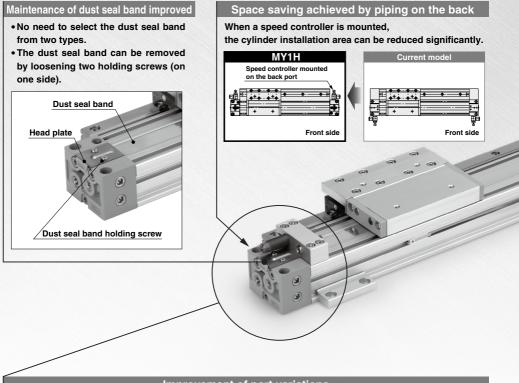
Mechanically Jointed Rodless Cylinder

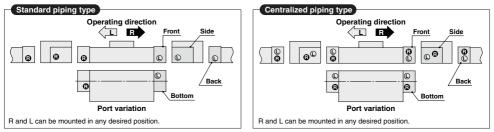
MY1H Series

Linear Guide Type: ø25, ø32, ø40

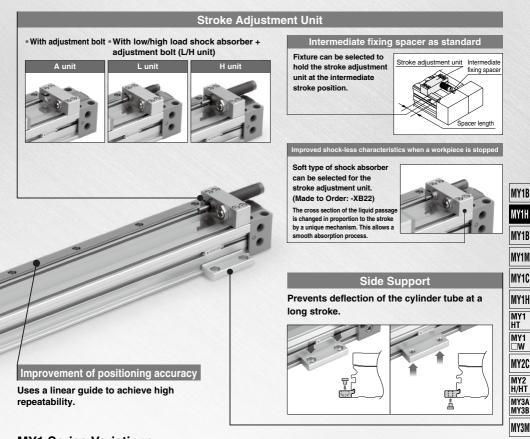

RoHS Piping can be connected from 4 directions on the head cover. Allows on-site piping to suit the MY1B installation MY1H conditions. MY1B MY1M MY1C MY1H Piping from 4 directions \leftarrow 3 directions MY1 HT MY1 Easy adjustment of cushion needle Back Adjustment is easier by changing the cushion needle adjustment from side to top. MY2C Hexagon wrench MY2 H/HT MY3A MY3B MY3M Piping ports Side Front Cushion needle Bottom Auto switch can be mounted in any New dust seal band desired position. (D-M9, D-A9) improves life. • The auto switch can be fixed in any desired position with a mounting bracket. . The current groove mounting is changed to a magnetically sealed type. This reduces man-hours for mounting. . This means the dust seal band is always in contact with the cylinder, which reduces ingress of foreign matter, improving the life of the cylinder. MY1H MY1H Current model Seal magn Dust seal band D-Mountine bracket -X Cylinder tube Insert it at the notch and slide it Cylinder tu along the mounting groove Technical Data

1201

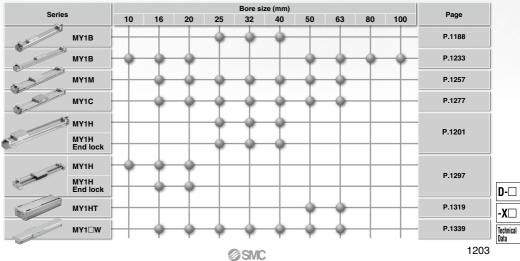
The mounting and performance are the same as before, but the weight is reduced. Bore size (mm) MY1H Reduction rate Current model


• Weight is reduced by the die cast head cover and removal of guide cover.

Bore size (mm)	MY1H	Reduction rate	Current model
25	2.17 kg	6%	2.31 kg
32	4.37 kg	6%	4.65 kg
40	5.84 kg	8%	6.37 kg


Improvement of port variations

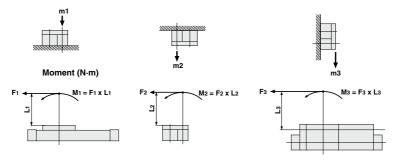
With addition of the back port, piping can be connected to suit the installation conditions.



1202

SMC

MY1 Series Variations


MY1H Series **Prior to Use**

Maximum Allowable Moment/Maximum Load Mass

Model	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load mass (kg)				
WOUEI	(mm)	M1	M2	Мз	m 1	m ₂	m3		
	25	23	26	23	27.5	27.5	27.5		
MY1H	32	39	50	39	39.2	39.2	39.2		
	40	50	50	39	50	50	50		

The above values are the maximum allowable values for moment and load mass. Refer to each graph regarding the maximum allowable moment and maximum load mass for a particular piston speed.

Load mass (kg)

Calculation of Guide Load Factor

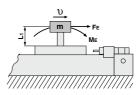
1) Maximum load mass (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.

* To evaluate, use $\mathcal{V}a$ (average speed) for (1) and (2), and \mathcal{V} (collision speed $\mathcal{V} = 1.4\mathcal{V}a$) for (3), Calculate m max for (1) from the maximum load mass graph (m1, m2, m3) and M max for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Note 1) Moment caused by the load, etc., with cylinder in resting condition

Note 2) Moment caused by the load equivalent to impact at the stroke end (at the time of impact with stopper)

Note 3) Depending on the shape of a workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.


