless steel Note 1)	
specifications Seal material			NBR, FKM, EPDM	
	Enclosure		Dust-tight, Water-jet-proof type (equivalent to IP65) Note 2) 4)	
	Environment		Location without corrosive or explosive gases	
	AC AC		100 VAC, 200 VAC, 110 VAC, 230 VAC, (220 VAC, 240 VAC, 48 VAC, 24 VAC) Note 3)	
	Rated voltage	DC	24 VDC, (12 VDC) Note 3)	
Coil	Allowable voltage fluctuation		±10% of rated voltage	
specifications	Allowable leakage	AC (Built-in full-wave rectifier type)	5% or less of rated voltage	
	voltage	DC	2% or less of rated voltage	
	Coil insulation type		Class B (for air, water, oil), Class H (for heated water, high temperature oil)	

Note 1) Body material is aluminum. Resin body is available only for the VXZ23A

Note 2) Electrical entry flat terminal type terminal is IP40.

Note 3) Voltage in () indicates special voltage. (Refer to page 192.)

Note 4) For enclosure, refer to "Glossary of Terms" on page 202. When using the product in a place which requires water resistance, please contact SMC.

⚠ Be sure to read "Specific Product Precautions" before handling.

Men pressure differential is less than 0.01 MPa, operation may become unstable. Please contact SMC in case of low flow operation. (Refer to page 195.)

Solenoid Coil Specifications

Normally Closed (N.C.) DC Specification

Class B

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXZ23, 24	7	55
VXZ25, 26	10.5	65

Class H

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXZ23, 24	12	100
VXZ25, 26	15	100

Normally Open (N.O.)

DC Specification Class B

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXZ2A, 2B	8.5	70
VXZ2C, 2D	12.5	70

Class H

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXZ2A, 2B	12	100
VXZ2C, 2D	15	100

Note 1) Power consumption, Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%)

Note 2) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

Normally Closed (N.C.)

AC Specification (Built-in Full-wave Rectifier Type) Class B

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXZ23, 24	9.5	70
VXZ25, 26	12	70

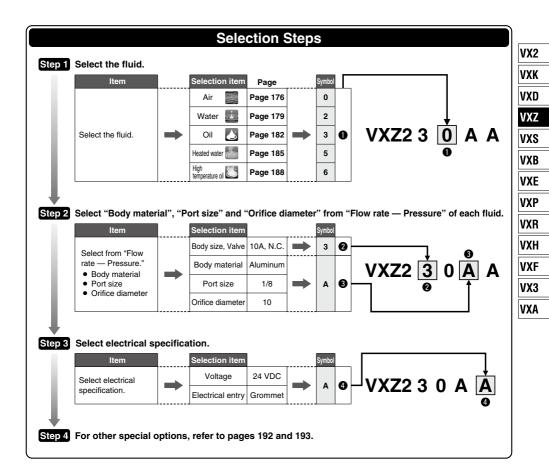
Class H

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXZ23, 24	12	100
VXZ25, 26	15	100

Normally Open (N.O.)

AC Specification (Built-in Full-wave Rectifier Type) Class B

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) NOTE 3)
VXZ2A, 2B	10	70
VXZ2C, 2D	14	70


Class H

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXZ2A, 2B	12	100
VXZ2C, 2D	15	100

Note 1) Power consumption, Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%) Note 2) There is no difference in the frequency and the inrush and energized apparent power, since a rectifying circuit is used in the AC (Built-in full-wave

Note 3) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

VXZ Series Selection Steps

* Can be used with low vacuum (up to 133 Pa.abs).

Flow Rate Characteristics

N.C.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

Body	Port size (Nominal	Orifice diameter	Madal	pressure	Max. operating pressure differential Note 3) (MPa)		Flow rate characteristics				Max. system	Note 2) Weight
material	diameter)	(mmø)	Model	differential Note 1) (MPa)	AC	DC	C [dm³/(s·bar)]	b	Cv	Effective area (mm²)	(MPa)	(g)
	ø10						6.2		1.7			
Resin	ø3/8"						5.3	0.38	1.2			400
	ø12	10	VXZ230			0.7	8.0		2.0			
Aluminum	1/4 (8A)			0	1.0	0.7	8.5	0.44	2.4	_	1.5	600
Aluminum	3/8 (10A)			"	1.0	'.0 [9.3	0.43	2.6	1	1.5	600
C37,	1/2 (15A)	15	VXZ240				23.0	0.34	6.0			720
Stainless	3/4 (20A)	20	VXZ250			1.0	36.0	0.26	9.4			1100
steel	1 (25A)	25	VXZ260			1.0		_		185		1300

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orlice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Air) Note 1) 2)
NBR (FKM) Note 3)	15 cm ³ /min or less (Aluminum body type)
	15 cm ³ /min or less (Resin body type)
	1 cm ³ /min or less (Metal body type)

External Leakage

Seal material	Leakage rate (Air) Note 1)
	15 cm ³ /min or less (Aluminum body type)
NBR (FKM) Note 3)	15 cm ³ /min or less (Resin body type)
	1 cm ³ /min or less (Metal body type)

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Note 3) For seal material/FKM, refer to "Other options" on page 192 for the selection.

Note 4) When the product is used with low vacuum (to 133 Pa.abs), give caution to the external leakage outlined above.

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve VXZ Series

VX2 VXK

VXD

VXZ VXS VXB

VXE

VXP VXR

VXF VX3 VXA

Flow Rate Characteristics

N.O.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normal	ly Open (N.O.)										
Body	Port size (Nominal		Mandal	Min. operating pressure	Max. operating pressure differential Note 3) (MPa)						Max. system	Note 2) Weight
material	diameter)	(mmø)	Model	differential Note 1) (MPa)	AC	DC	C [dm³/(s·bar)]	b	Cv	Effective area (mm²)	(MPa)	(g)
	ø10						6.2		1.7			
Resin	ø3/8"						5.3	0.38	1.2			430
	ø12	10	VXZ2A0				8.0		2.0]		
Aluminum	1/4 (8A)			0	0.7	0.6	8.5	0.44	2.4	_	1.5	630
Aluminum	3/8 (10A)			"	0.7	0.7	9.3	0.43	2.6		1.5	630
C37,	1/2 (15A)	15	VXZ2B0	1			23.0	0.34	6.0			750
Stainless	3/4 (20A)	20	VXZ2C0				36.0	0.26	9.4			1150
steel	1 (25A)	25	VX72D0					_		185		1350

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

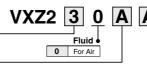
Internal Leakage

Seal material	Leakage rate (Air) Note 1) 2)
NBR (FKM) Note 3)	15 cm ³ /min or less (Aluminum body type)
	15 cm ³ /min or less (Resin body type)
	1 cm ³ /min or less (Metal body type)

External Leakage

=xto:::a: =oa:tago					
Seal material	Leakage rate (Air) Note 1)				
	15 cm ³ /min or less (Aluminum body type)				
NBR (FKM) Note 3)	15 cm ³ /min or less (Resin body type)				
	1 cm ³ /min or less (Metal body type)				

Note 1) Leakage is the value at ambient temperature 20°C.


Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Note 3) For seal material/FKM, refer to "Other options" on page 192 for the selection.

How to Order (Single Unit)

Common Specifications

Seal material	NBH
Coil insulation type	Class B
Thread type	Rc*

* One-touch fittings are attached to the resin body type.

er	٠

Size	/Valve ty	ре		Bod	y material/	Port size/Orifice o	diameter
Symbol	Body size	Valve type		Symbol	Body material	Port size	Orifice diameter
3	10A	N.C.		Α	Aluminum	1/4	
Α	N.O.			В	Aluminum	3/8	
			<i>'</i> ,	С	D!	ø10 One-touch fitting	10
			1	D	Resin (With bracket)	ø3/8" One-touch fitting	
			1	E	(Trial Diagnot)	ø12 One-touch fitting	
4		N.C.		F	C37		

	4	15A	N.C.		F	C37	1/2	15	
	В	ISA	N.O.	l	G	Stainless steel	1/2	15	
=									
	5	20A	N.C.		Н	C37	3/4	20	
	С	20A	N.O.	l	7	Stainless steel	3/4	20	
\equiv									
	6	25A	N.C.		K	C37	4	25	
	D	25A	N.O.	l	L	Stainless steel	· ·	25	

	Voltage/Electrical entry					
	Symbol	Voltage	Electrical entry			
	A	24 VDC	Grommet			
	В	100 VAC	Grommet			
	C	110 VAC	(With surge) Voltage			
	D	200 VAC	suppressor /			
	Е	230 VAC				
	F	24 VDC				
	G	24 VDC	DIN terminal			
	Н	100 VAC	(With surge voltage			
	J	110 VAC	suppressor			
	K	200 VAC				
	L	230 VAC				
	M 24 VDC		Conduit terminal			
	N	100 VAC	With surge voltage			
	P	110 VAC	suppressor /			
	Q	200 VAC				
	R	230 VAC				
	S	24 VDC	Conduit			
	Т	100 VAC	With surge voltage			
	U	110 VAC	\suppressor /			
	٧	200 VAC				
	W	230 VAC				
	Y	24 VDC	Flat terminal			
ì	Z		Other voltages			

For other special options,

and 193.				
24 VAC				
48 VAC				
220 VAC				
240 VAC				
12 VDC				
DIN terminal with light				
Conduit terminal with light				
Without DIN connector				
Low concentration ozone resistant				
M)				
M				
NPT thread				
With bracket (Standard for resin body)				
Special electrical entry direction				

Dimensions → Page 196 and after

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve VXZ Series

* Can be used with air (Up to 133 Pa.abs for vacuum). Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications for air.

Flow Rate Characteristics

N.C.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

VX2

VXK

VXD

VXZ

VXS

VXB

VXE

VXP

VXR

VXH

VXF VX3

VXA

Normally Closed (N.C.)

•		.,	(
Γ	Body	Port size	Orifice diameter	Model		Max. operating pressure differential (MPa) Note 3		Flow rate characteristics		Max. system	Weight Note 2)
	material	(Nominal diameter)	(mmø)	Wodel	differential Note 1) (MPa)	AC	DC	Kv	Cv	pressure Note 3) (MPa)	(g)
		1/4 (8A)	10	VXZ232	0	1.0	0.7	1.6	1.9	1.5	600
	C37,	3/8 (10A)	10					2.0	2.4		
Stainless steel		1/2 (15A)	15	VXZ242				4.6	5.3		720
	3/4 (20A)	20	VXZ252			1.0	7.8	9.2		1100	
		1 (25A)	25	VXZ262			1.0	8.7	10.2		1300

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 60	-20 to 60

Note) With no freezing

Valve Leakage Rate

internal Leakage				
Seal material	Leakage rate (Water) Note 1) 2)			
NBR (FKM) Note 3)	0.1 cm ³ /min or less			

External Leakage

Seal material	Leakage rate (Water) Note 1)		
NBR (FKM) Note 3)	0.1 cm ³ /min or less		

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Note 3) For seal material/FKM, refer to "Other options" on page 192 for the selection.