2) Reference formula [Dynamic moment at the time of impact]

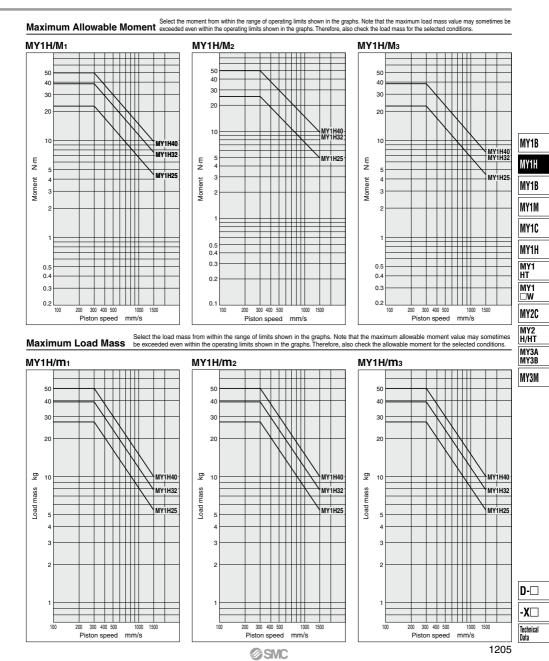
Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

- m : Load mass (kg)
- F : Load (N)
- FE : Load equivalent to impact
- (at the time of impact with stopper) (N)
- Ua: Average speed (mm/s)
- M : Static moment (N·m)

 $\upsilon = 1.4\upsilon a \text{ (mm/s)} \quad \overset{\text{Note 4)}}{\textbf{Fe}} = 1.4\upsilon a \cdot \delta \cdot \textbf{m} \cdot \textbf{g}$ Note 5) $\frac{1}{3}$ ·**F**e·L₁ = 4.57 \Im a δ mL₁ (N·m) ∴ Me

- 1) : Collision speed (mm/s)
- L1 : Distance to the load center of gravity (m)
- ME: Dynamic moment (N·m)
- δ : Bumper coefficient
- With air cushion = 1/100 With shock absorber = 1/100
- g : Gravitational acceleration (9.8 m/s²)

Note 4) 1.4 υ a δ is a dimensionless coefficient for calculating impact force.

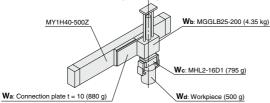

Note 5) Average load coefficient (= 1/3): For averaging the maximum load moment at the time of impact with stopper according to service life calculations.

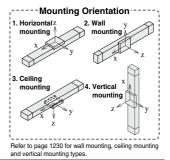
3) For detailed selection procedures, refer to Front matter 1206 and 1207.

1204

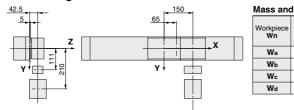
∕⊘SMC

Prior to Use **MY1H** Series


MY1H Series Model Selection

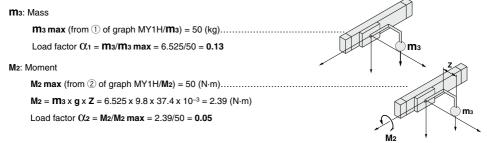

The following is the steps for selecting the most suitable MY1H series to your application.

Calculation of Guide Load Factor


1. Operating Conditions

Cylinder	MY1H40-500Z
Average operating speed $\upsilon a \cdots$	300 mm/s
Mounting orientation	Wall mounting
Cushion	Air cushion ($\delta = 1/100$)
	· .

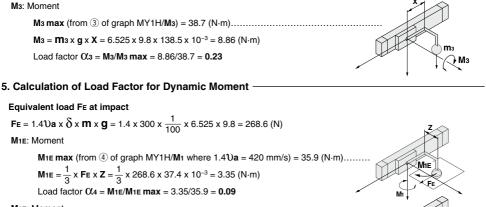
2. Load Blocking


Mass and Center of Gravity for Each Workpiece

Workpiece	Mass	c	enter of gravi	ty
Workpiece	mn	X-axis Xn	Y-axis Yn	Z-axis Zn
Wa	0.88 kg	65 mm	0 mm	5 mm
Wb	4.35 kg	150 mm	0 mm	42.5 mm
Wc	0.795 kg	150 mm	111 mm	42.5 mm
Wd	0.5 kg	150 mm	210 mm	42.5 mm
				n = a, b, c, d

3. Calculation of Composite Center of Gravity -

 $\mathbf{M}_{3} = \Sigma \mathbf{M}_{n}$ $= 0.88 + 4.35 + 0.795 + 0.5 = \mathbf{6.525 \ kg}$ $\mathbf{X} = \frac{1}{\mathbf{M}_{3}} \times \Sigma (\mathbf{m}_{n} \times \mathbf{x}_{n})$ $= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = \mathbf{138.5 \ mm}$ $\mathbf{Y} = \frac{1}{\mathbf{M}_{3}} \times \Sigma (\mathbf{m}_{n} \times \mathbf{y}_{n})$ $= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = \mathbf{29.6 \ mm}$ $\mathbf{Z} = \frac{1}{\mathbf{M}_{3}} \times \Sigma (\mathbf{m}_{n} \times \mathbf{z}_{n})$ $= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = \mathbf{37.4 \ mm}$


4. Calculation of Load Factor for Static Load

1206

@SMC

Model Selection **MY1H Series**

M3E: Moment

Mase max (from (5) of graph MY1H/Ma where 1.4 Ua = 420 mm/s) = 27.6 (N·m)...... Mase = $\frac{1}{3} \times \text{Fe} \times \text{Y} = \frac{1}{3} \times 268.6 \times 29.6 \times 10^{-3} = 2.65 \text{ (N·m)}$ Load factor (X.5 = Mase/Mase max = 2.65/27.6 = 0.10

6. Sum and Examination of Guide Load Factors

$\Sigma \alpha = \Omega \mathbf{1} + \Omega \mathbf{2} + \Omega \mathbf{3} + \Omega \mathbf{4} + \Omega \mathbf{5} = \mathbf{0.60} \le \mathbf{1}$

The above calculation is within the allowable value, and therefore the selected model can be used.

Select a shock absorber separately.

In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is over 1, consider either decreasing the speed, increasing the bore size, or changing the product series.

This calculation can be easily made using the "SMC Pneumatics CAD System."

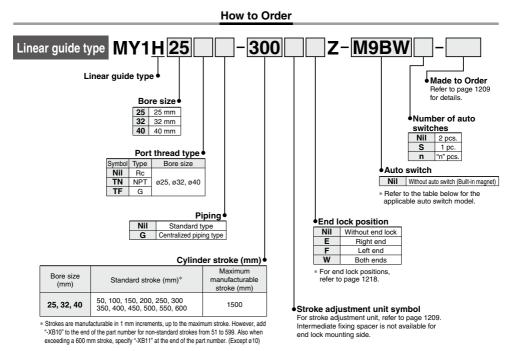
Load Mass

Allowable Moment

MY1H MY1 □W MY2C MY2C MY2 H/HT MY3A MY3B MY3M

MY1B

MY1H


MY1B

MY1M

MY1C

ŴзÈ

Mechanically Jointed Rodless Cylinder Linear Guide Type MY1H Series Ø25, Ø32, Ø40

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches

				l pages ter		ad volta		Auto swite		Lea	d wir	ہما م	nath	(m)																		
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)		C	Ĭ	Perpendicular	In-line	0.5 (Nil)	1	3	5	None	Pre-wired connector	Applical	ble load															
÷				3-wire (NPN)		5 V. 12 V		M9NV	M9N		•	•	0	0	0	IC circuit																
switch				3-wire (PNP)		5 V, 12 V		M9PV	M9P	٠	٠	٠	0	0	0																	
				2-wire		12 V		M9BV	M9B	٠	۰	۲	0	0	0	—																
auto	Die erste stie in die stiere		3-wire (NPN)		EV 10 V	5 V, 12 V	5 V 10 V	EV 10V	EV 10 V		M9NWV	M9NW	•	•	•	0	0	0	IC circuit	Dalau												
	Diagnostic indication (2-color indicator)	Grommet	Yes	3-wire (PNP)	24 V		—	M9PWV	M9PW	٠	•	٠	0	0	0		Relay, PLC															
state				2-wire	12 V		M9BWV	M9BW	•	۲	•	0	0	0	_	1.0																
lst									1	1	1								3-wire (NPN)		5 V. 12 V		M9NAV*1	M9NA*1	0	0	٠	0	—	0	IC circuit	
Solid	Water resistant (2-color indicator)			3-wire (PNP)		5 V, 12 V	5 V, 12 V	J V, 12 V	5 V, 12 V	13 V, 12 V	5 V, 12 V	D V, 12 V	5 V, 12 V	0 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V		M9PAV*1	M9PA*1	0	0	٠	0	—	0		
Ň				2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	—	0	_																
Reed o switch		Ye	Grommet		Yes	3-wire (NPN equivalent)		5 V	_	A96V	A96	٠	—	•	-	—	_	IC circuit	_													
					2-wire	24.14	10.1/	100 V	A93V*2	A93	٠	۲	۲	•	—	—	—	Relay,														
auto			No	2-wire	24 V 12 V	100 V or less	A90V	A90	٠	—	٠	-	—	_	IC circuit	PLĆ																

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

Please consult with SMC regarding water resistant types with the above model numbers.

*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

(Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order. (Example) M9NWM * Mounting bracket (BMY3-016) is separately required to retrofit the above auto

 Mounting bracket (BMY3-016) is separately required to retrofit the above auto switches.

3 m ······· L (Example) M9NWL 5 m ······· Z (Example) M9NWZ

* There are other applicable auto switches other than listed above. For details, refer to page 1220.

* For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.

1 m M

* Auto switches are shipped together, (but not assembled). (For details about auto switch mounting, refer to page 1220.)