Flow Rate Characteristics

N.O.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Open (N.O.)

Body	Port size	e Orifice diameter	Model	Min. operating pressure	Max. operating pressure differential Note 3 (MPa)		Flow rate characteristics		Max. system	Weight Note 2)
material	(Nominal diameter)	(mmø)	Model	differential Note 1) (MPa)	AC	DC	Kv	Cv	pressure Note 3) (MPa)	(g)
	1/4 (8A)	10	VXZ2A2		0.7	0.6	1.6	1.9	1.5	630
C37,	3/8 (10A)	10	VAZZAZ	0			2.0	2.4		
Stainless	1/2 (15A)	15	VXZ2B2				4.6	5.3		750
steel	3/4 (20A)	20	VXZ2C2				7.8	9.2		1150
	1 (25A)	25	VXZ2D2				8.7	10.2		1350

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)		
1 to 60	-20 to 60		

Note) With no freezing

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Water) Note 1) 2)		
NBR (FKM) Note 3)	0.1 cm ³ /min or less		

Į	External Leakage					
ſ	Seal material	Leakage rate (Water) Note 1)				
ſ	NBR (FKM) Note 3)	0.1 cm ³ /min or less				

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Note 3) For seal material/FKM, refer to "Other options" on page 192 for the selection

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve

Common Specifications Seal material

Coil insulation type Class B

Thread type

VX2

VXK

VXD

VXZ

VXS

VXB

VXE

VXP

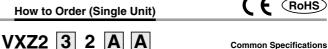
VXR

VXH VXF VX3 VXA

Rc

How to Order (Single Unit)

25


w

Υ

z

230 VAC

24 VDC

Fluid 2 For Water ◆Size/Valve type Body material/Port size/Orifice diameter Symbol Body size Valve type Symbol Body material Port size Orifice diameter 3 N.C. Α 1/4 10A C37 Α N.O. В 3/8 10 С 1/4 Stainless steel D 3/8 4 N.C. F 15A 1/2 15 В N.O. G Stainless steel 5 N.C. Н C37 20A 3/4 20

K

L

Stainless steel

C37

Stainless steel

1

• Volta	age/Electrical entry		
Symbol	Voltage	Electrical entry	
A	24 VDC	Grommet	
В	100 VAC	Grommet	
С	110 VAC	(With surge voltage	
D	200 VAC	\suppressor /	
E	230 VAC		
F	24 VDC		
G	24 VDC	DIN terminal	
Н	100 VAC	With surge voltage	
J	110 VAC	\suppressor /	
K	200 VAC		
L	230 VAC		
М	24 VDC	Conduit terminal	
N	100 VAC	With surge voltage	
Р	110 VAC	\suppressor / \suppressor	
Q	200 VAC		
R	230 VAC	¥ • • • • • • • • • • • • • • • • • • •	
S	24 VDC	Conduit	
T	100 VAC	With surge voltage	
U	110 VAC	suppressor	
V	200 VAC		

Other voltages

Flat terminal

For other special options, refer to pages 192 and 193.				
	24 VAC			
	48 VAC			
Special voltage	220 VAC			
, ,	240 VAC			
	12 VDC			
DIN terminal with lig	ght			
Conduit terminal wi	erminal with light			
Without DIN conne	Without DIN connector			
Applicable to deion (Seal material: FKN	pplicable to deionized water eal material: FKM)			
Seal material: EPD	M			
Oil-free				
G thread				
NPT thread				
With bracket Special electrical entry direction				

Dimensions → Page 198 and after

С

6

D

25A

N.O.

N.C.

N.O.

Can be used with air and water.

Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications of the fluid used

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Flow Rate Characteristics

N.C.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating pressure	e differential ^{Note 3)} (MPa)	Flow rate ch	aracteristics	Max. system	Weight Note 2)
material	(Nominal diameter)	(mmø)	Wodel	differential Note 1) (MPa)		DC	Kv	Cv	pressure Note 3) (MPa)	(g)
	1/4 (8A)	10	VXZ233				1.6	1.9		600
C37,	3/8 (10A)	10	V AZZ33				2.0	2.4		600
Stainless	1/2 (15A)	15	VXZ243	0	0	.7	4.6	5.3	1.5	720
steel	3/4 (20A)	20	VXZ253				7.8	9.2		1100
	1 (25A)	25	VXZ263				8.7	10.2		1300

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Oil) Note 1) 2)			
FKM	0.1 cm ³ /min or less			

External Leakage

Seal material	Leakage rate (Oil) Note 1)			
FKM	0.1 cm ³ /min or less			

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve VXZ Series

VX2 VXK

VXD

VXZ VXS VXB

VXE

VXP

VXR

VXF VX3 VXA

N.O.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Open (N.O.)

Homma	Normany Opon (Mo)									
Body	Port size	Orifice diameter	Model	Min. operating pressure		Max. operating pressure differential Note 3) (MPa)		Flow rate characteristics		Weight Note 2)
material	(Nominal diameter)	(mmø)	Model	differential Note 1) (MPa)	AC	DC	Kv	Cv	pressure Note 3) (MPa)	(g)
	1/4 (8A)	10	VXZ2A3				1.6	1.9		600
C37,	3/8 (10A)	10	VAZZAS				2.0	2.4		630
Stainless	1/2 (15A)	15	VXZ2B3	0	0.7	0.6	4.6	5.3	1.5	750
steel	3/4 (20A)	20	VXZ2C3]			7.8	9.2		1150
	1 (25A)	25	VXZ2D3				8.7	10.2		1350

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
5 Note) to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Interi	aal I		ممما	
ımteri	าลเ	Lea	kaue	

Seal material	Leakage rate (Oil) Note 1) 2)			
FKM	0.1 cm ³ /min or less			

External Leakage

-/::-a:a::ag-				
Seal material	Leakage rate (Oil) Note 1)			
FKM	0.1 cm ³ /min or less			

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Size/Valve type

10A

15A

20A

25A

Valve type

N.C.

N.O.

N.C.

N.O.

N.C.

N.O.

N.C.

N.O.

Symbol Body size

3

Α

4

В

5

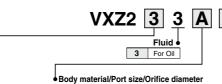
С

6

D

How to Order (Single Unit)

Orifice diameter


10

15

20

25

Port size

3/8

1/4

3/8

1/2

3/4

Symbol Body material

C37

Stainless steel

Stainless steel

C37

Stainless steel

C37

Stainless steel

Α

В

С

D

F

G

Н

K

0	O

Common Specifications			
Seal material	FKM		
Coil insulation type	Class B		
Thread type	Rc		

VOIL	age/Electri	our critiny
Symbol	Voltage	Electrical entry
A	24 VDC	Grommet
В	100 VAC	Grommet
C	110 VAC	(With surge voltage
D	200 VAC	suppressor
E	230 VAC	
F	24 VDC	
G	24 VDC	DIN terminal
Н	100 VAC	(With surge voltage
C	110 VAC	suppressor /
K	200 VAC	
L	230 VAC	
М	24 VDC	Conduit terminal
N	100 VAC	With surge voltage
Р	110 VAC	\suppressor /
Q	200 VAC	
R	230 VAC	
S	24 VDC	Conduit
Т	100 VAC	(With surge voltage
C	110 VAC	\suppressor /
٧	200 VAC	
w	230 VAC	
Υ	24 VDC	Flat terminal
Z		Other voltages

For other special options, refer to pages 192 and 193.

refer to pages 192 and 193.						
Special voltage	24 VAC					
	48 VAC					
	220 VAC					
	240 VAC					
	12 VDC					
DIN terminal with light						
Conduit terminal with light						
Without DIN connector						
Oil-free						
G thread						
NPT thread						
With bracket						
Special electrical entry direction						

Dimensions → Page 198 and after

For Heated Water

Can be used with air (up to 99°C) and water.

Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications of the fluid used.

Flow Rate Characteristics

N.C.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

Nonna	ny Cioseu	(14.0.)																	
Body	Port size	Orifice diameter	Model	Min. operating pressure	Min. operating pressure Max. operating pressure differential Mote 3) (MPa)		Flow rate characteristics		Max. system	Weight Note 2)									
material	(Nominal diameter)	(mmø)	Wodel	differential Note 1) (MPa)	AC	DC	Kv	Cv	pressure Note 3) (MPa)	(g)									
	1/4 (8A)	10	VXZ235				1.6	1.9		600									
C37,	3/8 (10A)	10	V A Z Z 3 3	0	0	0	0	0	0	0			0.7	0.7 2.0	2.4		000		
Stainless	1/2 (15A)	15	VXZ245								1.0		4.6	5.3	1.5	720			
steel	3/4 (20A)	20	VXZ255																
	1 (25A)	25	VXZ265			1.0	8.7	10.2		1300									

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 99	-20 to 60

Note) With no freezing

Valve Leakage Rate

Internal Leakage

) 2)

External Leakage

Seal material	Leakage rate (Water) Note 1)
EPDM	0.1 cm ³ /min or less

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

VX2 VXK

VXD

VXZ VXS VXB

VXE

VXP

VXR

VXF VX3 VXA

Flow Rate Characteristics

N.O.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Open (N.O.)

Body	Port size	Orifice diameter	Model	Min. operating pressure		Max. operating pressure differential Note 3) (MPa)		Flow rate characteristics		Weight Note 2)				
material	(Nominal diameter)	(mmø)	Wodel	differential Note 1) (MPa)		DC	Kv	Cv	pressure Note 3) (MPa)	(g)				
	1/4 (8A)	10	VXZ2A5				1.6	1.9		630				
C37,	3/8 (10A)	10	VAZZAS				2.0	2.4						
Stainless	1/2 (15A)	15	VXZ2B5	0	0.7	0.6	4.6	5.3	1.5	750				
steel	3/4 (20A)	20	VXZ2C5								7.8	9.2		1150
	1 (25A)	25	VXZ2D5				8.7	10.2		1350				

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orlice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 99	-20 to 60

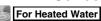
Note) With no freezing

Valve Leakage Rate

Internal Leakage

miteria Ecakage	
Seal material	Leakage rate (Water) Note 1) 2)
EPDM	0.1 cm ³ /min or less

External Leakage


External Leakage							
Seal material	Leakage rate (Water) Note 1)						
EPDM	0.1 cm ³ /min or less						

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve

How to Order (Single Unit)

VX2

VXK

VXD

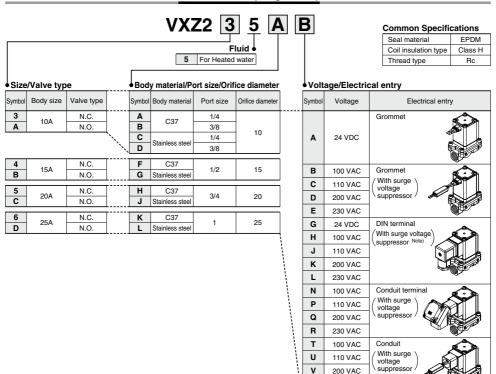
VXZ

VXS

VXB

VXE

VXP


VXR

VXH

VXF

VX3

VXA

Note) For the class H type DIN terminal, use it in combination with the connector provided.

w

z

230 VAC

For other special options,

Other voltages

refer to pages 192 and 193.							
	24 VAC						
Special voltage	48 VAC						
Special voltage	220 VAC						
	240 VAC						
DIN terminal with light							
Conduit terminal with light							
Oil-free							
G thread	G thread						
NPT thread							
With bracket							
Special electrical entry direction							

Dimensions → Page 200

For High Temperature Oil

Can be used with air (up to 99°C), water (up to 99°C) and oil. Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications of the fluid used

↑ When the fluid is oil. -

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Flow Rate Characteristics

N.C.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

Body	Port size	Orifice diameter	Model	Min. operating pressure		differential Note 3) (MPa)	Flow rate ch	aracteristics	Max. system	Weight Note 2)															
material	(Nominal diameter)	(mmø)	Model	differential Note 1) (MPa)	AC	DC	Kv	Cv	pressure Note 3) (MPa)	(g)															
	1/4 (8A)	10	VXZ236				1.6	1.9		600															
C37,	3/8 (10A)	10	VAZ236			2230			2.0	2.4		600													
Stainless	1/2 (15A)	15	VXZ246	0	0.	.7	4.6	5.3	1.5	720															
steel	3/4 (20A)	20	VXZ256																			7.8	9.2		1100
	1 (25A)	25	VXZ266]			8.7	10.2		1300															

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Oil) Note 1) 2)
FKM	0.1 cm ³ /min or less

External Leakage

Seal material	Leakage rate (Oil) Note 1)
FKM	0.1 cm ³ /min or less

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve

VX2 VXK

VXD

VXZ VXS VXB

VXE

VXP

VXF VX3 VXA

Flow Rate Characteristics

N.O.

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Open (N.O.)

······································												
Body	Port size	Orifice diameter	Model	Min. operating pressure differential Note 1)(MPa)	in. operating pressure Max. operating pressure differential Note 3) (MPa)		Flow rate characteristics		Max. system	Weight Note 2)		
material	(Nominal diameter)	(mmø)	Wodel		AC	DC	Kv	Cv	pressure Note 3) (MPa)	(g)		
	1/4 (8A)	10	VXZ2A6	0				1.6	1.9		630	
C37,	3/8 (10A)	10	VAZZAO				2.0	2.4		630		
Stainless	1/2 (15A)	15	VXZ2B6			. B6 0	0.7	0.6	4.6	5.3	1.5	750
steel	3/4 (20A)	20	VXZ2C6					7.8	9.2		1150	
	1 (25A)	25	VXZ2D6				8.7	10.2		1350		
					-							

Note 1) The operation of the valve may be unstable due to the capacity of the pressure supply source such as pumps and compressors or the pressure loss by the orifice of piping. Please contact SMC to check if the required valve size can be used in the application. Please contact SMC for the compatibility of the circuit flow and valve size. (Refer to page 195.)

Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 202 for details on the maximum operating pressure differential and the maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
_5 Note) to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

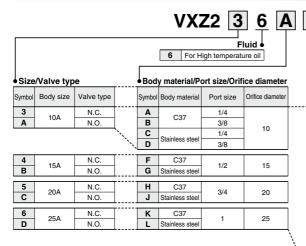
Internal Leakage

Seal material	Leakage rate (Oil) Note 1) 2)
FKM	0.1 cm ³ /min or less

External Leakage

_/ug-						
Seal material	Leakage rate (Oil) Note 1)					
FKM	0.1 cm ³ /min or less					

Note 1) Leakage is the value at ambient temperature 20°C.


Note 2) Leakage is the value when the pressure differential ranges from 0.01 MPa to the maximum operating pressure differential.

How to Order (Single Unit)

Common Specifi	cations
Soal motorial	EKM

	Common Specifications					
Seal material	FKM					
Coil insulation type	Class H					
Thread type	Rc					

Voltage/Flectrical entry

Voltage/Electrical entry						
Symbol	Voltage	Electrical entry				
A	24 VDC	Grommet				
В	100 VAC	Grommet				
С	110 VAC	With surge voltage				
D	200 VAC	\suppressor /				
E	230 VAC					
G	24 VDC	DIN terminal				
Н	100 VAC	(With surge voltage suppressor Note)				
J	110 VAC					
K	200 VAC					
\ L	230 VAC					
N	100 VAC	Conduit terminal				
P	110 VAC	With surge voltage				
Q	200 VAC	\suppressor /				
R	230 VAC					
Т	100 VAC	Conduit				
U	110 VAC	With surge voltage				
V	200 VAC	suppressor				
W	230 VAC					
Z		Other voltages				

Note) For the class H type DIN terminal, use it in combination with the connector provided.

For other special options,

refer to pages 192 and 193.					
24 VAC					
48 VAC					
220 VAC					
240 VAC					
DIN terminal with light					
Conduit terminal with light					
Oil-free					
G thread					
NPT thread					
With bracket					
Special electrical entry direction					

VXZ Series **Other Special Options**

Electrical Options

VXZ2 3 0 A Z 1A Enter standard product number. Electrical option Special voltage/Electrical entry/Electrical option

Special voltage/Electrical entry/Electrical optio						
Specification	Symbol	Class H*	Voltage	Electrical entry		
	1A	•	48 VAC			
	1B	•	220 VAC	Grommet		
	1C	•	240 VAC	(With surge voltage suppressor)		
	1U	•	24 VAC			
	1D	_	12 VDC	Grommet		
	1E	_	12 VDC	Grommet (With surge voltage suppressor)		
	1F	•	48 VAC	,		
	1G		220 VAC	1		
g	1H		240 VAC	DIN terminal		
at e	1V	•	24 VAC	(With surge voltage suppressor)		
Special voltage	1J	_	12 VDC			
S	1K	•	48 VAC			
be	1L	•	220 VAC	0		
0)	1M	•	240 VAC	Conduit terminal		
	1W	•	24 VAC	(With surge voltage suppressor)		
	1N	_	12 VDC			
	1P	•	48 VAC			
	1Q	•	220 VAC	Conduit		
	1R	•	240 VAC			
	1Y	•	24 VAC	(With surge voltage suppressor)		
	1S		12 VDC			
	1T	_	12 VDC	Flat terminal		

	2A		24 VDC	
	2B		100 VAC	
	2C		110 VAC	
	2D		200 VAC	
	2E		230 VAC	DIN terminal
	2F		48 VAC	(With surge voltage suppressor)
	2G		220 VAC	
	2H		240 VAC	
Ħ	2V		24 VAC	
<u> </u>	2J	_	12 VDC	
With light	2K	_	24 VDC	
	2L		100 VAC	
	2M		110 VAC	
	2N		200 VAC	
	2P		230 VAC	Conduit terminal
	2Q		48 VAC	(With surge voltage suppressor)
	2R		220 VAC	
	2S		240 VAC	
	2W	•	24 VAC	
	2T		12 VDC	

	21		12 100	
	3A	_	24 VDC	
Without DIN connector	3B	_	100 VAC	
ĕ	3C	_	110 VAC	
l ä	3D	_	200 VAC	
ŏ	3E	_	230 VAC	DIN terminal
6	3F	_	48 VAC	(With surge voltage suppressor
Ħ	3G	_	220 VAC	
2	3H	_	240 VAC	
₹	3V	_	24 VAC	
	3J	_	12 VDC	

●: Also applicable to Class "H" coil. Options marked with ● are available for Class "H" coil. Applicable for all when the coil insulation class is Class "B".

Other Options

Low concentration ozone resistant and applicable to deionized water Oil-free Port thread

Other option

VX2

VXK

VXD

VXZ

VXS

VXB

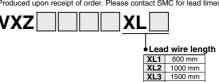
VXE VXP VXR VXH VXF VX3 VXA

Enter standard product

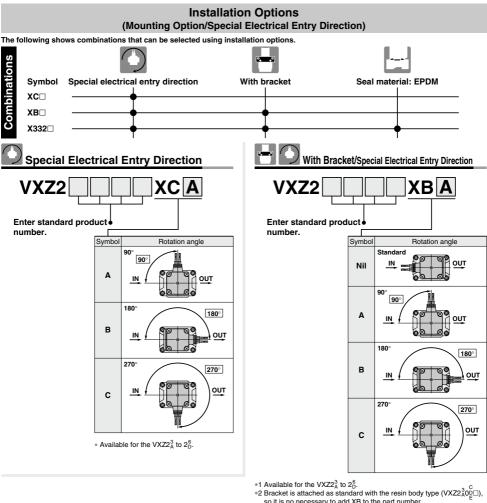
number.

Low concentration ozone resistant and applicable to deionized water/Oil-free/Port thread

Symbol	Low concentration ozone resistant and applicable to deionized water *1, *3 (Seal material: FKM)	Oil-free	Port thread		
Nil	_	_	Rc, One-touch fitting*2		
Α			G		
В	_		NPT		
С	0	_	Rc, One-touch fitting*2		
D			G		
E	_		NPT		
F			G		
G			NPT		
Н			Rc, One-touch fitting*2		
K	0	0	G		
L			NPT		
Z	_	0	Rc, One-touch fitting*2		
*1 Appli	cable to air (VXZ2□0) and wa	ter (\/X	72 🗆 2)		

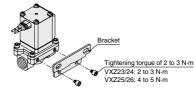

- *2 When the body is resin, One-touch fittings are equipped as standard.
- *3 When using deionized water or any other fluid that may corrode C37 (brass), select a stainless steel body.

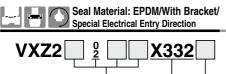
Made to Order


XL4 3000 mm

<Special lead wire length>

Produced upon receipt of order. Please contact SMC for lead times.


* Enter symbols in the order below when ordering a combination of electrical option, other option, etc. Example) VXZ2 3 2 A Z 1A Z XB A Electrical option Special electrical entry direction With bracket Other option


- * Enter symbols in the order below when ordering a combination of electrical option, other option, etc.
- Example) VXZ2 3 2 A Z 1A Z XB A Electrical option Special electrical entry direction Other option With bracket

- so it is no necessary to add XB to the part number.
- *3 Bracket is packed in the same container as the main body.

VXZ Bracket mounting dimensions

Installation Options (Mounting Option/Special Electrical Entry Direction)

Enter standard product unmber.