1208

Mechanically Jointed Rodless Cylinder **MY1H Series**

Specifications

Bor	e size (mm)	25	32	40				
Fluid		Air						
Action			Double acting					
Operating	pressure range	C	.1 to 0.8 MPa					
Proof pres	ssure		1.2 MPa					
Ambient an	nd fluid temperature	5 to 60°C						
Cushion			Air cushion					
Lubricatio	n		Non-lube					
Stroke len	igth tolerance	+1.8						
Piping	Front/Side port	Rc1/8 Rc1						
port size	Bottom port	Ø	ø8					

With end lock Symbol Lock Specifications Image: Constraint of the symbol Bore size (mm) 25 32 40 Lock position One end (Selectable), Both ends Holding force (Max.) (N) 270 450 700 Fine stroke adjustment range (mm) 0 to -11.5 0 to -12 0 to -16

1	Fine stroke adjustment range (mm)	0 to -11.5	0 to -12	0 to -16
	Backlash		1 mm or less	
J	Manual release	Poss	ble (Non-lock	type)

Made to Order

Made to Order: Individual Specifications

(For details, refer to page 1221.)

 Symbol
 Specifications

 -X168
 Helical insert thread

Made to Order

Click here for details

Symbol	Specifications
-XB10	Intermediate stroke (Using exclusive body)
-XB11	Long stroke
-XB22	Shock absorber/soft type RJ series mounted
-XC56	With knock pin holes

Stroke adjustment Unit Specifications

bloke adjustment onit opecinications										
Bore	size (mm)	25			32			32 40		
Unit symbol		A		н	Α	LH		A L		Н
Configuration Shock absor		With adjustment bolt	RB1007 + adjustment bolt	RB1412 + with adjustment bolt	With adjustment bolt	RB1412 + adjustment bolt	RB2015 + with adjustment bolt	With adjustment bolt	RB1412 + with adjustment bolt	RB2015 + adjustment bolt
Stroke adjust- ment range by	Without spacer		0 to -11.5			0 to -12	•		0 to -16	
intermediate	With short spacer		–11.5 to –23		-12 to -24 -16 to -32					
fixing spacer (mm)	With long spacer		-23 to -34.5			-24 to -36			-32 to -48	

* Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

	/					Right s	side strok	e adjustn	nent unit			
			Without	A: With	adjustme	ent bolt	bolt L: With low load shock absorber + adjustment bolt			H: With high load shock absorber + adjustment bolt		
			unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer
unit	Wit	hout unit	Nil	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7
			AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7
adjustment		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7
usti		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7
adj		ad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7
ş	adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7
stroke	bolt	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7
		oad shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	н	HH6	HH7
eft si	adjustment	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	H6H	H6	H6H7
Ê	bolt	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7

* Intermediate fixing spacer is not available for end lock mounting side.

* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Shock Absorber Model for L and H Units

Туре	Stroke				
туре	adjustment unit	25	32	40	
Standard	L	RB1007	RB1412		
(Shock absorber/RB series)	н	RB1412	RB2	2015	
Shock absorber/soft type	L	RJ1007H	RJ14	412H	
RJ series mounted (-XB22)	н	RJ1412H	—	_	

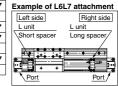
* The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the RB/RJ series Specific Product Precautions for the replacement period.

 Shock absorber/soft type RJ series mounted (-XB22) is made to order. For details, refer to page 1752.

Piston Speed

Ν

Bo	ore size (mm)	25 to 40					
Without stroke ad	djustment unit	100 to 1000 mm/s					
Stroke	A unit	100 to 1000 mm/s Note 1)					
adjustment unit	L unit and H unit	100 to 1500 mm/s Note 2)					
Note 1) Be aware that when the stroke adjustment range is increased with the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1211, the piston speed should be 100 to 200 mm/s. Note 2) The piston speed is 100 to 1000 mm/s for centralized pinno.							


Note 3) Use at a speed within the absorption capacity range. Refer to page 1211.

Stroke adjustment unit mounting diagram

Stroke adjustment unit Intermediate

Place the protruding section on the stroke adjustment unit side

Shock Absorber Specifications

Мо	del	RB 1007	RB 1412	RB 2015
Max. absorb	Max. absorbed energy (J)			58.8
Stroke abso	7	12	15	
Max. collision	1500	1500	1500	
Max. operating free	Max. operating frequency (cycle/min)			25
Spring	Extended	4.22	6.86	8.34
force (N)	Retracted	6.86	15.98	20.50
Operating tempe		5 to 60		

The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the RB series Specific Product Precautions for the replacement period. 12000 -X Technical Data

D-🗆

MY1B

MY1H

MY1B

MY1M

MY1C MY1H MY1 MY1 WY1 MY2C

MY2

H/HT

MY3A MY3B MY3M

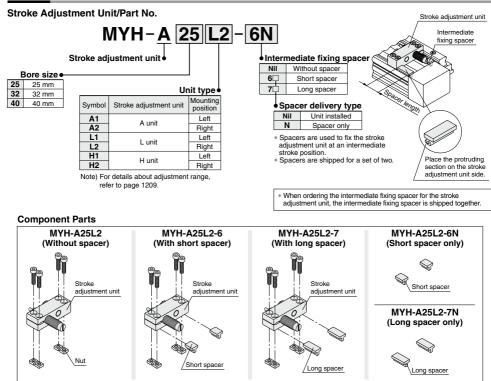
1209 A

Theoretical Output

								Unit: N
Bore	Piston							
size (mm)	area (mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight


						Unit: kg	
Bore size	Basic	Additional weight	Side support bracket weight (per set)	Stroke ad	justment u (per unit)	nit weight	
(mm)	weight	weight so mm of stroke		A/B type weight	A unit weight	L unit weight	H unit weight
25	2.17	0.30	0.02	0.04	0.07	0.11	
32	4.37	0.46	0.04	0.08	0.14	0.23	
40	5.84	0.55	0.08	0.12	0.19	0.28	

Calculation: (Example) MY1H25-300AZ

Basic weight	2.17 kg
Cylinder stroke ······	300 mm stroke
Additional weight	0.30 kg/50 mm stroke
A unit weight	0.04 kg

 $2.17 + 0.30 \times 300 \div 50 + 0.04 \times 2 \approx 4.05 \text{ kg}$

Options

* Nuts are equipped on the cylinder body.