With bracket/Special electrical entry direction

Cumbal	Spe	ecifications				
Symbol	Electrical entry direction	Bracket				
Nil	IN side (Standard)					
Α	90°	None				
В	180°	None				
С	270°					
D	IN side (Standard)					
E	90°	With bracket*1				
F	180°	With bracket				
G	270°					

- *1 Not available for resin body type of the VXZ2A.
- *2 "Other options", which can be combined, are Nil, A, B, D, E, Z (Oil-free, G thread specifications, NPT thread specifications).
- *3 Available for air and water.

Electrical entry direction

Symbol	VXZ2¾ to VXZ26	Symbol	VXZ2 ³ to VXZ2 ⁶
Nil D	Standard IN POP OUT	Ą	90° IN PAR OUT
B F	180° OUT	C G	270° OUT

Enter symbols in the order below when ordering a combination of electrical option, other option, seal material: EPDM, with bracket, mounting holes on the bottom side of the body and special electrical entry direction.

Electrical option Other O

VX2

VXK

VXZ

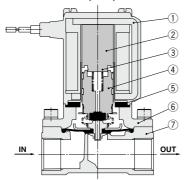
VXS

VXB

VXE

VXP

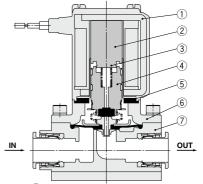
VXH


VXF VX3

VXA

VXZ Series Construction

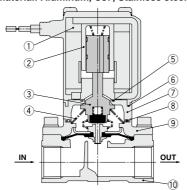
Normally Closed (N.C.)


Body material: Aluminum, C37, Stainless steel

Component Parts

No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Tube assembly	Stainless steel
3	Return spring	Stainless steel
4	Armature/Diaphragm assembly	Stainless steel, NBR, FKM, EPDM
5	Stopper	NBR, FKM, EPDM
6	Bonnet	C37, Stainless steel, Aluminum
7	Body	C37, Stainless steel, Aluminum

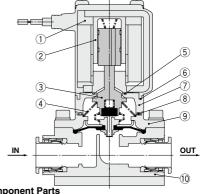
Body material: Resin



Component Parts

No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Tube assembly	Stainless steel
3	Return spring	Stainless steel
4	Armature/Diaphragm assembly	Stainless steel, NBR, FKM
5	Stopper	NBR, FKM
6	Bonnet	Aluminum
7	Body	Resin (PBT)

Normally Open (N.O.)


Body material: Aluminum, C37, Stainless steel

Component Parts

No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Sleeve assembly	Stainless steel, Resin (PPS)
3	Push rod/Diaphragm assembly	Stainless steel, NBR, FKM, EPDM
4	Spring	Stainless steel
5	O-ring A	NBR, FKM, EPDM
6	O-ring B	NBR, FKM, EPDM
7	Adapter	Resin (PPS)
8	O-ring C	NBR, FKM, EPDM
9	Bonnet	Aluminum, C37, Stainless steel
10	Body	Aluminum, C37, Stainless steel

Body material: Resin

Component Parts

No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Sleeve assembly	Stainless steel, Resin (PPS)
3	Push rod/Diaphragm assembly	Stainless steel, NBR, FKM
4	Spring	Stainless steel
5	O-ring A	NBR, FKM
6	O-ring B	NBR, FKM
7	Adapter	Resin (PPS)
8	O-ring C	NBR, FKM
9	Bonnet	Aluminum
10	Body	Resin (PBT)

Working Principle

De-energized

The fluid enters from the IN goes through the supply orifice to fill the pressure action chamber. Main valve is closed by the pressure in the pressure action chamber and the reaction force of the return spring.

Energized (Pilot valve open)

When the coil is energized, the armature is attracted causing the pilot orifice to opening. The fluid filling the pressure action chamber flows to the OUT side through the pilot orifice.

Energized (Main valve open)

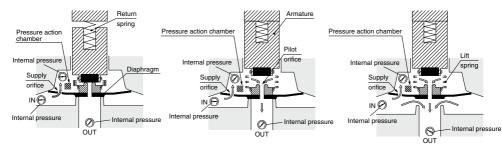
The pressure in the pressure action chamber decreases by discharging fluid through the pilot orifice. Because the force which pushes down the valve is reduced by the discharge of the fluid, the force that pushes up the main valve overcomes the push down force and opens the main valve. The main valve opens by the lift spring reaction force even if pressure on the IN side is 0 MPa or very low pressure.

VXK

VXD VXZ

VXS

VXB

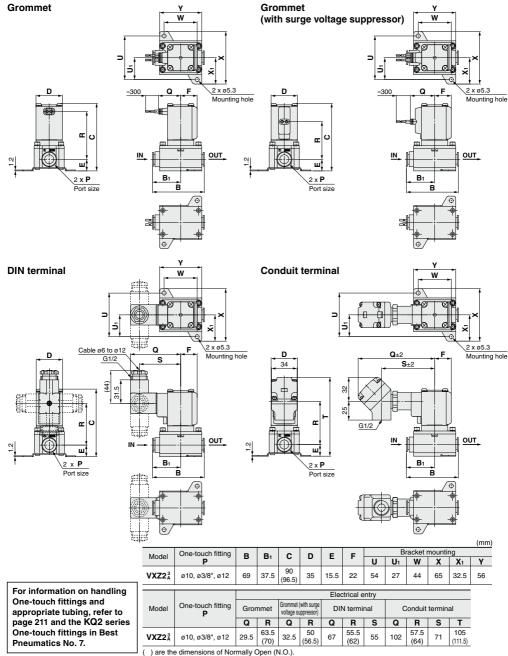

VXE

VXP

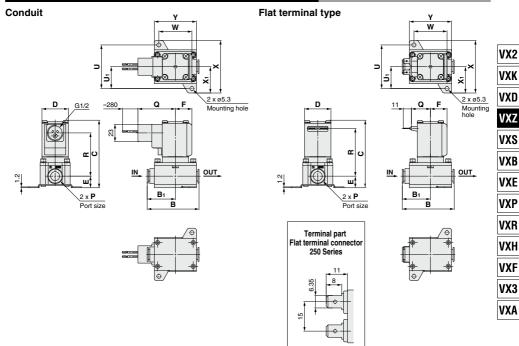
VXH

VXF VX3

VXA


∧ Warning

Unstable flow may occur with the product under the following conditions: • low flow from the pump or compressor, etc. • use of several elbows or tees in the circuit, or • thin nozzles installed at the end of the piping etc. This can cause valve opening/closing failure, or oscillation, and cause a valve malfunction. If products are used with vacuum, then the vacuum level can be unstable due to these conditions. Please contact SMC to check if the valve can be used in the application by providing the relevant fluid circuit.

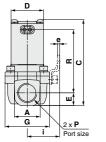

Dimensions/Body Material: Resin (One-touch Fitting Type)

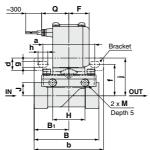
Dimensions/Body Material: Resin (One-touch Fitting Type)

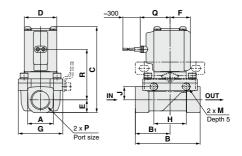
													(mm)
Model	One-touch fitting	В	B₁	_	П	D E E			Bı	racket	mountii	ng	
Model	P	"	51	-	"		г	U	U₁	w	X	X 1	Υ
VXZ2¾	ø10, ø3/8", ø12	69	37.5	90 (96.5)	35	15.5	22	54	27	44	65	32.5	56

		Electrical entry						
Model	One-touch fitting	Con	duit	Flat terminal				
	Р	Q	R	Q	R			
VXZ2¾	ø10, ø3/8", ø12	50	57.5 (64)	25.5	63.5			
VXZ2 _Å	010,03/6,012	50	(64)	25.5	(70)			

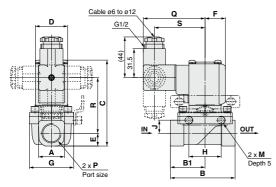
^() are the dimensions of Normally Open (N.O.).

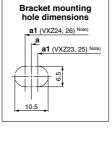





Dimensions/Body Material: Aluminum, C37, Stainless Steel

Grommet


Grommet (with surge voltage suppressor)



DIN terminal

												(mm)
Model	Port size	A	В	B ₁	С	D	E	F	G	н	J	М
VXZ2 ³	1/4, 3/8	21 <22>	57	28.5	85 (91.5)	35	10.5	22	40	35	10	M5
VXZ2 ⁴ _B	1/2	28	70	37.5	93 (99.5)	35	14	22	48	35	14.2	M5
VXZ2 ⁵	3/4	33.5	71	38.5	104 (110.5)	40	17	24.5	62	33	15.2	M6
VXZ2 ⁶	1	42	95	49.5	110 (116)	40	20	24.5	66	37	17.2	M6

Model	Port size				Ві	racket i	mountir	ng			
wodei	P	а	a1Note)	b	d	е	f	g	h	i	j
VXZ2 ³	1/4, 3/8	56	52	75		2.3	30	6.5	10.5	31	37
VXZ2 ⁴ _B	1/2	56	60	75	13.5	2.3	34.5	6.5	10.5	35	41
VXZ2 ⁵	3/4	70.5	68	92	13.5	2.3	39	6.5	10.5	43	46
VXZ25	1	70.5	73	92]	2.3	41	6.5	10.5	45	48

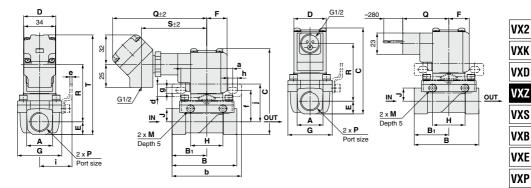
				Electrical entry						
Model	Model Port size		Grommet		net (with surge e suppressor)	DIN terminal				
		Q	R	Q	R	Q	R	S		
VXZ2 ³	1/4, 3/8	29.5	63.5 (70)	32.5	50 (56.5)	67	55.5 (62)	55		
VXZ2 ⁴ _B	1/2	29.5	68.5 (74.5)	32.5	55 (61)	67	60.5 (66.5)	55		
VXZ25	3/4	32	76.5 (83)	35	63 (69.5)	69.5	68.5 (75)	57.5		
VXZ28	1	32	79.5 (85)	35	66 (71.5)	69.5	71.5 (77)	57.5		

() are the dimensions of Normally Open (N.O.). < > are the dimensions of aluminum body. Note) Old VXZ bracket mounting hole center position

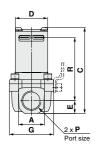
Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve VXZ Series

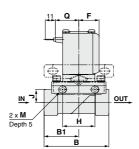
VXR

VXH VXF

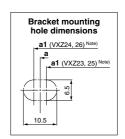

VX3

VXA


Dimensions/Body Material: Aluminum, C37, Stainless Steel


Conduit terminal

Conduit



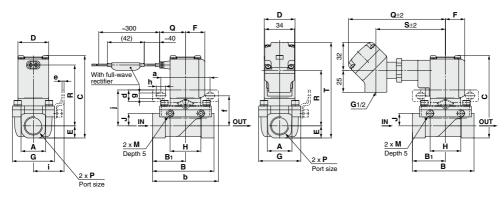
Flat terminal type

												(mm)
Model	Port size	Α	В	B ₁	С	D	E	F	G	н	J	М
VXZ2 ³	1/4, 3/8	21 <22>	57	28.5	85 (91.5)	35	10.5	22	40	35	10	M5
VXZ2 ⁴ _B	1/2	28	70	37.5	93 (99.5)	35	14	22	48	35	14.2	M5
VXZ25	3/4	33.5	71	38.5	104 (110.5)	40	17	24.5	62	33	15.2	M6
VXZ2 ⁶ _D	1	42	95	49.5	110 (116)	40	20	24.5	66	37	17.2	M6

Model	Port size	Bracket mounting									
Model	P	а	a1 Note)	b	d	е	f	g	h	i	j
VXZ2 ³	1/4, 3/8	56	52	75		2.3	30	6.5	10.5	31	37
VXZ2 ⁴ _B	1/2	56	60	75	13.5	2.3	34.5	6.5	10.5	35	41
VXZ2 ⁵ _C	3/4	70.5	68	92	13.5	2.3	39	6.5	10.5	43	46
VXZ2 ⁶	1	70.5	73	92		2.3	41	6.5	10.5	45	48

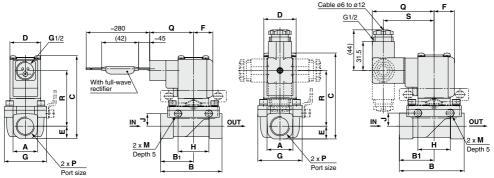
			Electrical entry									
Model	Port size		Conduit	termin	al		Conduit	Flat terminal				
	Р		R	S	Т	Q	R	Q	R			
VXZ2 ³	1/4, 3/8	102	57.5 (64)	71	100 (106.5)	50	57.5 (64)	25.5	63.5 (70)			
VXZ2 ⁴ _B	1/2	102	62.5 (68.5)	71	108 (114.5)	50	62.5 (68.5)	25.5	68.5 (74.5)			
VXZ2 ⁵ _C	3/4	104.5	70.5 (77)	73.5	119 (126)	52.5	70.5 (77)	28	76.5 (82.5)			
VXZ25	1	104.5	73.5 (79)	73.5	125 (131)	52.5	73.5 (79)	28	79.5 (85)			

) are the dimensions of Normally Open (N.O.). < > are the dimensions of aluminum body. Note) Old VXZ bracket mounting hole center position



For Heated Water, High Temperature Oil

Dimensions/Body Material: C37, Stainless Steel


Grommet

Conduit terminal

DIN terminal

												(mm)
Model	Port size	A	В	B ₁	С	D	E	F	G	н	J	M
VXZ2 ³	1/4, 3/8	21	57	28.5	85 (91.5)	35	10.5	22	40	35	10	M5
VXZ2 ⁴ _B	1/2	28	70	37.5	93 (99.5)	35	14	22	48	35	14.2	M5
VXZ2 ⁵ _C	3/4	33.5	71	38.5	104 (110.5)	40	17	24.5	62	33	15.2	M6
VX728	1	42	95	49.5	110 (116)	40	20	24.5	66	37	17.2	M6

Model	Port size		Bracket mounting									
	P	а	a1Note)	b	d	е	f	g	h	i	j	
VXZ2 ³	1/4, 3/8	56	52	75		2.3	30	6.5	10.5	31	37	
VXZ2 ⁴ _B	1/2	56	60	75	13.5	2.3	34.5	6.5	10.5	35	41	
VXZ2 ⁵	3/4	70.5	68	92	13.5	2.3	39	6.5	10.5	43	46	
VXZ2 ⁶ _D	1	70.5	73	92		2.3	41	6.5	10.5	45	48	

Bracket mounting hole dimensions
a1 (VXZ24, 26) Note) a a1 (VXZ23, 25) Note)

	Port size			Electrical entry								
Model	Port Size	G	Grommet		Conduit terminal			Conduit		DIN terminal		
		Q	R	Ø	R	S	Т	Q	R	Q	R	S
VXZ2 ³	1/4, 3/8	29.5	63.5 (70)	110.5	57.5 (64)	79.5	100 (106.5)	50	57.5 (64)	67	55.5 (62)	55
VXZ2 ⁴ _B	1/2	29.5	68.5 (74.5)	110.5	62.5 (68.5)	79.5	108 (114.5)	50	62.5 (68.5)	67	60.5 (66.5)	55
VXZ2 ⁵	3/4	32	76.5 (83)	113	70.5 (77)	82	119 (126)	52.5	70.5 (77)	69.5	68.5 (75)	57.5
VX728	1	32	79.5 (85)	113	73.5 (79)	82	125 (131)	52.5	73.5 (79)	69.5	71 5 (77)	57.5

^() are the dimensions of Normally Open (N.O.). Note) Old VXZ bracket mounting hole center position

Zero Differential Pressure Type Pilot Operated 2 Port Solenoid Valve

Replacement Parts

DIN Connector Part No.

<coii insulat<="" th=""><th>ion iype/⊩</th><th>or Class B></th></coii>	ion iype/⊩	or Class B>
Electrical option	Rated voltage	Connector part
	24 VDC	

Electrical option	Rated voltage	Connector part no.
	24 VDC	
	12 VDC	
	100 VAC	
	110 VAC	
None	200 VAC	C18312G6GCU
None	220 VAC	C16312G6GC0
	230 VAC	
	240 VAC	
	24 VAC	
	48 VAC	
	24 VDC	GDM2A-L5
	12 VDC	GDM2A-L6
	100 VAC	GDM2A-L1
	110 VAC	GDM2A-L1
AACAL CL.A	200 VAC	GDM2A-L2
With light	220 VAC	GDM2A-L2
	230 VAC	GDM2A-L2
	240 VAC	GDM2A-L2
	24 VAC	GDM2A-L5
	48 VAC	GDM2A-L15

<coil class="" for="" h<="" insulation="" th="" type=""></coil>

Electrical option	Rated voltage	Connector part no.
	24 VDC	GDM2A-G-S5
	100 VAC	
	110 VAC	
	200 VAC	
None	220 VAC	GDM2A-R
	230 VAC	GDIVIZA-N
	240 VAC	
	24 VAC	
	48 VAC	
	24 VDC	GDM2A-G-Z5
	100 VAC	GDM2A-R-L1
	110 VAC	GDM2A-R-L1
	200 VAC	GDM2A-R-L2
With light	220 VAC	GDM2A-R-L2
	230 VAC	GDM2A-R-L2
	240 VAC	GDM2A-R-L2
	24 VAC	GDM2A-R-L5
	48 VAC	GDM2A-R-L5

VX2

VXK

VXD VXZ

VXS

VXB

VXE

VXP

VXR VXH

VXF

VX3

VXA

Gasket Part No. for DIN Connector

VCW20-1-29-1 (For Class B) VCW20-1-29-1-F (For Class H)

 Lead Wire Assembly for Flat Terminal (Set of 2 pcs.)

VX021S-1-16FB

• Bracket Assembly Part No. (for Metal Body)

^{* 2} mounting screws are shipped together with the bracket assembly.

Glossary of Terms

Pressure Terminology

1. Maximum operating pressure differential

The maximum pressure differential (the difference between the inlet and outlet pressure) which is allowed for operation. When the outlet pressure is 0 MPa, this becomes the maximum operating pressure.

2. Minimum operating pressure differential

The minimum pressure differential (the difference between the inlet pressure and outlet pressure) required to keep the main valve fully opened.

3. Maximum system pressure

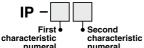
The maximum pressure that can be applied inside the pipelines (line pressure).

[The pressure differential of the solenoid valve portion must be less than the maximum operating pressure differential.]

4. Withstand pressure

The pressure in which the valve must be withstood without a drop in performance after holding for one minute under prescribed pressure and returning to the operating pressure range. [value under the prescribed conditions]

Electrical Terminology


1. Surge voltage

A high voltage which is momentarily generated by shutting off the power in the shut-off area.

2. Degree of protection

A degree defined in the "JIS C 0920: Waterproof test of electric machinery/appliance and the degree of protection against the intrusion of solid foreign objects."

Verify the degree of protection for each product.

●First Characteristics:

Degrees of protection against solid foreign objects

0	Non-protected
1	Protected against solid foreign objects of 50 mmø and greater
2	Protected against solid foreign objects of 12 mmø and greater
3	Protected against solid foreign objects of 2.5 mmø and greater
4	Protected against solid foreign objects of 1.0 mmø and greater
5	Dust-protected
6	Dust-tight Dust-tight

Electrical Terminology

Second Characteristics: Degrees of protection against water

Non-protected	_
Protected against vertically falling water drops	Dripproof type 1
Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
Protected against rainfall when enclosure tilted up to 60°	Rainproof type
Protected against splashing water	Splashproof type
Protected against water jets	Water-jet-proof type
Protected against powerful water jets	Powerful water-jet-proof type
Protected against the effects of temporary immersion in water	Immersible type
Protected against the effects of continuous immersion in water	Submersible type
	Protected against vertically falling water drops Protected against vertically falling water drops when enclosure tilted up to 15° Protected against rainfall when enclosure tilted up to 60° Protected against splashing water Protected against water jets Protected against powerful water jets Protected against the effects of temporary immersion in water

Example) IP65: Dust-tight, Water-jet-proof type

"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Others

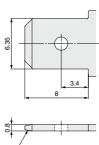
1. Material

NBR: Nitrile rubber

FKM: Fluoro rubber

EPDM: Ethylene propylene rubber

2. Oil-free treatment


The degreasing and washing of wetted parts

3. Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Flat Terminal

Flat terminal/Electrical connection size of molded coil

Solenoid Valve Flow Rate Characteristics

(How to indicate flow rate characteristics)

1. Indication of flow rate characteristics

The flow rate characteristics in equipment such as a solenoid valve, etc. are indicated in their specifications as shown in Table (1).

Table (1) Indication of Flow Rate Characteristics

Corresponding equipment	Indication by international standard	Other indications	Conformed standard
B	C, b	_	ISO 6358: 1989 JIS B 8390: 2000
Pneumatic equipment	_	s	JIS B 8390: 2000 Equipment: JIS B 8379, 8381-1, 8381-2
		Cv	ANSI/(NFPA)T3.21.3 R1-2008
Process fluid control	Kv	_	IEC60534-1: 2005 IEC60534-2-3: 1997 JIS B 2005-1: 2012
equipment	_	Cv	JIS B 2005-1: 2012 JIS B 2005-2-3: 2004 Equipment: JIS B 8471, 8472, 8473

2. Pneumatic equipment

2.1 Indication according to the international standards

(1) Conformed standard

ISO 6358: 1989 : Pneumatic fluid power—Components using compressible fluids—

Determination of flow rate characteristics

JIS B 8390: 2000 : Pneumatic fluid power—Components using compressible fluids—

How to test flow rate characteristics

(2) Definition of flow rate characteristics

The flow rate characteristics are indicated as a result of a comparison between sonic conductance C and critical pressure ratio b.