Side Support/Part No.

Bore size (mm)		32	40
Side support A	MY-S25A	MY-S32A	MY-S40A
Side support B	MY-S25B	MY-S32B	MY-S40B

For details about dimensions, etc., refer to page 1219. Side supports consist of a set of right and left support.

1210

Cushion Capacity

Cushion Selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

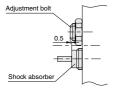
The air cushion mechanism is incorporated to prevent excessive impact of the piston with high kinetic energy at the stroke end. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber>

Use this unit when operating with a load and speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

L unit


Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line

🗥 Caution

1. Refer to the below figure when using the adjustment bolt to perform stroke adjustment. When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber

2. Do not use a shock absorber together with air cushion.

Absorption Capacity of Air Cushion and Stroke Adjustment Units

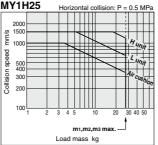
MY1H40

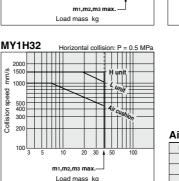
2000

1500

1000

500 400


300


200

100

mm/s

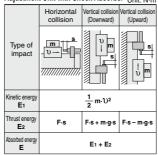
Collision speed

3 5 10 20 30 50 100 200	MY1B
m1,m2,m3 max.— Load mass kg	MY1H
	MV4D
	MY1B
	MY1M
	MY1C
	MY1H

Horizontal collision: P = 0.5 MPa

H uni

unit


CU

Air Cushion Stroke Unit: mm						
Cushion stroke						
15						
19						
24						

oke

MY1M MY1C MY1H MY1 ΗТ MY1 W MY2C MY2 H/HT MY3A MY3B MY3M

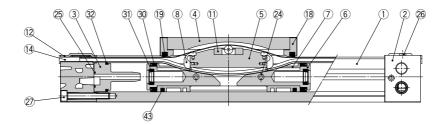
Calculation of Absorbed Energy for Stroke Adjustment Unit with Shock Absorber Unit: N·m

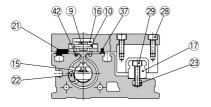
mm/s

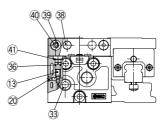
Collision speed

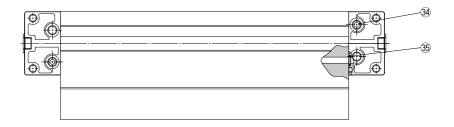
Symbols U: Speed of impact object (m/s)

F: Cylinder thrust (N)


- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s²)
- Note) The speed of the impact object is measured


at the time of impact with the shock absorber.




Construction

Standard type

Mechanically Jointed Rodless Cylinder Linear Guide Type **MY1H Series**

Component Parts

	iponone i arto		
No.	Description	Material	Note
_1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Painted
3	Cushion boss	Special resin	
4	Slide table	Aluminum alloy	Hard anodized
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Parallel pin	Stainless steel	
11	Coupler	Sintered iron material	
12	Head plate	Stainless steel	
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Guide	_	
18	End cover	Special resin	
20	Steel ball	Carbon tool steel	
21	Bearing	Special resin	
22	Magnet	Rare earth magnet	
23	Square nut	Carbon steel	Chromated
24	Spring pin	Bearing steel	
26	Thin head screw	Chromium molybdenum steel	Chromated
27	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
28	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
29	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
33	Hexagon socket head taper plug	Carbon steel	Chromated (Centralized piping: 10 pcs.)
34	Hexagon socket head taper plug	Carbon steel	Chromated (Centralized piping: 4 pcs.)
38	Stopper	Carbon steel	
39	Spacer	Stainless steel	
40	Hexagon socket button head screw	Chromium molybdenum steel	Chromated
41	CR retaining ring	Spring steel	
42	Seal magnet	Rubber magnet	
43	Lube retainer	Special resin	
			1