Sonic conductance C: Value which divides the passing mass flow rate of an equipment in a choked flow condition by the product of the upstream absolute pressure and the density in a standard condition.

Critical pressure ratio **b**: Pressure ratio (downstream pressure/upstream pressure) which will turn to a choked flow when the value is smaller than this ratio.

Choked flow : The flow in which the upstream pressure is higher than the downstream pressure and where sonic speed in a certain part of an equipment is reached.

Gaseous mass flow rate is in proportion to the upstream pressure and not dependent

on the downstream pressure.

Subsonic flow : Flow greater than the critical pressure ratio

Standard condition : Air in a temperature state of 20°C, absolute pressure 0.1 MPa (= 100 kPa = 1 bar),

relative humidity 65%.

It is stipulated by adding the "(ANR)" after the unit depicting air volume.

(standard reference atmosphere)

Conformed standard: ISO 8778: 1990 Pneumatic fluid power—Standard reference

atmosphere, JIS B 8393: 2000: Pneumatic fluid power—Standard reference atmosphere

(3) Formula for flow rate

It is described by the practical units as following.

When

 $\frac{P_{2} + 0.1}{P_{1} + 0.1} \le b$, choked flow

$$\mathbf{Q} = 600 \times \mathbf{C} (\mathbf{P}_1 + 0.1) \sqrt{\frac{293}{273 + \mathbf{T}}}$$
(1)

When

 $\frac{{\bf P}_{2}+0.1}{{\bf P}_{1}+0.1}>{\bf b}$, subsonic flow

 $\mathbf{Q} = 600 \times \mathbf{C} (\mathbf{P}_1 + 0.1) \sqrt{1 - \left[\frac{\mathbf{P}_2 + 0.1}{\mathbf{P}_1 + 0.1} - \mathbf{b} \right]^2 \sqrt{\frac{293}{273 + \mathbf{T}}}}$ (2)

VX2

VXK VXD VXZ VXS VXB VXE VXP VXR

VXH

VXF

VX3

VXA

Q: Air flow rate [L/min (ANR)]

C: Sonic conductance [dm3/(s-bar)], dm3 (Cubic decimeter) of SI = L (liter).

b: Critical pressure ratio [—]

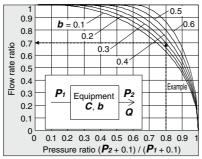
P₁: Upstream pressure [MPa]

P2: Downstream pressure [MPa]

T: Temperature [°C]

Note) Formula of subsonic flow is the elliptic analogous curve.

Flow rate characteristics are shown in Graph (1) For details, please use the calculation software available from SMC website.


Example

Obtain the air flow rate for $P_1 = 0.4$ [MPa], $P_2 = 0.3$ [MPa], T = 20 [°C] when a solenoid valve is performed in C = 2 [dm³/(s·bar)] and D = 0.3.

According to formula 1, the maximum flow rate = $600 \times 2 \times (0.4 + 0.1) \times \sqrt{\frac{293}{273 + 20}} = 600 \text{ [L/min (ANR)]}$

Pressure ratio =
$$\frac{0.3 + 0.1}{0.4 + 0.1} = 0.8$$

Based on Graph (1), it is going to be 0.7 if it is read by the pressure ratio as 0.8 and the flow ratio to be $\boldsymbol{b} = 0.3$. Hence, flow rate = Max. flow x flow ratio = $600 \times 0.7 = 420$ [L/min (ANR)]

Graph (1) Flow rate characteristics

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (1) while maintaining the upstream pressure to a certain level which does not go below 0.3 MPa. Next, measure the maximum flow to be saturated in the first place, then measure this flow rate at 80%, 60%, 40%, 20% and the upstream and downstream pressure. And then, obtain the sonic conductance \bf{C} from this maximum flow rate. In addition, calculate \bf{b} using each data of others and the subsonic flow formula, and then obtain the critical pressure ratio \bf{b} from that average.

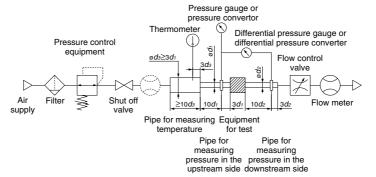


Fig. (1) Test circuit based on ISO 6358: 1989, JIS B 8390: 2000

VX2

VXK

VXD

VXZ

VXS

VXB

VXE

VXP

VXR

VXH

VXF

VX3

VXA

2.2 Effective area S

(1) Conformed standard

JIS B 8390: 2000: Pneumatic fluid power—Components using compressible fluids—

Determination of flow rate characteristics

Equipment standards: JIS B 8373: Solenoid valve for pneumatics

JIS B 8379: Silencer for pneumatics

JIS B 8381-1: Fittings for pneumatics—Part 1: Push-in fittings for thermoplastic resin tubing JIS B 8381-2: Fittings for pneumatics—Part 2: Compression fittings for thermoplastic resin tubing

(2) Definition of flow rate characteristics

Effective area S: The cross-sectional area having an ideal throttle without friction deduced from the calculation of the pressure changes inside an air tank or without reduced flow when discharging the compressed air in a choked flow, from an equipment attached to the air tank. This is the same concept representing the "easy to run through" as sonic conductance C.

(3) Formula for flow rate

When

$$\frac{P_{2} + 0.1}{P_{1} + 0.1}$$
 0.5, choked flow

$$Q = 120 \times S(P_1 + 0.1) \sqrt{\frac{293}{273 + T}}$$
(3

When

$$\frac{P_2 + 0.1}{P_1 + 0.1} > 0.5$$
, subsonic flow

$$\mathbf{Q} = 240 \times \mathbf{S} \sqrt{(\mathbf{P}_2 + 0.1) (\mathbf{P}_1 - \mathbf{P}_2)} \sqrt{\frac{293}{273 + \mathbf{T}}}$$
 (4)

Conversion with sonic conductance **C**:

Q : Air flow rate[L/min(ANR)]

S : Effective area [mm²]

P1: Upstream pressure [MPa]

P2: Downstream pressure [MPa]

T: Temperature [°C]

Note) Formula for subsonic flow (4) is only applicable when the critical pressure ratio \boldsymbol{b} is the unknown equipment. In the formula (2) by the sonic conductance \boldsymbol{C} , it is the same formula as when $\boldsymbol{b} = 0.5$.

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (2) in order to discharge air into the atmosphere until the pressure inside the air tank goes down to 0.25 MPa (0.2 MPa) from an air tank filled with the compressed air at a certain pressure level (0.5 MPa) which does not go below 0.6 MPa. At this time, measure the discharging time and the residual pressure inside the air tank which had been left until it turned to be the normal values to determine the effective area S, using the following formula. The volume of an air tank should be selected within the specified range by corresponding to the effective area of an equipment for test. In the case of JIS B 8379, the pressure values are in parentheses and the coefficient of the formula is 12.9.

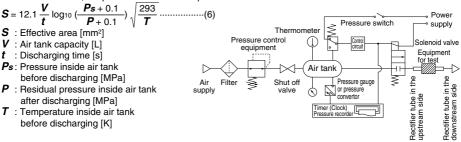


Fig. (2) Test circuit based on JIS B 8390: 2000

2.3 Flow coefficient CV factor

The United States Standard ANSI/(NFPA)T3.21.3: R1-2008R: Pneumatic fluid power—Flow rating test procedure and reporting method for fixed orifice components

This standard defines the *Cv* factor of the flow coefficient by the following formula that is based on the test conducted by the test circuit analogous to ISO 6358.

$$Cv = \frac{Q}{114.5\sqrt{\frac{\Delta P (P_2 + P_a)}{T_1}}} \tag{7}$$

 ΔP : Pressure drop between the static pressure tapping ports [bar]

P₁: Pressure of the upstream tapping port [bar gauge]

 P_2 : Pressure of the downstream tapping port [bar gauge]: $P_2 = P_1 - \Delta P$

Q: Flow rate [L/s standard condition]

Pa: Atmospheric pressure [bar absolute]

T₁: Upstream absolute temperature [K]

Test conditions are $< P_1 + P_2 = 6.5 \pm 0.2$ bar absolute, $T_1 = 297 \pm 5$ K, 0.07 bar $\le \Delta P$ 0.14 bar.

This is the same concept as effective area **A** which ISO 6358 stipulates as being applicable only when the pressure drop is smaller than the upstream pressure and the compression of air does not become a problem.

3. Process fluid control equipment

(1) Conformed standard

IEC60534-1: 2005: Industrial-process control valves. Part 1: control valve terminology and general considerations

IEC60534-2-3: 1997: Industrial-process control valves. Part 2: Flow capacity, Section Three-Test procedures

JIS B 2005-1: 2012: Industrial-process control valves – Part 1: Control valve terminology and general considerations JIS B 2005-2-3: 2004: Industrial-process control valves – Part 2: Flow capacity – Section 3: Test procedures Equipment standards: JIS B 8471: Solenoid valve for water

JIS B 8472: Solenoid valve for steam JIS B 8473: Solenoid valve for fuel oil

(2) Definition of flow rate characteristics

Kv factor: Value of the clean water flow rate represented by m³/h that runs through the valve (equipment for test) at 5 to 40°C, when the pressure difference is 1 x 105 Pa (1 bar). It is calculated using the following formula:

$$\mathbf{K}\mathbf{v} = \mathbf{Q}\sqrt{\frac{1\times10^5}{\Delta\mathbf{P}}\cdot\frac{\rho}{1000}} \dots (8)$$

Kv: Flow coefficient [m3/h]

Q: Flow rate [m3/h]

△P: Pressure difference [Pa]

 ρ : Density of fluid [kg/m³]

(3) Formula of flow rate

It is described by the practical units. Also, the flow rate characteristics are shown in Graph (2).

In the case of liquid:

$$\mathbf{Q} = 53\mathbf{K}\mathbf{v}\sqrt{\frac{\Delta \mathbf{P}}{\mathbf{G}}}$$
....(9)

Q: Flow rate [L/min]

Kv: Flow coefficient [m3/h]

ΔP: Pressure difference [MPa]

G: Relative density [water = 1]

In the case of saturated aqueous vapor:

$$Q = 232 Kv \sqrt{\Delta P(P_2 + 0.1)}$$
(10)

Q: Flow rate [kg/h]

Kv: Flow coefficient [m3/h]

Δ**P**: Pressure difference [MPa]

 P_1 : Upstream pressure [MPa]: $\Delta P = P_1 - P_2$

P2: Downstream pressure [MPa]

Conversion of flow coefficient:

Kv = 0.865 Cv(11)

Here,

Cv factor: Value of the clean water flow rate represented by US gal/min that runs through the valve at 40 to 100°F, when the pressure difference is 1 lbf/in² (psi)

Value is different from **Kv** and **Cv** factors for pneumatic purpose due to different test method.

(4) Test method

Connect the equipment for the test to the test circuit shown in Fig. (3), and run water at 5 to 40°C. Then, measure the flow rate with a pressure difference where vaporization does not occur in a turbulent flow (pressure difference of 0.035 MPa to 0.075 MPa when the inlet pressure is within 0.15 MPa to 0.6 MPa). However, as the turbulent flow is definitely caused, the pressure difference needs to be set with a large enough difference so that the Reynolds number does not fall below 1 x 105, and the inlet pressure needs to be set slightly higher to prevent vaporization of the liquid. Substitute the measurement results in formula (8) to calculate **Kv**.

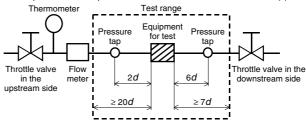
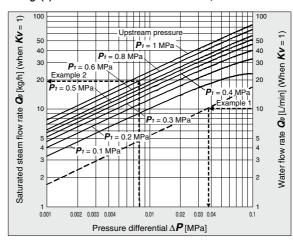



Fig. (3) Test circuit based on IEC60534-2-3, JIS B 2005-2-3

Graph (2) Flow rate characteristics

Example 1)

Obtain the pressure difference when water [15 L/min] runs through the solenoid valve with a $Kv = 1.5 \text{ m}^3\text{/h}$. As the flow rate when Kv = 1 is calculated as the formula: $Q_0 = 15 \times 1/1.5 = 10$ [L/min], read off ΔP when Q_0 is 10 [L/min] in Graph (2). The reading is 0.036 [MPa].

Example 2)

Obtain the saturated steam flow rate when $P_1 = 0.8$ [MPa] and $\Delta P = 0.008$ [MPa] with a solenoid valve with a Kv = 0.05 [m³/h]. Read off Q_0 when P_1 is 0.8 and ΔP is 0.008 in Graph (2), the reading is 20 kg/h. Therefore, the flow rate is calculated as the formula: $Q = 0.05/1 \times 20 = 1$ [kg/h].

VX2

VXK

VXD

VXZ

VXS

VXB

VXE

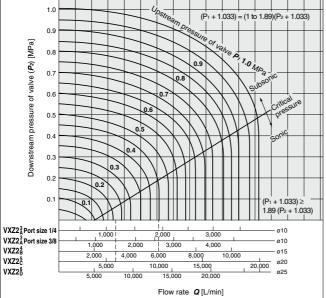
VXP

VXR

VXH

VXF

VX3

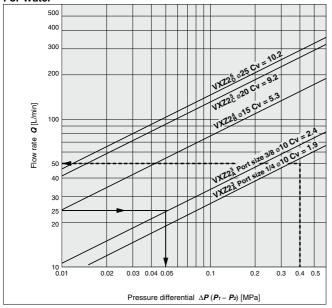

VXA

Flow Rate Characteristics

Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 203 through to 207.

1.0 0.9

For Air



How to read the graph

The sonic range pressure to generate a flow of 6,000 L/min (ANR) is $P_1 \approx 0.47$ MPa for a Ø15 orifice (VXZ2B) and P1 \approx 0.23 MPa for a ø20 orifice (VXZ25).

The optimum size for an upstream pressure P1 = 0.45 MPa and a flow of 6,000 L/min will be the VXZ2⁴_B (ø15 orifice, port size 1/2).

For Water

How to read the graph

The pressure differential for a ø10 orifice to supply a flow of 25 L/min (VXZ23A, port size 3/8) will be $\Delta P \approx 0.05$ MPa.

The optimum size for a pressure differential of $\Delta P \approx 0.4$ MPa and a flow of 50 L/min will be the VXZ2A (ø10 orifice, port size 1/4).

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Design

⚠ Warning

1. Cannot be used as an emergency shutoff valve etc.

The valves presented in this catalog are not designed for safety applications such as an emergency shutoff valve. If the valves are used in this type of system, other reliable safety assurance measures should also be adopted.

2. Extended periods of continuous energization

The solenoid coil will generate heat when continuously energized. Avoid using in a tightly shut container. Install it in a well ventilated area. Furthermore, do not touch it while it is being energized or right after it is energized.

3. Liquid rings

In cases with a flowing liquid, provide a bypass valve in the system to prevent the liquid from entering the liquid seal circuit.

4. Actuator drive

When an actuator, such as a cylinder, is to be driven using a valve, take appropriate measures to prevent potential danger caused by actuator operation.

5. Pressure (including vacuum) holding

It is not usable for an application such as holding the pressure (including vacuum) inside of a pressure vessel because air leakage is entailed in a valve.

- 6. When the conduit type is used as equivalent to an IP65 enclosure, install a wiring conduit etc.
- When an impact, such as water hammer etc., caused by the rapid pressure fluctuation is applied, the solenoid valve may be damaged. Give an attention to it.

Selection

▲Warning

1. Usage with low flow

Unstable flow may occur with the product under the following conditions: • low flow from the pump or compressor, etc. • use of several elbows or tees in the circuit, or • thin nozzles installed at the end of the piping etc. This can cause valve opening/closing failure, or oscillation, and cause a valve malfunction.

Please check the pressure differential and flow to select the appropriate size of the valve referring to the Flow rate Characteristics on page 208. Ensure that pressure differential does not become lower than 0.01 MPa during ON (N.C.: Valve open). Selection

VX2

VXK

מעע

VXZ

VXS

VXB

VXE

VXP

VXR

VXH

VXF

VX3

VXA

⚠ Warning

2. Fluid

1) Type of fluid

Select an appropriate valve with reference to the table below for the general fluid. Before using a fluid, check whether it is compatible with the materials of each model by referring to the fluids listed in this catalog. Use a fluid with a kinematic viscosity of 50 mm²/s or less.

If there is something you do not know, please contact SMC.

Applicable Fluid

For Air	Air
For Water	Air, Water
For Oil	Air, Water, Oil
For Heated water	Air(up to 99°C), Water, Heated water
For High temperature oil	Air(up to 99°C), Water, Oil, High temperature oi

2) Flammable oil, Gas

Do not use the product with combustion-supporting or flammable fluids.

3) Corrosive gas

Cannot be used since it will lead to cracks by stress corrosion or result in other incidents.

- 4) When a brass body is used, then depending on water quality, corrosion and internal leakage may occur. If such abnormalities occur, exchange the product for a stainless steel body.
- Use an oil-free specification when any oily particle must not enter the passage.
- 6) Applicable fluid on the list may not be used depending on the operating condition. Give adequate confirmation, and then determine a model, just because the compatibility list shows the general case.

3. Air quality

<Air>

1) Use clean air.

Do not use compressed air that contains chemicals, synthetic oils including organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

2) Install an air filter.

Install air filters close to valves at their upstream side. filtration degree of 5 μ m or less should be selected.

3) Install an aftercooler or air dryer, etc.

Compressed air that contains excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an aftercooler or air dryer, etc.

 If excessive carbon powder is generated, eliminate it by installing mist separators at the upstream side of valves.

If excessive carbon powder is generated by the compressor, it may adhere to the inside of the valves and cause a malfunction

Refer to Best Pneumatics No.5 for further details on compressed air quality.

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Selection

.⚠Warning

<Water>

The use of a fluid that contains foreign objects can cause problems such as malfunction and seal failure by promoting wear of the valve seat and armature, and by sticking to the sliding parts of the armature etc. Install a suitable filter (strainer) immediately upstream from the valve. As a general rule, use 100 mesh

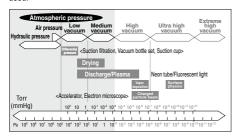
The supply water includes materials that create a hard sediment or sludge such as calcium and magnesium. Since this scale and sludge can cause the valve to malfunction, install water softening equipment, and a filter (strainer) directly upstream from the valve to remove these substances.

Tap water pressure:

The water pressure for tap water is normally 0.4 MPa or less. However, in places like a high-rise building, the pressure may be 1.0 MPa. When selecting tap water, be careful of the maximum operating pressure differential.

When using water or heated water, poor operation or leaks may be caused by dezincification, erosion, corrosion, etc.

The brass (C37) body of this product uses dezincification resistant material as a standard. We also offer a stainless steel body type with improved corrosion resistance. Please use the one that fits your needs.


<0il>

Generally, FKM is used as seal material, as it is resistant to oil. The resistance of the seal material may deteriorate depending on the type of oil, manufacturer or additives.

Check the resistance before using

<Vacuum>

Please be aware that there is a range of pressure that can be used.

Vacuum piping direction: if the system uses a vacuum pump, we ask that you install the vacuum pump on the secondary side.

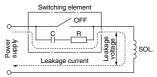
Also, install a filter on the primary side, and be careful that no foreign object is picked up.

Please replace the valve after operating the device approximately 300,000 times.

⚠Warning

4. Ambient environment

Use within the operable ambient temperature range. Check the compatibility between the product's composition materials and the ambient atmosphere. Be certain that the fluid used does not touch the external surface of the product.


5. Countermeasures against static electricity

Take measures to prevent static electricity since some fluids can cause static electricity.

⚠ Caution

1. Leakage voltage

When the solenoid valve is operated using the controller, etc., the leakage voltage should be the product allowable leakage voltage or less. Particularly when using a resistor in parallel with a switching element and using a C-R element (surge voltage suppressor) to protect the switching element, take note that leakage current will flow through the resistor, C-R element, etc., creating a possible danger that the valve may not turn off.

AC coil: 5% or less of rated voltage DC coil: 2% or less of rated voltage

2. Selecting model

Material depends on fluid. Select optimal models for the fluid.

3. When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s.

Mounting

. Warning

 If air leakage increases or equipment does not operate properly, stop operation.

After mounting is completed, confirm that it has been done correctly by performing a suitable function test.

2. Do not apply external force to the coil section.

When tightening is performed, apply a wrench or other tool to the outside of the piping connection parts.

Mount a valve with its coil position upward, not downward.

When mounting a valve with its coil positioned downward, foreign objects in the fluid will adhere to the iron core leading to a malfunction

4. Do not warm the coil assembly with a heat insulator etc. Use tape, heaters, etc., for freeze prevention on the piping and body only. They can cause the coil to burn out.

Secure with brackets, except in the case of steel piping and copper fittings.

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Mounting

⚠Warning

Avoid sources of vibration, or adjust the arm from the body to the minimum length so that resonance will not occur.

7. Painting and coating

Warnings or specifications printed or labeled on the product should not be erased, removed or covered up.

Piping

⚠ Warning

 During use, deterioration of the tube or damage to the fittings could cause tubes to come loose from their fittings and thrash about.

To prevent uncontrolled tube movement, install protective covers or fasten tubes securely in place.

For piping the tube, fix the product securely using the mounting holes so that the product is not in the air.