MY1B MY1H MY1B MY1M MY1C MY1H MY1 MY1 MY1 MY1 MY2C MY2 H/HT MY3A MY3B

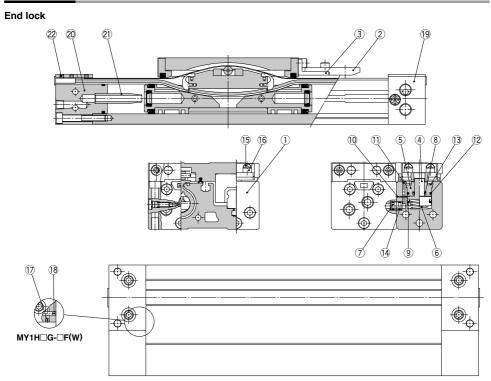
Replacement Parts: Seal Kit

No.	Description	Material	Qty.	MY1H25	MY1H32	MY1H40	
15	Seal belt	Urethane	1	MY25-16C-Stroke	MY32-16C-Stroke	MY40-16C-Stroke	
16	Dust seal band	Stainless steel	1	MY1B25-16B-Stroke	MY1B32-16B-Stroke	MY1B40-16B-Stroke	
25	Cushion boss gasket	NBR	2	MYB25-16GA5900	MYB32-16GA5901	MYB40-16GA5902	
26	36 O-ring	NBR	2	KA00311	KA00320	KA00320	
30			2	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø7.15 x ø3.75 x ø1.7)	
37	Side scraper	Special resin	2	MYH25-15BK2902B	MYH32-15BK2903B	MYH40-15BK2904B	
19	Scraper	NBR	2				
30	Piston seal	NBR	2				
31	Cushion seal	NBR	2	MY1H25-PS	MY1H32-PS	MY1H40-PS	
32	Tube gasket	NBR	2				
35	O-ring	NBR	2				

* Seal kit includes (9, 30, 3), 32 and 35. Order the seal kit based on each bore size.

* Seal kit includes a grease pack (10 g). When (15 or (16 is shipped independently, a grease pack (20 g) is included.

Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)



1213 A

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

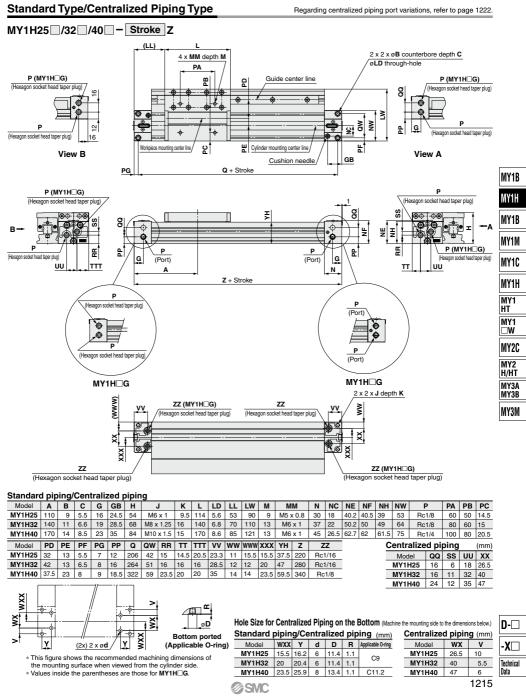
SMC

Construction

Component Parts

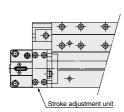
No.	Description	Material	Note
1	Locking body	Aluminum alloy	Painted
2	Lock finger	Carbon steel	After quenching, nickel plated
3	Lock finger bracket	Rolled steel	Nickel plated
4	Lock piston	Carbon tool steel	After quenching, electroless nickel plated
5	Rod cover	Aluminum alloy	Hard anodized
6	Return spring	Spring steel	Zinc chromated
7	Bypass pipe	Aluminum alloy	Hard anodized
10	Steel ball	High carbon chromium bearing steel	
11	Steel ball	High carbon chromium bearing steel	
13	Inverted internal retaining ring	Carbon tool steel	Nickel plated
15	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
16	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
17	Steel ball	High carbon chromium bearing steel	
18	Steel ball	High carbon chromium bearing steel	
19	Head cover WR	Aluminum alloy	Painted
20	Head cover WL	Aluminum alloy	Painted
21	Cushion ring	Aluminum alloy	
22	Hexagon socket head set screw	Chromium molybdenum steel	Chromated

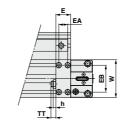
Replacement Parts: Seal Kit


No.	Description	Material	Qty.	MY1H25	MY1H32	MY1H40
8	Rod seal	NBR	1	KB00267	KB00267	KB00267
9	Piston seal	NBR	1	KB00217	KB00217	KB00217
12	O-ring	NBR	1	KB00037	KB00037	KB00037
14	O-ring	NBR	2	KA00048	KA00048	KA00048

 \ast Since the seal kit does not include a grease pack, order it separately. Grease pack part no.: GR-S-010 (10 g)

1214

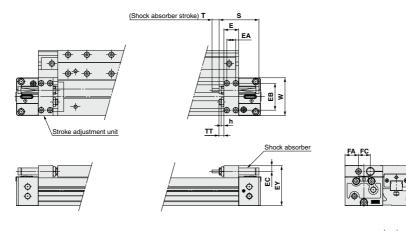

Mechanically Jointed Rodless Cylinder Linear Guide Type **MY1H Series**



Stroke Adjustment Unit

With adjustment bolt

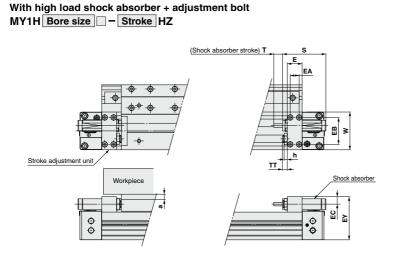
MY1H Bore size - Stroke AZ



/	_		<u>+</u>
	€	-	
		÷	입
		ŏ	
<u> </u>		•	
/			

Applicable cylinder	Е	EA	EB	EC	EY	FA	FC	h	TT	w
MY1H25	18	9	40	7.5	53.5	16	21	3.5	5 (Max.16.5)	53
MY1H32	25	14	45.6	9.5	67.5	23	20	4.5	8 (Max.20)	64
MY1H40	31	19	55	11	82	24.5	26	4.5	9 (Max.25)	75