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe. Avoid pulling, compressing, or bending the valve body when piping.

- 2. Avoid connecting ground lines to piping, as this may cause electric corrosion of the system.
- Always tighten threads with the proper tightening torque. When attaching fittings to valves, tighten with the proper tightening torque shown below.

Lower tightening torque will lead into fluid leakage.

Lightening Forque for Piping		
Connection threads	Proper tightening torque N·m	
Rc1/8	7 to 9	
Rc1/4	12 to 14	
Rc3/8	22 to 24	
Rc1/2	28 to 32	
Rc3/4	20 10 32	
Rc1	36 to 38	

4. Connection of piping to products

When connecting piping to a product, avoid mistakes regarding the supply port etc.

5. Winding of sealant tape

When connecting pipes, fittings, etc., be sure that chips from the pipe threads and sealing material do not enter the valve.

Furthermore, when sealant tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Piping

⚠ Caution

If a regulator and valve are connected directly, they may vibrate together and cause chattering. Do not connect directly.

VX2

VXK

VXD

VXZ

VXS

VXB

VXE

VXP

VXR

VXH

VXF

VX3

VXA

7. If the cross-sectional area of piping for the fluid supply side is restricted, operation will become unstable due to inadequate pressure differential during valve operation. Use piping size for the fluid supply side that is suited to the port size.

Recommended Piping Conditions

 When connecting tubes using One-touch fittings, provide some spare tube length shown in Fig. 1, recommended piping configuration.

Also, do not apply external force to the fittings when binding tubes with bands etc. (see Fig. 2.)

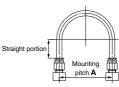


Fig. 1 Recommended piping configuration

					Unit: mm
	Tubing	N	Nounting pitch	A	Straight portion
ı	size	Nylon tubing	Soft nylon tubing	Polyurethane tubing	length
	ø1/8"	44 or more	29 or more	25 or more	16 or more
	ø6	84 or more	39 or more	39 or more	30 or more
	ø1/4"	89 or more	56 or more	57 or more	32 or more
	ø8	112 or more	58 or more	52 or more	40 or more
	ø10	140 or more	70 or more	69 or more	50 or more
	ø12	168 or more	82 or more	88 or more	60 or more

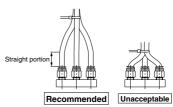


Fig. 2 Binding tubes with bands

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Wiring

⚠ Warning

 Do not apply AC voltage to Class "H" coil AC type unless it is built in full-wave rectifier, or the coil will be damaged.

∧ Caution

- 1. As a rule, use electrical wire with a cross sectional area of 0.5 to 1.25 mm² for wiring.
 - Furthermore, do not allow excessive force to be applied to the lines.
- Use electrical circuits which do not generate chattering in their contacts.
- 3. Use voltage which is within $\pm 10\%$ of the rated voltage. In cases with a DC power supply where importance is placed on responsiveness, stay within $\pm 5\%$ of the rated value. The voltage drop is the value in the lead wire section connecting the coil.
- 4. When a surge from the solenoid affects the electrical circuitry, install a surge voltage suppressor etc., in parallel with the solenoid. Or, adopt an option that comes with the surge voltage protection circuit. (However, a surge voltage occurs even if the surge voltage protection circuit is used. For details, please consult with SMC.)

Operating Environment

- Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water steam, or where there is direct contact with any of these.
- 2. Do not use in explosive atmospheres.
- 3. Do not use in locations subject to vibration or impact.
- Do not use in locations where radiated heat will be received from nearby heat sources.
- Employ suitable protective measures in locations where there is contact with water droplets, oil or welding spatter, etc.

Maintenance

⚠ Warning

1. Removing the product

The valve will reach a high temperature when used with high temperature fluids. Confirm that the valve temperature has dropped sufficiently before performing work. If touched inadvertently, there is a danger of being burned.

- Shut off the fluid supply and release the fluid pressure in the system.
- 2) Shut off the power supply.
- 3) Dismount the product.

2. Low frequency operation

Switch valves at least once every 30 days to prevent malfunction. Also, in order to use it under the optimum state, conduct a regular inspection once a half year.

⚠ Caution

1. Filters and strainers

- 1) Be careful regarding clogging of filters and strainers.
- Replace filter elements after one year of use, or earlier if the pressure drop reaches 0.1 MPa.
- 3) Clean strainers when the pressure drop reaches 0.1 MPa.

2. Lubrication

When using after lubricating, never forget to lubricate continuously.

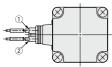
3. Storage

In case of long term storage after use, thoroughly remove all moisture to prevent rust and deterioration of rubber materials etc.

4. Exhaust the drain from an air filter periodically.

Operating Precautions

- If there is a possibility of reverse pressure being applied to the valve, take countermeasures such as mounting a check valve on the downstream side of the valve.
- When problems are caused by a water hammer, install water hammer relief equipment (accumulator etc.), or use an SMC water hammer relief valve (VXR series). Please consult with SMC for details.
- 3. For pilot type 2-port solenoid valves, when the valve is closed, sudden pressure resulting from the startup of the fluid supply source (pump, compressor, etc.) may cause the valve momentarily to open and leakage to occur, so please exercise caution.
- 4. If the product is used in the conditions in which rapid decrease in the inlet pressure of the valve and rapid increase in the outlet pressure of the valve are repeated, excessive stress will be applied to the diaphragm, which causes the diaphragm to be damaged and dropped, leading to the operation failure of the valve. Check the operating conditions before use.


Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Electrical Connections

∧ Caution

■ Grommet

Class B coil: AWG20 Insulator O.D. 2.6 mm Class H coil: AWG18 Insulator O.D. 2.1 mm

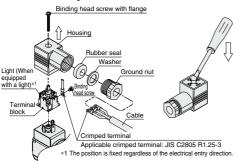
В	Rated voltage	Lead wire color		
	nated voltage	1	2	
	DC	Black	Red	
	100 VAC	Blue	Blue	
	200 VAC	Red	Red	
	Other AC	Gray	Gray	

* There is no polarity

■ DIN terminal Disassembly

- After loosening the binding head screw with flange, then if the housing is pulled in the direction of the arrow, the connector will be removed from the solenoid valve.
- 2. Pull out the binding head screw with flange from the housing.
- There is a cutout on the bottom of the terminal block. Insert a small flat head screwdriver, etc. into this cutout, and remove the terminal block from the housing. (See figure below.)
- 4. Remove the ground nut, and pull out the washer and the rubber seal.

 Wiring
- 1. Pass the cable through the ground nut, washer and rubber seal in this order, and insert these parts into the housing.
- 2. Loosen the binding head screw of the terminal block, then insert the core wire or the crimped terminal of the lead wire into the terminal, and securely fix it with the binding head screw. The binding head screw of the terminal block is M3.


Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m. Note 2) Cable O.D.: Ø6 to Ø12 mm

Note 3) For an outside cable diameter of ø9 to 12 mm, remove the internal parts of the rubber seal before using.

Assembly

- Pass the cable through the ground nut, washer, rubber seal and the housing in this order, and connect to the terminal block.
 Then, set the terminal block inside the housing. (Push in the terminal block until it snaps into position.)
- Insert the rubber seal and the washer in this order into the cable entry of the housing, and then tighten the ground nut securely.
- Insert the gasket between the bottom part of the terminal block and the plug attached to the equipment, and then insert the binding head screw with flange from the top of the housing, and tighten it. Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m.

Note 2) The orientation of the connector can be changed in steps of 90° by changing the method of assembling the housing and the terminal block.

⚠ Caution

Internal connections are as shown below.

Make connections to the power supply accordingly.

VX2

VXK

VXZ VXZ VXS

VXB

VXE

VXP

VXR

VXF

VX3

VXA

Terminal no.	1	2
DIN terminal	+ (-)	- (+)

* There is no polarity.

■ Conduit terminal

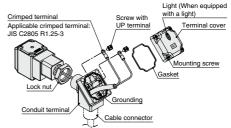
Disassembly

 Loosen the mounting screw, and remove the terminal cover from the conduit terminal.

Wiring

- Insert the cable into the conduit terminal.
- Loosen the screw with UP terminal of the conduit terminal, then insert the core wire or the crimped terminal of the lead wire into the terminal, and securely fix it with the screw with UP terminal. Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m.

Assembly


1. Insert the gasket into the conduit terminal, and then clamp the terminal cover with the mounting screw.

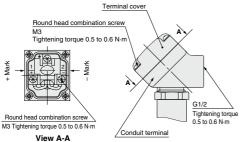
Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m.

Note 2) When changing the orientation of the conduit terminal, carry out the following procedure.

- Apply a tool (monkey wrench, spanner, etc.) to the width across flats of the conduit terminal, and turn the terminal in the counterclockwise direction.
- 2. Loosen the lock nut.
- Turn the conduit terminal in the clamping direction (clockwise direction) to about 15° ahead of the desired position.
- Turn the lock nut by hand to the coil side until it is lightly tightened.
- 5. Apply a tool to the width across flats of the conduit terminal, and turn it to the desired position (through an angle of about 15°) so as to clamp the conduit terminal.

Note) When changing the orientation by applying additional tightening force to the conduit terminal from the factory-set position, turn no more than one half a turn.

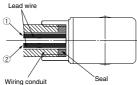
Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.


Electrical Connections

■ Conduit terminal

Make connections according to the marks shown below.

- · Use the tightening torques below for each section.
- · Properly seal the terminal connection (G1/2) with the special wiring conduit etc.



(Internal connection diagram)

■ Conduit

When used as an IP65 equivalent, use seal to install the wiring conduit. Also, use the tightening torque below for the conduit.

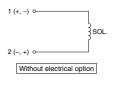
Class B coil: AWG20 Insulator O.D. 2.5 mm Class H coil: AWG18 Insulator O.D. 2.1 mm

(Bore size G1/2 Tightening torque 0.5 to 0.6 N·m)

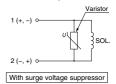
Rated voltage	Lead wire color	
	1	2
DC	Black	Red
100 VAC	Blue	Blue
200 VAC	Red	Red
Other AC	Gray	Gray

^{*} There is no polarity

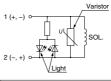
Description	Part no.
Seal	VCW20-15-6


Note) Please order separately.

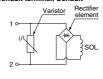
Electrical Circuits



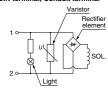
[DC circuit]


Grommet, Flat terminal

Grommet, DIN terminal, Conduit terminal, Conduit


DIN terminal, Conduit terminal

With light/surge voltage suppressor


[AC circuit]

Grommet DIN terminal Conduit terminal, Conduit

Without electrical option

DIN terminal. Conduit terminal

With light/surge voltage suppressor

One-touch Fitting

∕ Caution

For information on handling One-touch fittings and on appropriate tubing, refer to page 211 and the Fittings & Tubing section of the "Handling Precautions for SMC Products" on the SMC website.