With low load shock absorber + adjustment bolt MY1H Bore size - Stroke LZ

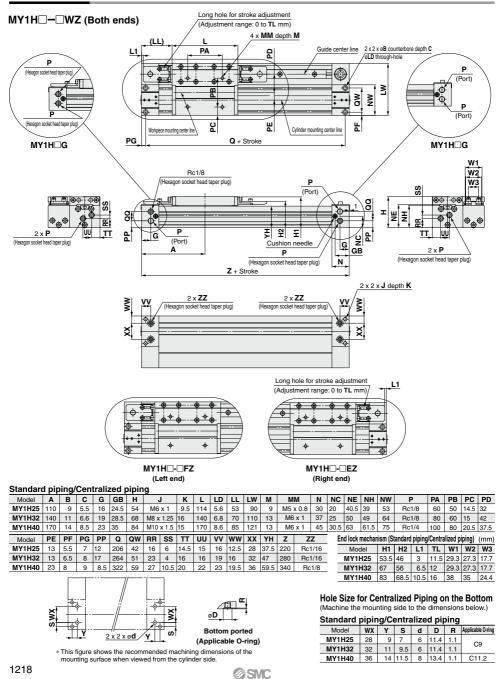


														(mm)
Applicable cylinder	Е	EA	EB	EC	EY	F	FA	FC	h	S	т	TT	w	Shock absorber model
MY1H25	18	9	40	7.5	53.5	-	16	21	3.5	46.7	7	5 (Max.16.5)	53	RB1007
MY1H32	25	14	45.6	9.5	67.5	—	23	20	4.5	67.3	12	8 (Max.20)	64	RB1412
MY1H40	31	19	55	11	82	-	24.5	26	4.5	67.3	12	9 (Max.25)	75	RB1412

1216

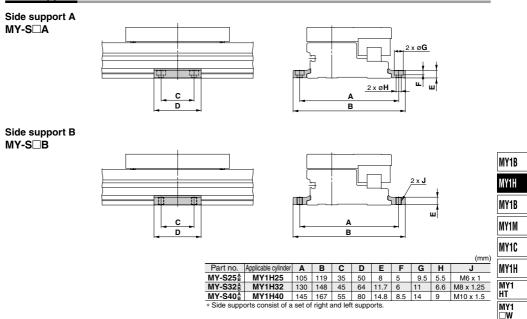
SMC

Stroke Adjustment Unit

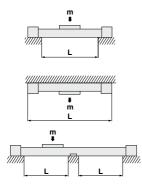

* Since the EY dimension of H unit is greater than the table top height (H dimension), when a workpiece exceeding the overall length (L dimension) of the slide table is mounted, allow a clearance of size "a" or larger at the workpiece side.

Applicable cylinder	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	Π	W	Shock absorber model	а
MY1H25	18	9	40	9	57	-	18	17.5	4.5	67.3	12	5 (Max.16.5)	53	RB1412	3.5
MY1H32	25	14	45.6	12.4	73	-	18.5	22.5	5.5	73.2	15	8 (Max.20)	64	RB2015	5.5
MY1H40	31	19	55	12.4	86	-	26.5	22	5.5	73.2	15	9 (Max.25)	75	RB2015	2.5

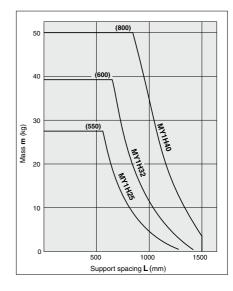
MY1B
MY1H
MY1B
MY1M
MY1C
MY1H
MY1 HT
MY1 □W
MY2C
MY2 H/HT
MY3A My3b
MY3M



With End Lock


Mechanically Jointed Rodless Cylinder Linear Guide Type MY1H Series

Side Support


Guide to Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the below graph.

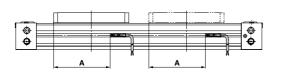
≜Caution

- If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting it. Also, for long stroke operation involving vibration and impact, use of a side support is recommended.
- Support brackets are not for mounting; use them solely for providing support.

D-

MY2C

MY2


H/HT My3a

MY3B

MY3M

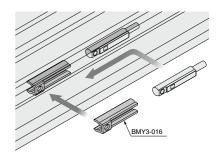
MY1H Series Auto Switch Mounting

Auto Switch Proper Mounting Position

Auto Switch Proper Mounting Position (mm)

Auto switch model	D-M9 D-M9 D-M9 V D-M9 WV D-M9 AL D-M9 AV	D-A9⊡ D-A9⊡V
Bore size	Α	Α
25	85	81
32	116.5	112.5
40	137.5	133.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.


Operating Range

			(mm				
Auto switch model	Bore size						
Auto switch model	25	32	40				
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	5.0	5.5	5.5				
D-A9□/A9□V	7.0	10.0	9.0				

Note) Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately ±30% dispersion) and may change substantially depending on the ambient environment.

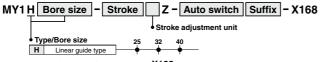
Auto Switch Mounting Bracket/Part No.

Auto switch model	Bore size (mm)
Auto switch model	ø25 to ø40
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV D-A9□/A9□V	BMY3-016

ſ	
1	Other than the applicable auto switches listed in "How to Order", the following auto switches are mountable.
į	 Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H) are also available. For details, refer to page 1593. With pre-wired connector is also available for solid state auto switches. For details, refer to pages 1648 and 1649.

MY1H Series Made to Order: Individual Specifications

Please contact SMC for detailed dimensions, specifications and lead times.



Symbol

-X168

1 Helical Insert Thread

Helical insert thread is used for the slide table mounting thread, the thread size is the same as the standard model.

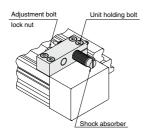
Example) MY1H40G-200LZ-M9BW-X168

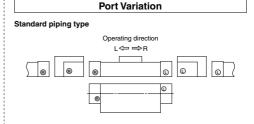
Specifications: Same as standard type

MY1B
MY1H
MY1B
MY1M
MY1C
MY1H
MY1 Ht
MY1 □W
MY2C
MY2 H/HT
MY3A My3b
MY3M

1221

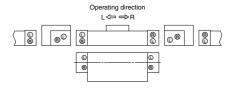
MY1H Series Specific Product Precautions 1


Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.


Operating Precautions

Caution

Use caution not to get your hands caught in the unit.


 When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

Centralized piping type

End lock

<Fastening of unit>

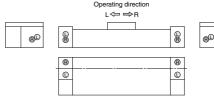
The unit can be secured by evenly tightening the four unit holding bolts.

Tightening Torque for Stroke

Adjustment Unit Holding Bolts Unit: N-m							
Bore size (mm)	Tightening torque						
25	1.8						
32	3.5						
40	5.8						

≜Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

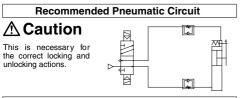

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer. For other lengths, please consult with SMC. (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts.")

<Adjustment bolt stroke adjustment>

Loosen the adjustment bolt lock nut, and adjust the stroke from the lock cover side using a hexagon wrench. Then, retighten the lock nut.

<Shock absorber stroke adjustment>

Loosen the two unit holding bolts at the shock absorber side, turn the shock absorber and adjust the stroke. Then, uniformly retighten the unit holding bolts to secure the shock absorber.


SMC

MY1H Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

With End Lock

Operating Precautions

A Caution

1. Do not use 3-position solenoid valves.

Avoid use in combination with 3-position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism (in case of locks on both ends, the side where the slide table is not locked) as shown in the figure above. There is a possibility that the lock may not be released. (Refer to "Lock Release.")

- Release the lock when mounting or adjusting the cylinder. If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
- 4. Operate at 50% or less of the theoretical output. If the load exceeds 50% of the theoretical output, this may cause problems such as failure of the lock to release, or damage to the lock unit.
- 5. Do not operate multiple cylinders in synchronization. Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.
- 6. Use a speed controller with meter-out control. Lock cannot be released occasionally by meter-in control.
- 7. Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible. (Refer to "End Lock Mechanism Adjustment.")

Operating Pressure

A Caution

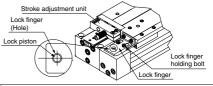
 Supply air pressure of 0.15 MPa or higher to the port on the side that has the lock mechanism, as it is necessary for disengaging the lock.

Exhaust Speed

▲ Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Relation to Cushion


\land Caution

 When the air cushion on the lock mechanism side is in a fully closed or nearly closed state, there is a possibility that the slide table will not reach the stroke end, in which case locking will not occur.

End Lock Mechanism Adjustment

\land Caution

- The end lock mechanism is adjusted at the time of shipping. Therefore, adjustment for operation at the stroke end is unnecessary.
- Adjust the end lock mechanism after the stroke adjustment unit has been adjusted. The adjustment bolt and shock absorber of the stroke adjustment unit must be adjusted and secured first. Locking and unlocking may not occur otherwise.
- 3. Perform fine adjustment of the end lock mechanism as follows. Loosen the lock finger holding bolts, and then adjust by aligning the center of the lock piston with the center of the lock finger hole. Secure the lock finger.

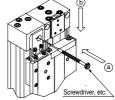
Lock Release

\land Warning

 Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to "Recommended Pneumatic Circuit.") If the lock is released when the port on the side without the lock is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged.

Furthermore, sudden movement of the slide table is very dangerous.

Manual Release


\land Caution

1. When manually releasing the end lock, be sure to release the pressure.

If it is unlocked while the air pressure still remains, it will lead to damage a workpiece, etc. due to unexpected lurching.

2. Perform manual release of the end lock mechanism as follows.

Push the lock piston down with a screwdriver, etc., and move the slide table.

Other handling precautions regarding mounting, piping and environment are the same as the standard series.

MY1B

MY1H

MY1B

MY1C

MY1H

MY1

MY1

W

MY2C

MY2

H/HT

MY3A

MY3B

MY3M

HT

1223